首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While the generally negative consequences of introduced species are well known, little is appreciated on the role of the evolutionary history of plants with herbivores in mediating the indirect impacts of herbivory. We examined how variation in plant resistance and tolerance traits can mediate the effects of herbivory and can have differential indirect impacts on other species and processes. We used two examples of a native and an introduced herbivore, Castor canadensis (American beaver) and Cervus elaphus (Rocky Mountain elk) with Populus spp. to test a conceptual model regarding possible outcomes of species interactions with native and exotic mammalian herbivores. Using these two herbivore test cases, we make two predictions to create testable hypotheses across systems and taxa: First, adaptive traits of tolerance or resistance to herbivory will be fewer when exotic species feed on plant species with which they have no evolutionary history. Second, historical constraints of species interactions will allow for negative feedbacks to stabilize the effects of herbivory by a native species. Overall, these two case studies illustrate that plant resistance and tolerance traits can mediate the indirect consequences of herbivory on associated interacting species. Specifically, when there is no evolutionary history between the plants and herbivores, which is often the case with species introductions, the effects of herbivory are more likely to reduce genetic variation and habitat mosaics, thus indirectly affecting associated species.  相似文献   

2.
Ungulate herbivory can have profound effects on ecosystem processes by altering organic inputs of leaves and roots as well as changing soil physical and chemical properties. These effects may be especially important when the herbivore is an introduced species. Utilizing large mammal exclosures to prevent access by introduced elk at multiple sites along a fire chronosequence, we examined the effects of elk herbivory and fire on soil microbial activity and nutrient availability. Using time since fire as a co-variate and herbivore exclosures, paired with areas outside of the exclosures, we hypothesized that reductions in plant biomass due to herbivory would reduce organic inputs to soils and impact soil microbial activities and nutrient storage. We found three major patterns: (1) when elk were excluded, surface mineral soils had higher soil organic carbon (C), total nitrogen (N), microbial N pools, and increased extra-cellular enzyme activity of a C-acquiring enzyme across a gradient of time since fire. (2) When introduced elk are present, the activity of some extracellular enzymes as well as NO3 availability are enhanced in the soil but the post-fire patterns described above with respect to nutrient accrual over time are delayed. (3) Herbivory by an introduced ungulate upsets the trajectory of ecosystem “recovery” after wildfire and delays soil C and N dynamics by an estimated 14.5–21 years, respectively. These results suggest that introduced, browsing herbivores significantly decelerate ecosystem processes but herbivory by exotics may also result in unpredictability in specific soil responses.  相似文献   

3.
Ungulates impact woody species’ growth and abundance but little is understood about the comparative impacts of different ungulate species on forest expansion in savanna environments. Replacement of native herbivore guilds with livestock [i.e., beef cattle (Bos taurus)] has been hypothesized as a factor facilitating trembling aspen (Populus tremuloides Michx.) encroachment into grasslands of the Northern Great Plains. We used a controlled herbivory study in the Parklands of western Canada to compare the impact of native ungulates and cattle on aspen saplings. Native ungulate treatments included a mixed species guild and sequences of herbivory by different ungulates [bison (Bison bison subsp. bison), elk (Cervus elaphus) then deer (Odocoileus hemionus); or deer, elk, then bison]. Herbivory treatments were replicated in three pastures, within which sets of 40 marked aspen saplings (<1.8 m) were tracked along permanent transects at 2-week intervals, and compared to a non-grazed aspen stand. Stems were assessed for mortality and incremental damage (herbivory, leader breakage, stem abrasion and trampling). Final mortality was greater with exposure to any type of herbivore, but remained similar between ungulate treatments. However, among all treatments, the growth of aspen was highest with exposure only to cattle. Herbivory of aspen was attributed primarily to elk within the native ungulate treatments, with other forms of physical damage, and ultimately sapling mortality, associated with exposure to bison. Overall, these results indicate that native ungulates, specifically elk and bison, have more negative impacts on aspen saplings and provide evidence that native and domestic ungulates can have different functional effects on woody plant dynamics in savanna ecosystems.  相似文献   

4.
Loss of plant diversity influences essential ecosystem processes as aboveground productivity, and can have cascading effects on the arthropod communities in adjacent trophic levels. However, few studies have examined how those changes in arthropod communities can have additional impacts on ecosystem processes caused by them (e.g. pollination, bioturbation, predation, decomposition, herbivory). Therefore, including arthropod effects in predictions of the impact of plant diversity loss on such ecosystem processes is an important but little studied piece of information. In a grassland biodiversity experiment, we addressed this gap by assessing aboveground decomposer and herbivore communities and linking their abundance and diversity to rates of decomposition and herbivory. Path analyses showed that increasing plant diversity led to higher abundance and diversity of decomposing arthropods through higher plant biomass. Higher species richness of decomposers, in turn, enhanced decomposition. Similarly, species-rich plant communities hosted a higher abundance and diversity of herbivores through elevated plant biomass and C:N ratio, leading to higher herbivory rates. Integrating trophic interactions into the study of biodiversity effects is required to understand the multiple pathways by which biodiversity affects ecosystem functioning.  相似文献   

5.
Daniel B. Metcalfe  Johan Olofsson 《Oikos》2015,124(12):1632-1638
Herbivores play a key role in the carbon (C) cycle of arctic ecosystems, but these effects are currently poorly represented within models predicting land–atmosphere interactions under future climate change. Although some studies have examined the influence of various individual species of herbivores on tundra C sequestration, few studies have directly compared the effects of different herbivore assemblages. We measured peak growing season instantaneous ecosystem carbon dioxide (CO2) exchange (photosynthesis, respiration and net ecosystem exchange) on replicated plots in arctic tundra which, for 14 years, have excluded different portions of the herbivore population (grazed controls, large mammals excluded, both small and large mammals excluded). Herbivory suppressed photosynthetic CO2 uptake, but caused little change in ecosystem respiration. Despite evidence that small mammals consume a greater portion of plant biomass in these ecosystems, the effect of excluding only large herbivores was indistinguishable from that of excluding both large and small mammals. The herbivory‐induced decline in photosynthesis was not entirely attributable to a decline in leaf area but also likely reflects shifts in plant community composition and/or species physiology. One shrub species – Betula nana – accounted for only around 13% of total aboveground vascular plant biomass but played a central role in controlling ecosystem CO2 uptake and release, and was suppressed by herbivory. We conclude that herbivores can have large effects on ecosystem C cycling due to shifts in plant aboveground biomass and community composition. An improved understanding of the mechanisms underlying the distinct ecosystem impacts of different herbivore groups will help to more accurately predict the net impacts of diverse herbivore communities on arctic C fluxes.  相似文献   

6.
The consequences of invasive species on ecosystem processes and ecological interactions remain poorly understood. Predator–prey interactions are fundamental in shaping species evolution and community structure and can be strongly modified by species introductions. To fully understand the ecological effects of invasive species on trophic linkages it is important to characterize novel interactions between native predators and exotic prey and to identify the impacts of invasive species on the performance of native predators. Although seaweed invasions are a growing global concern, our understanding of invasive algae—herbivore interactions is still very limited. We used a series of feeding experiments between a native herbivore and four invasive algae in the Mediterranean Sea to examine the potential of native sea urchins to consume invasive seaweeds and the impacts of invasive seaweed on herbivore performance. We found that three of the four invasive species examined are avoided by native herbivores, and that feeding behaviour in sea urchins is not driven by plant nutritional quality. On the other hand, Caulerpa racemosa is readily consumed by sea urchins, but may escape enemy control by reducing their performance. Recognizing the negative impacts of C. racemosa on herbivore performance has highlighted an enemy escape mechanism that contributes to explaining how this widespread invasive alga, which is preferred and consumed by herbivores, is not eradicated by grazing in the field. Furthermore, given the ecological and economic importance of sea urchins, negative impacts of invasive seaweeds on their performance could have dramatic effects on ecosystem function and services, and should be accounted for in sea urchin population management strategies.  相似文献   

7.
Resource regulation occurs when herbivory maintains or increases plant susceptibility to further herbivory by the same species. A review of the literature indicates it is a widespread plant–animal interaction involving a diverse array of herbivores. At least three mechanisms can produce this positive feedback cycle. First, phytophagous insect and mammalian herbivore damage can stimulate dormant buds to produce vigorous juvenile growth, which is preferred for further attack. Juvenilization cycles may have repeatedly evolved because herbivores are able to take advantage of a generalized plant compensatory response to any type of damage. Second, herbivores can manipulate plant source–sink relationships to attain more resources, and this alteration of plant growth may benefit subsequent herbivore generations. Third, herbivory can alter plant nutrition or defensive chemistry in a way that makes a plant susceptible to more herbivory. Resource regulation probably occurs because damage to resources preferred by the herbivores induces a generalized plant response that produces more preferred resources. Alternatively, manipulation of plant resources to induce resource regulation may have evolved in herbivores with a high degree of philopatry due to selection to alter plant resources to benefit their offspring. Resource regulation can stabilize insect population dynamics by maintaining a supply of high-quality plant resources. It can also increase the heterogeneity of host-plant resources for herbivores by altering the physiological age structure and the distribution of resources within plants. Resource regulation may have strong plant-mediated effects on other organisms that use that host plant, but these effects have not yet been explored.  相似文献   

8.
Exotic herbivores represent a serious threat to native biodiversity, producing large scale changes in native communities and altering ecosystem processes. In this special issue, we present a series of case studies and reviews from different areas of the world that highlight (1) the consequences of herbivore introductions are a global problem; (2) they can result in wholesale shifts in the distribution of dominant plants on the landscape and; (3) the effects of herbivore introductions extend from the population to the community and ecosystem level. These studies suggest that introduced herbivores often retard ecosystem recovery after disturbance, facilitate invasion of plant species and can act as selective agents on native plant communities. These studies also suggest that several topics, including facilitation between exotic herbivores and exotic plants and animals (i.e., invasional meltdown) and the effect of exotic herbivores on ecosystem processes, require more research attention. Overall the papers in this special feature suggest that introduced herbivores are a global problem with wide-ranging ecological and evolutionary effects.  相似文献   

9.
Large, herbivorous mammals have profound effects on ecosystem structure and function and often act as keystone species in ecosystems they inhabit. Density-dependent processes associated with population structure of large mammals may interact with ecosystem functioning to increase or decrease biodiversity, depending on the relationship of herbivore populations relative to the carrying capacity (K) of the ecosystem. We tested for indirect effects of population density of large herbivores on plant species richness and diversity in a montane ecosystem, where increased net aboveground primary productivity (NAPP) in response to low levels of herbivory has been reported. We documented a positive, linear relationship between plant-species diversity and richness with NAPP. Structural equation modeling revealed significant indirect relationships between population density of herbivores, NAPP, and species diversity. We observed an indirect effect of density-dependent processes in large, herbivorous mammals and species diversity of plants through changes in NAPP in this montane ecosystem. Changes in species diversity of plants in response to herbivory may be more indirect in ecosystems with long histories of herbivory. Those subtle or indirect effects of herbivory may have strong effects on ecosystem functioning, but may be overlooked in plant communities that are relatively resilient to herbivory.  相似文献   

10.
Altered species interactions are difficult to predict and yet may drive the response of ecological communities to climate change. We show that declining snowpack strengthens the impacts of a generalist herbivore, elk (Cervus elaphus), on a common tree species. Thick snowpack substantially reduces elk visitation to sites; aspen (Populus tremuloides) shoots in these areas experience lower browsing rates, higher survival and enhanced recruitment. Aspen inside herbivore exclosures have greatly increased recruitment, particularly at sites with thick snowpack. We suggest that long-term decreases in snowpack could help explain a widespread decline of aspen through previously unconsidered relationships. More generally, reduced snowpack across the Rocky Mountains, combined with rising elk populations, may remove the conditions needed for recruitment of this ecologically important tree species. These results highlight that herbivore behavioural responses to altered abiotic conditions are critical determinants of plant persistence. Predictions of climate change impacts must not overlook the crucial importance of species interactions.  相似文献   

11.
Avian herbivores dominated New Zealand?s pre-settlement terrestrial ecosystems to an unparalleled extent, in the absence of a terrestrial mammal fauna. Approximately 50% (88 taxa) of terrestrial bird species consumed plant foliage, shoots, buds and flowers to some degree, but fewer than half these species were major herbivores. Moa (Dinornithiformes) represent the greatest autochthonous radiation of avian herbivores in New Zealand. They were the largest browsers and grazers within both forest and scrubland ecosystems. Diverse waterfowl (Anatidae) and rail (Rallidae) faunas occupied forests, wetlands and grasslands. Parrots (Psittacidae) and wattlebirds (Callaeidae) occupied a range of woody vegetation types, feeding on fruits/seeds and foliage/ fruits/nectar, respectively. Other important herbivores were the kereru (Columbidae), stitchbird (Notiomystidae) and two honeyeaters (Meliphagidae). Cryptic colouration, nocturnal foraging and fossil evidence suggest that avian populations were strongly constrained by predation. With the absence of migratory avian herbivores, plant structural, constitutive defences prevailed, with the unusual ?wire syndrome? representing an adaptation to limit plant offtake by major terrestrial avian browsers. Inducible plant defences are rare, perhaps reflecting longstanding nutrient-limitations in New Zealand ecosystems. Evidence from coprolites suggests moa were important dispersers of now rare, annual, disturbance-tolerant herb species, and their grazing may have maintained diverse prostrate herbs in different vegetation types. The impact of moa on forest structure and composition remains speculative, but many broadleaved woody species would likely have experienced markedly reduced niches in pre-settlement time. Several distinctive avian-mediated vegetation types are proposed: dryland woodlands, diverse turf swards, coastal herb-rich low-forest-scrubland, and conifer-rich forests. Since human settlement (c. 750 yrs ago), c. 50% of endemic avian herbivore species or c. 40% overall have become extinct, including all moa, 60% of waterfowl and 33% of rail species. Numerically, avian herbivore introductions (c. 24 taxa) since European settlement have compensated for extinctions (c. 27 taxa), but the naturalised birds are mostly small, seed-eating species restricted to human-modified landscapes. Several naturalised species (e.g. Canada goose, Branta canadensis; brown quail, Coturnix ypsilophorus) may provide modes and levels of herbivory comparable with extinct species. The original avian and current introduced mammal herbivore regimes were separated by several centuries when New Zealand lacked megaherbivores. This ?herbivory hiatus? complicates comparisons between pre-settlement and current herbivore systems in New Zealand. However, predation, animal mobility, feeding mode, nutrient transfer patterns and soil impacts were different under an avian regime compared with current mammalian herbivore systems. Levels of ecological surrogacy between avifauna and introduced mammals are less evident. Ungulates generally appear to have impacts qualitatively different from those of the extinct moa. Because of New Zealand?s peculiar evolutionary history, avian herbivores will generally favour the persistence of indigenous vegetation, while mammalian herbivores continue to induce population declines of select plant species, change vegetation regeneration patterns, and generally favour the spread and consolidation of introduced plant species with which they share an evolutionary history.  相似文献   

12.
Deron E. Burkepile 《Oikos》2013,122(2):306-312
‘Grazing ecosystem’ is typically used to describe terrestrial ecosystems with high densities of mammalian herbivores such as the Serengeti in East Africa or the Greater Yellowstone Ecosystem in North America. These abundant, large herbivores determine plant community dynamics and ecosystem processes. The general concepts that define grazing ecosystems also aptly describe many aquatic ecosystems, including coral reefs, seagrass beds, and lakes, where herbivores such as parrotfishes, turtles, and zooplankton have strong impacts on ecosystem processes. Here, I compare the ecology of grazing ecosystems in search of common concepts that transcend the terrestrial‐aquatic boundary. Specifically, I evaluate: 1) the feedbacks between herbivory and primary production, 2) the roles of herbivore richness and facilitation, 3) how predators and diet quality shape patterns of herbivory, and 4) how altering herbivory mediates alternative states.  相似文献   

13.
Response and effect traits help to understand how changes in ecological communities (e.g. in response to land use) relate to changes in ecosystem functioning. In grasslands, plants and insect herbivores are involved in many ecosystem processes such as herbivory and plant biomass production. Simultaneous changes in the trait composition of both plants and herbivores should affect herbivory rates, with consequences for plant growth and potentially biomass production. The mechanisms underlying these links are little understood for grasses and sucking insects, which build a major part of grassland communities. In a mesocosm experiment, we manipulated the composition of grasses and sucking herbivores (Hemiptera) to study the role of plant traits, herbivore traits and their interaction on herbivory and plant growth. Because sucking herbivory is generally difficult to quantify, we developed a novel experimental setting, in which we labelled plants with 15N isotope. This allowed to quantify 15N uptake and thus sucking rates of individuals. We found that herbivory and simultaneous plant growth reduction are most strongly linked to herbivore species identity. Unexpectedly, herbivory did not increase with herbivore size, but was highest for small species and for thin-bodied Heteroptera. Additionally, herbivory and plant growth reduction depended on the interacting herbivore and plant species, indicating trait matching, which could, however, not be explained with commonly used traits. This indicates that mechanisms linking ecological communities and ecosystem processes are highly context-specific. To understand how global change affects ecosystem functioning, studies need to cover all functionally relevant groups, including plant sap suckers.  相似文献   

14.
In their native range, mammalian herbivores exist in a suite of direct and indirect ecological and evolutionary relationships with plant populations and communities. Outside their native range these herbivores become embedded in a multitude of new ecological and evolutionary interactions with native plant species in the new range. Sound knowledge of the plant/herbivore interactions in the herbivores’ native range provides an ideal framework to better understand their effects in the introduced range. The example of the common brushtail possum (Trichosurus vulpecula) and its introduction to New Zealand from Australia provides an excellent case study. In Australia, the common brushtail possum is a widespread generalist herbivore and it is thought that this generalist lifestyle has equipped the species well for successful colonisation of New Zealand. In Australia the brushtail possum has co-existed with highly chemically defended foliage since the Oligocene and recent papers have supported the role of possums as agents of selection on eucalypt defences. While the chemical profile of New Zealand foliage is comparatively poorly understood, possums do show clear selectivity between and within populations and some of these interactions may be mediated by the animals ability to ‘cope’ with PSMs, coupled with maintaining its generalist diet. While possums have had less time to effect evolutionary change in New Zealand species, their impacts on plant fitness have been well documented. However, further knowledge on variation and heritability of foliage traits driving possum preferences is needed to elucidate the ecological and evolutionary plant/possum interactions in the invasive range.  相似文献   

15.
Loss of biodiversity poses one of the greatest threats to natural ecosystems throughout the world. However, a comprehensive understanding of the impacts of species losses from upper trophic levels is still emerging. Here we compare the impacts of large mammalian herbivore species loss on grassland plant community structure and composition in a South African and North American grassland. Herbaceous plant communities were surveyed at sites without large mammalian herbivores present and at sites with a single species of herbivore present in both locations, and additionally at one site in South Africa with multiple herbivore species. At both the North American and South African locations, plant communities on sites with a single herbivore species were more diverse and species rich than on sites with no herbivores. At the multi-herbivore site in South Africa, plant diversity and richness were comparable to that of the single herbivore site early in the growing season and to the no herbivore site late in the growing season. Analyses of plant community composition, however, indicated strong differences between the multi-herbivore site and the single and no herbivore sites, which were more similar to each other. In moderate to high-productivity ecosystems with one or a few species of large herbivores, loss of herbivores can cause a significant decrease in plant diversity and richness, and can have pronounced impacts on grassland plant community composition. In ecosystems with higher herbivore richness, species loss may also significantly alter plant community structure and composition, although standard metrics of community structure may obscure these differences.  相似文献   

16.
Herbivores are pervasive, yet their effects on plant fecundity are often variable. One potential source of variation in herbivore impacts results from differing feeding modes of herbivores. We examined the relative importance of inflorescence-feeding insects versus large ungulates in affecting the fecundity of Balsamorhiza sagittata (Asteraceae), a dominant native perennial forb in western Montana, USA. We quantified these effects across four sites that varied in elevation to determine how consistent herbivore impacts were across these divergent sites. Insect herbivores were present in flower heads at all sites but they significantly depressed plant fecundity at two of the four sites. At the two sites where herbivore suppression had significant effects, this treatment let to 1.6 and 3.4-fold increases in seed production, respectively. In contrast, across all sites ungulates had minimal impacts on balsamroot flower and seed production. Seed addition experiments revealed that at some sites and in some years B. sagittata is seed-limited, as there was a positive relationship between seed input and seedling recruitment. Thus, reductions in seed production from heavy insect herbivory may limit balsamroot recruitment in some locations. Overall, results show that inconspicuous insects have stronger effects on balsamroot fecundity than do mammalian herbivores, but the magnitude of negative impacts at both the individual and population-level vary by site.  相似文献   

17.
The combination of abiotic stress and consumer stress can have complex impacts on plant community structure. Effective conservation and management of semi-arid ecosystems requires an understanding of how different stresses interact to structure plant communities. We explored the separate and combined impacts of episodic drought, livestock grazing, and wild ungulate herbivory on species co-occurrence and diversity patterns in a relatively productive, semi-arid Acacia savanna. Specifically, we analyzed 9 years of biannual plant community data from the Kenya long-term exclosure experiment, a broad-scale manipulative experiment that has excluded different combinations of large mammalian herbivores from 18 4-ha plots since 1995. During droughts, we observed low species diversity and random species co-occurrence patterns. However, when rain followed a major drought, areas exposed to moderate cattle grazing displayed high species diversity and evidence of significant species aggregation. These patterns were not apparent in the absence of cattle, even if other large herbivores were present. To explore possible mechanisms, we examined patterns separately for common and rare species. We found that aggregation patterns were likely driven by rare species responding similarly to the availability of open micro-sites. Our results indicate that in a productive, fire-suppressed savanna, the combination of periodic drought and moderate cattle grazing can enhance plant biodiversity and fine-scale spatial heterogeneity by opening up space for species that are otherwise rare or cryptic. Our findings also emphasize that domestic herbivores can have significantly stronger impacts on plant community dynamics than wild herbivores, even in an ecosystem with a long history of grazing.  相似文献   

18.
Endophytic fungal symbionts of grasses are well known for their protective benefit of herbivory reduction. However, the majority of studies on endophyte–grass symbioses have been conducted on economically important, agricultural species—particularly tall fescue (Lolium arundinaceum) and perennial ryegrass (Lolium perenne)—raising the hypothesis that strong benefits are the product of artificial selection. We examined whether fungal endophytes found in natural populations of native grass species deterred insect herbivores. By testing several native grass–endophyte symbiota, we examined phylogenetic signals in the effects of endophytes on insects and compared the relative importance of herbivore and symbiotum identity in the outcome of the interactions. Preference was assessed using three herbivore species [Spodoptera frugiperda (Lepidoptera), Schistocerca americana (Orthoptera), Rhopalosiphum padi (Hemiptera)] and ten native symbiota, which spanned seven grass genera. We also assessed herbivore performance in a no choice experiment for five native symbiota against S. frugiperda. We compared greenhouse and laboratory trials with natural levels of herbivory measured in experimental field populations. In all cases, we included the agronomic grass species, L. arundinaceum, to compare with results from the native grasses. Both in the field and in experimental trials, herbivores showed a significant preference for endophyte-free plant material for the majority of native grasses, with up to three times lower herbivory for endophyte-symbiotic plants; however, the degree of response depended on the identity of the herbivore species. Endophyte presence also significantly reduced performance of S. frugiperda for the majority of grass species. In contrast, the endophyte in L. arundinaceum had few significant anti-herbivore effects, except for a reduction in herbivory at one of two field sites. Our results demonstrate that the mechanisms by which native symbionts deter herbivores are at least as potent as those in model agricultural systems, despite the absence of artificial selection.  相似文献   

19.
Multispecies interactions between plants and natural enemies are ubiquitous, and often lead to diffuse interactions between plants and their herbivores. Non-specific induced responses, where responses induced by one species affect other species, are one potential mechanism generating diffuse interactions. Using 57 inbred lines of the Ivyleaf morning glory, Ipomoea hederacea, in a greenhouse experiment, we examined whether simulated mammalian herbivory induced responses that could affect plant resistance to the generalist insect herbivore, Spodoptera exigua. Inbred lines were highly variable for induced responses, ranging from induced resistance to induced susceptibility, with the rank-order for resistance in inbred lines changing between clipping and control treatments. We failed to detect significant genetic correlations between induced responses and trichome density, or that clipping modified the negative relationship between trichome density and Spodoptera exigua consumption and biomass. Our results suggest that non-specific induced responses can mediate the diffuse evolutionary relationship between I. hederacea and its herbivores, and that genetic variation in induced responses are an important component of this interaction. Handling Error: Heikki Hokkanen  相似文献   

20.
Studies focusing on pairwise interactions between plants and herbivores may not give an accurate picture of the overall selective effect of herbivory, given that plants are often eaten by a diverse array of herbivore species. The outcome of such interactions may be further complicated by the effects of plant hybridization. Hybridization can lead to changes in morphological, phenological and chemical traits that could in turn alter plant–herbivore interactions. Here we present results from manipulative field experiments investigating the interactive effects of multiple herbivores and plant hybridization on the reproductive success of Ipomopsis aggregata formosissima X I. tenuituba. Results showed that ungulate herbivores alone had a net positive effect on plant relative fitness, increasing seed production approximately 2-fold. Caterpillars had no effect on plant relative fitness when acting alone, with caterpillar-attacked plants producing the same number of flowers, fruits and seeds as the uneaten controls. Caterpillars, however, significantly reduced flower production of ungulate browsed plants. Flower production in these plants, however, was still significantly greater (approximately 1.7-fold greater) than uneaten controls, likely leading to an increase in reproductive success through the paternal component of fitness given that fruit and seed production was not significantly different from that of herbivore-free controls. Although results suggest that herbivore imposed selection is pairwise, ungulates likely have a large influence on the abundance of, and hence the amount of damage caused by, caterpillar herbivores. Thus, because of the ecological interactions between ungulates and caterpillars, selection on Ipomopsis may be diffuse rather than pairwise, assuming such interactions translate into differential effects on plant fitness as herbivore densities vary. Plant hybridization had no significant effect on patterns of ungulate or caterpillar herbivory; i.e., no significant interactions were detected between herbivory and plant hybridization for any of the fitness traits measured in this study nor did plant hybridization have any significant effect on host preference. These results may be due to patterns of introgression or the lack of species-specific differences between I. aggregate formosissima and I. tenuituba. Plant hybridization per se resulted in lowered reproductive success of white colored morphs due in part to the effects of pollination. Although it appears that there would be strong directional selection favoring darker flower colors due to the lower reproductive success of the white colored morphs in the short run, the natural distribution of hybrids suggest that over the long run selection either tends to average out or there are no fitness differences among morphs in most years due to the additive fitness effects of hawkmoth and hummingbird pollinators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号