首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Smokeless tobacco usage is a growing public health problem worldwide. The molecular mechanism(s) underlying smokeless tobacco associated tissue damage remain largely unidentified. In the present study we have tried to explore the effects of aqueous extract of smokeless tobacco (STE) on tubulin-microtubule, the major cytoskeleton protein that maintains cells morphology and participates in cell division. Exposure to STE resulted in dose-dependent cytotoxicity in a variety of mammalian transformed cell lines such as human lung epithelial cells A549, human liver epithelial cells HepG2, and mouse squamous epithelial cells HCC7, as well as non-tumorogenic human peripheral blood mononuclear cells PBMC. Cellular morphology of STE-treated cells was altered and the associated disruption of microtubule network indicates that STE targets tubulin-microtubule system in both cell lines. Furthermore it was also observed that STE-treatment resulted in the selective degradation of cellular tubulin, whereas actin remains unaltered. In vitro, polymerization of purified tubulin was inhibited by STE with the IC50 value∼150 µg/ml and this is associated with the loss of reactive cysteine residues of tubulin. Application of thiol-based antioxidant N-acetyl cysteine (NAC) significantly abrogates STE-mediated microtubule damage and associated cytotoxicity in both A549 and HepG2 cells. These results suggest that microtubule damage is one of the key mechanisms of STE-induced cytotoxity in mammalian cells.  相似文献   

2.
Cigarette smoke and smokeless tobacco extracts contain multiple carcinogenic compounds, but little is known about the mechanisms by which tumors develop and progress upon chronic exposure to carcinogens such as those present in tobacco products. Here, we examine the effects of smokeless tobacco extracts on human oral fibroblasts. We show that smokeless tobacco extracts elevated the levels of intracellular reactive oxygen, oxidative DNA damage, and DNA double-strand breaks in a dose-dependent manner. Extended exposure to extracts induced fibroblasts to undergo a senescence-like growth arrest, with striking accompanying changes in the secretory phenotype. Using cocultures of smokeless tobacco extracts-exposed fibroblasts and immortalized but nontumorigenic keratinocytes, we further show that factors secreted by extracts-modified fibroblasts increase the proliferation and invasiveness of partially transformed epithelial cells, but not their normal counterparts. In addition, smokeless tobacco extracts-exposed fibroblasts caused partially transformed keratinocytes to lose the expression of E-cadherin and ZO-1, as well as involucrin, changes that are indicative of compromised epithelial function and commonly associated with malignant progression. Together, our results suggest that fibroblasts may contribute to tumorigenesis indirectly by increasing epithelial cell aggressiveness. Thus, tobacco may not only initiate mutagenic changes in epithelial cells but also promote the growth and invasion of mutant cells by creating a procarcinogenic stromal environment.  相似文献   

3.
The purpose of this study was to determine whetherexposure of cultured chemically transformed hamster oral keratinocytes (HCPC-1) to an aqueous extract of smokeless tobacco (STE) potentiates DNA synthesis elicited by vasoactive intestinal peptide (VIP), anautocrine neuropeptide, and, if so, whether this response is associatedwith inactivation of neutral endopeptidase 24.11 (NEP 24.11), anectoenzyme that cleaves and inactivates VIP very effectively, in thesecells. I found that STE and VIP each elicited a modest, albeitsignificant, increase in DNA synthesis in cultured HCPC-1 cells(P < 0.05). However, incubation of HCPC-1 cells with STE together with VIP evoked a significant, concentration- dependent increase in DNA synthesis that was mediated by VIP receptors. Theeffects of STE and VIP were synergistic. Maximal response was observedafter a 48-h incubation. STE significantly attenuated NEP 24.11 activity in HCPC-1 cells at a time when VIP-induced DNA synthesis wasmaximal. Collectively, these data indicate that STE potentiatesVIP-induced DNA synthesis in cultured oral keratinocytes, and that thisresponse is temporally related to STE-induced inactivation of NEP 24.11 in these cells. I suggest that NEP 24.11 modulates the mitogeniceffects of smokeless tobacco in the oral epithelium, in part, byinactivating VIP.

  相似文献   

4.
Smokeless tobacco habits are detrimental to oral health. A correlation between tobacco use and local epithelial tissue damage exists. Yet, the underlying cellular mechanism is not precisely characterized. This study assessed the dose-dependent action of Smokeless tobacco extract on gingival epithelial cells. Gingival tissue was taken from 5 healthy donors. Gingival epithelial cells were isolated by an enzymatic method and cultured up to passage 2. The cultured cells were treated with smokeless tobacco extract at 10%, 25%, 50%, and 75% volume concentration. After 48 h of incubation, MTT assay, Annexin V/PI assay, and DiIC1(5) assay were used to evaluate viability, apoptosis, and mitochondrial potential of the cells. RT-qPCR was used to determine the expression of BAX, BCL2, ECAD, NCAD, and TWIST. The Smokeless tobacco extract reduced cell viability by disrupting the mitochondrial potential and inducing apoptosis. Further, the Smokeless tobacco extract induced a dose-dependent epithelial-mesenchymal-transition in gingival epithelial cells. Apoptotic cellular death caused by tobacco extract on the gingival epithelial system was dependant on the mitochondrial potential of the cell. The results demonstrate that smokeless tobacco causes detrimental metabolic alterations of the periodontium.Featured applicationThis study elucidates the mechanism by which Smokeless tobacco products cause cellular damage to the gingival epithelium. The use of Smokeless tobacco products can lead to major cellular and surface changes in the gingiva and its appearance. The consequences of these changes are not limited to oral cancer but also increases a person’s risk for dental and periodontal disease.  相似文献   

5.
Resistance to apoptosis is essential for cancer survival and plays a critical role in carcinogenesis. Growing evidence suggests that nicotine can act as a tumor promoter, impairing apoptotic process in certain types of human cancer cell lines. Our previous study revealed in human gingival fibroblasts (HGFs) a concomitant antiapoptotic and genotoxic effect of nicotine, manifested by the attenuation of staurosporine (STP)-induced apoptosis and the increase of micronucleus frequency. The present report provides evidence that nitric oxide (NO) is critically involved in these actions. In vitro treatment with sodium nitroprusside as NO donor showed that NO produced similar effects as those observed with nicotine: it caused DNA damage and partially prevented apoptosis induced by staurosporine. Exposure of HGFs to nicotine, at concentrations similar to those found in the blood of habitual smokers, leads to the production of NO associated with the induction of inducible nitric oxide synthase (iNOS) expression. Experiments using an inhibitor of iNOS, N-monomethyl-L-arginine (NMA), together with nicotine confirmed the involvement of NO in the drug action, abrogating completely cell death and a good part of the genotoxicity. Finally, we show by different approaches that the inhibition of cell death by nicotine through NO release is related to modulation of caspase-1 activation. This work was supported by a MIUR grant to RC.  相似文献   

6.
The purpose of this study was to determine whether dexamethasone attenuates the acute increase in macromolecular efflux from the oral mucosa elicited by an aqueous extract of smokeless tobacco (STE) in vivo, and, if so, whether this response is specific. Using intravital microscopy, we found that 20-min suffusion of STE elicited significant, concentration-related leaky site formation and an increase in clearance of fluorescein isothiocyanate-labeled dextran (FITC-dextran; mol mass 70 kDa) from the in situ hamster cheek pouch (P < 0.05). This response was significantly attenuated by dexamethasone (10 mg/kg iv). Dexamethasone also attenuated the bradykinin-induced leaky site formation and the increase in clearance of FITC-dextran from the cheek pouch. However, it had no significant effects on adenosine-induced responses. Dexamethasone had no significant effects on baseline arteriolar diameter and on bradykinin-induced vasodilation in the cheek pouch. Collectively, these data indicate that dexamethasone attenuates, in a specific fashion, the acute increase in macromolecular efflux from the in situ oral mucosa evoked by short-term suffusion of STE. We suggest that corticosteroids mitigate acute oral mucosa inflammation elicited by smokeless tobacco.  相似文献   

7.
Curcumin has been reported to inhibit cell growth and induce apoptosis in oral cancer cells. Although many studies have been done to uncover the mechanisms by which curcumin exerts its antitumor activity, the precise molecular mechanisms remain to be unclear. In the present study, we assessed the effects of curcumin on cell viability and apoptosis in oral cancer. For mechanistic studies, we used multiple cellular and molecular approaches such as gene transfection, real-time RT-PCR, Western blotting, invasion assay, and ELISA. For the first time, we found a significant reduction in cell viability in curcumin-treated cells, which was consistent with induction of apoptosis and also associated with down-regulation of Notch-1 and nuclear factor-κB (NF-κB). Taken together, we conclude that the down-regulation of Notch-1 by curcumin could be an effective approach, which will cause down-regulation of NF-κB, resulting in the inhibition of cell growth and invasion. These results suggest that antitumor activity of curcumin is mediated through a novel mechanism involving inactivation of Notch-1 and NF-κB signaling pathways.  相似文献   

8.
Use of smokeless tobacco is associated with various oral lesions including periodontal damage and alveolar bone loss. This study was performed to test the effects of nicotine on bone-forming cells at concentrations that occur in the saliva of smokeless tobacco users. Confluent cultures of osteoblast-like cells isolated from chick embryo calvariae were incubated for 2 days with nicotine added to the culture medium (25-600 micrograms/ml). Nicotine inhibited alkaline phosphatase in the cell layer and released to the medium, whereas glycolysis (as indexed by lactate production) was unaffected or slightly elevated. The effects on medium and cell layer alkaline phosphatase were concentration dependent with maximal inhibition occurring at 600 micrograms nicotine/ml. Nicotine essentially did not affect the noncollagenous protein content of the cell layer, but did inhibit collagen synthesis (hydroxylation of [3H]proline and collagenase-digestible protein) at 100, 300, and 600 micrograms/ml. Release of [3H]hydroxyproline to the medium was also decreased in a dose-dependent manner, as was the collagenase-digestible protein for both the medium and cell layer. In contrast, DNA synthesis (incorporation of [3H]thymidine) was more than doubled by the alkaloid, whereas total DNA content was slightly inhibited at 600 micrograms/ml, suggesting stimulated cell turnover. Morphologic changes occurred in nicotine-treated cells including rounding up, detachment, and the occurrence of numerous large vacuoles. These results suggest that steps to reduce the salivary concentration of nicotine in smokeless tobacco users might diminish damaging effects of this product on alveolar bone.  相似文献   

9.
We have investigated the effects of a smokeless tobacco extract (STE) on lipid peroxidation, cytochrome c reduction, DNA fragmentation and apoptotic cell death in normal human oral keratinocyte cells, and assessed the protective abilities of selected antioxidants. The cells, isolated and cultured from human oral tissues, were treated with STE (0-300 microl;g/ml) for 24 h. Superoxide anion production was determined by cytochrome c reductase. Oxidative tissue damage was determined by lipid peroxidation and DNA fragmentation, whereas apoptotic cell death was assessed by flow cytometry. STE-induced fragmentation of genomic DNA was also determined by gel electrophoresis. The comparative protective abilities of vitamin C (75 microM), vitamin E (75 microM), a combination of vitamins C & E (75 microM each), and a novel grape seed proanthocyanidin (IH636) extract (GSPE) (100 microg/ml) against STE induced oxidative stress and tissue damage were also determined. Following treatment of the cells with 300 microg STE/ml 1.5-7.6-fold increases in lipid peroxidation, cytochrome c reduction and DNA fragmentation were observed. The addition of the antioxidants to cells treated with STE provided 10-54% decreases in these parameters. Approximately 9, 29, and 35% increases in apoptotic cell death were observed following treatment with 100, 200, and 300 microg STE/ml, respectively, and 51-85% decreases in apoptotic cell death were observed with the antioxidants. The results demonstrate that STE produces oxidative tissue damage and apoptosis, which can be attenuated by antioxidants including vitamin C, vitamin E, a combination of vitamins C plus E and GSPE. GSPE exhibited better protection against STE than vitamins C and E, singly and in combination.  相似文献   

10.
Smokeless tobacco contains a nonnicotine inhibitor of posttranslational modification of collagen (hydroxylation of [3H]proline) by cultured chick embryo tibias and osteoblasts. This study was undertaken to determine whether a methanol extract of smokeless tobacco (STE) containing the inhibitor has similar effects on collagen-producing cells and tissues other than bone. Its effects on DNA synthesis and cell proliferation (incorporation of [3H]thymidine) were also determined. Frontal bone, aorta, and cartilage were incubated for 2 days in medium containing STE. Glycolysis (lactate production) was stimulated by 80% in cartilage, but was not affected in the other tissues; medium alkaline phosphatase activity was unaffected. In frontal bone and cartilage, [3H] hydroxyproline content was decreased 88% and 57%, respectively, and [3H]proline content was decreased 68% and 37%, respectively; neither was affected in the aorta. Confluent cultures of collagen-producing mouse fibroblasts or primary osteoblasts obtained from chick embryo calvarias were incubated for 2 days in medium containing increasing concentrations of STE. Glycolysis and DNA synthesis were not affected. Cell proliferation was unaffected in fibroblasts, but was inhibited (34%) at the highest STE concentration in osteoblasts. AIPase activity was not detectable in fibroblast medium, but was decreased up to 72% in osteoblast medium. Inhibition of collagen synthesis by STE was concentration related in both cell types. At the highest concentration, [3H] hydroxyproline and [3H]proline contents in the cell layers were decreased to the following respective values: fibroblasts 56% and 45% and osteoblasts 50% and 29%, respectively. When incubation with STE was discontinued for 1 day, recovery did not occur. These findings suggest that inhibition of collagen synthesis by STE is not specific for bone, that collagen-producing cells are directly affected, and that recovery is not immediate. This inhibitor could contribute to the periodontal disease often seen in users of smokeless tobacco. Its identification and removal would produce a safer product.  相似文献   

11.

Background

Epidemiological association of head and neck cancer with smokeless tobacco (ST) emphasizes the need to unravel the molecular mechanisms implicated in cancer development, and identify pharmacologically safe agents for early intervention and prevention of disease recurrence. Guggulsterone (GS), a biosafe nutraceutical, inhibits the PI3K/Akt pathway that plays a critical role in HNSCC development. However, the potential of GS to suppress ST and nicotine (major component of ST) induced HNSCC remains unexplored. We hypothesized GS can abrogate the effects of ST and nicotine on apoptosis in HNSCC cells, in part by activation of PI3K/Akt pathway and its downstream targets, Bax and Bad.

Methods and Results

Our results showed ST and nicotine treatment resulted in activation of PI3K, PDK1, Akt, and its downstream proteins - Raf, GSK3β and pS6 while GS induced a time dependent decrease in activation of PI3K/Akt pathway. ST and nicotine treatment also resulted in induction of Bad and Bax phosphorylation, increased the association of Bad with 14-3-3ζresulting in its sequestration in the cytoplasm of head and neck cancer cells, thus blocking its pro-apoptotic function. Notably, GS pre-treatment inhibited ST/nicotine induced activation of PI3K/Akt pathway, and inhibited the Akt mediated phosphorylation of Bax and Bad.

Conclusions

In conclusion, GS treatment not only inhibited proliferation, but also induced apoptosis by abrogating the effects of ST / nicotine on PI3K/Akt pathway in head and neck cancer cells. These findings provide a rationale for designing future studies to evaluate the chemopreventive potential of GS in ST / nicotine associated head and neck cancer.  相似文献   

12.
This opening article will review the epidemiology of the effects of cigarette smoking and other forms of tobacco exposure on human development. Sources of exposure described include cigarettes and other forms of smoked tobacco, secondhand (environmental) tobacco smoke, several forms of smokeless tobacco, and nicotine from nicotine replacement therapy. Exposure is immense and worldwide, most of it due to smoking, but in some parts of the world and in some populations, smoking is exceeded by smokeless tobacco use. Nicotine and carbon monoxide exposure are of large concern, but cigarette smoke contains over 4000 chemical constituents and additives including known carcinogens, toxic heavy metals, and many chemicals untested for developmental toxicity. The impact of tobacco on human development will be reviewed. Fertility, conception, survival of the conceptus, most phases and aspects of development studied to date, as well as postnatal survival and health are adversely impacted by maternal tobacco use or exposure. Effects in surviving offspring are probably life-long, and are still being elucidated. It is hoped that this review and those to follow in this issue will serve to keep a focus on the critical and continuing problem of tobacco use impacting human development.  相似文献   

13.
Previous studies have shown that human prostate cancer cells constitutively generate 5-lipoxygenase (5-LOX) metabolites from arachidonic acid, and inhibition of 5-LOX blocks production of 5-LOX metabolites and triggers apoptosis in prostate cancer cells. This apoptosis is prevented by exogenous metabolites of 5-LOX, suggesting an essential role of 5-LOX metabolites in the survival of prostate cancer cells. However, downstream signaling mechanisms which mediate the survival-promoting effects of 5-LOX metabolites in prostate cancer cells are still unknown. Recently, we reported that MK591, a specific inhibitor of 5-LOX activity, induces apoptosis in prostate cancer cells without inhibition of Akt, or ERK, two well-characterized regulators of pro-survival mechanisms, suggesting the existence of an Akt and ERK-independent survival mechanism in prostate cancer cells regulated by 5-LOX. Here, we report that 5-LOX inhibition-induced apoptosis in prostate cancer cells occurs via rapid inactivation of protein kinase C-epsilon (PKCε), and that exogenous 5-LOX metabolites prevent both 5-LOX inhibition-induced down-regulation of PKCε and induction of apoptosis. Interestingly, pre-treatment of prostate cancer cells with diazoxide (a chemical activator of PKCε), or KAE1-1 (a cell-permeable, octa-peptide specific activator of PKCε) prevents 5-LOX inhibition-induced apoptosis, which indicates that inhibition of 5-LOX triggers apoptosis in prostate cancer cells via down-regulation of PKCε. Altogether, these findings suggest that metabolism of arachidonic acid by 5-LOX activity promotes survival of prostate cancer cells via signaling through PKCε, a pro-survival serine/threonine kinase.  相似文献   

14.
Ochratoxin A (OTA), one of the major food-borne mycotoxins, induces apoptosis in various types of cells. Induction of apoptosis is suggested to be one of the major cellular mechanisms behind OTA-induced diverse toxic effects. However, the molecular mechanisms involved, especially the role of p53 in OTA-induced apoptosis have not been clearly elucidated. In the present study, we find that p53 activation exerts pro-survival function to inhibit apoptosis induction in MARC-145, Vero monkey kidney cells and HEK293 human kidney cells in response to ochratoxin A treatment. We further demonstrate that the pro-survival activity of p53 is attributed to its ability to suppress JNK activation that mediates apoptotic signaling through down-regulation of Bcl-xL. To our knowledge, this is first report of pro-survival role of p53 in OTA-induced apoptosis in kidney epithelial cells. Our findings provide a novel insight into the mechanisms of OTA-induced apoptosis in kidney epithelial cells.  相似文献   

15.
Activation of Ras promotes oncogenesis by altering a multiple of cellular processes, such as cell cycle progression, differentiation, and apoptosis. Oncogenic Ras can either promote or inhibit apoptosis, depending on the cell type and the nature of the apoptotic stimuli. The response of normal and transformed colonic epithelial cells to the short chain fatty acid butyrate, a physiological regulator of epithelial cell maturation, is also divergent: normal epithelial cells proliferate, and transformed cells undergo apoptosis in response to butyrate. To investigate the role of k-ras mutations in butyrate-induced apoptosis, we utilized HCT116 cells, which harbor an oncogenic k-ras mutation and two isogenic clones with targeted inactivation of the mutant k-ras allele, Hkh2, and Hke-3. We demonstrated that the targeted deletion of the mutant k-ras allele is sufficient to protect epithelial cells from butyrate-induced apoptosis. Consistent with this, we showed that apigenin, a dietary flavonoid that has been shown to inhibit Ras signaling and to reverse transformation of cancer cell lines, prevented butyrate-induced apoptosis in HCT116 cells. To investigate the mechanism whereby activated k-ras sensitizes colonic cells to butyrate, we performed a genome-wide analysis of Ras target genes in the isogenic cell lines HCT116, Hkh2, and Hke-3. The gene exhibiting the greatest down-regulation by the activating k-ras mutation was gelsolin, an actin-binding protein whose expression is frequently reduced or absent in colorectal cancer cell lines and primary tumors. We demonstrated that silencing of gelsolin expression by small interfering RNA sensitized cells to butyrate-induced apoptosis through amplification of the activation of caspase-9 and caspase-7. These data therefore demonstrate that gelsolin protects cells from butyrate-induced apoptosis and suggest that Ras promotes apoptosis, at least in part, through its ability to down-regulate the expression of gelsolin.  相似文献   

16.
Resistance of carcinoma cells to anoikis, apoptosis that is normally induced by loss of cell-to-extracellular matrix adhesion, is thought to be essential for the ability of these cells to form primary tumors, invade adjacent tissues, and metastasize to distant organs. Current knowledge about the mechanisms by which cancer cells evade anoikis is far from complete. In an effort to understand these mechanisms, we found that ras, a major oncogene, down-regulates protease caspase-2 (which initiates certain steps of the cellular apoptotic program) in malignant human and rat intestinal epithelial cells. This down-regulation could be reversed by inhibition of a protein kinase Mek, a mediator of Ras signaling. We also found that enforced down-regulation of caspase-2 in nonmalignant intestinal epithelial cells by RNA interference protected them from anoikis. Furthermore, the reversal of the effect of Ras on caspase-2 achieved by the expression of exogenous caspase-2 in detached ras-transformed intestinal epithelial cells promoted well established apoptotic events, such as the release of the pro-apoptotic mitochondrial factors cytochrome c and HtrA2/Omi into the cytoplasm of these cells, significantly enhanced their anoikis susceptibility, and blocked their long term growth in the absence of adhesion to the extracellular matrix. Finally, the blockade of the effect of Ras on caspase-2 substantially suppressed growth of tumors formed by the ras-transformed cells in mice. We conclude that ras-induced down-regulation of caspase-2 represents a novel mechanism by which oncogenic Ras protects malignant intestinal epithelial cells from anoikis, promotes their anchorage-independent growth, and allows them to form tumors in vivo.  相似文献   

17.
Gao, Xiao-pei, Hideyuki Suzuki, Christopher O. Olopade,Sergei Pakhlevaniants, and Israel Rubinstein. Purified ACE attenuates smokeless tobacco-induced increase in macromolecular effluxfrom the oral mucosa. J. Appl.Physiol. 83(1): 74-81, 1997.The purpose of thisstudy was to determine whether purified angiotensin I-converting enzyme(ACE) attenuates smokeless tobacco extract (STE)-induced increase inmacromolecular efflux from the in situ oral mucosa. Byusing intravital microscopy, we found that suffusion of an aqueousextract of smokeless tobacco elicited significant concentration-dependent leaky site formation and increase in clearance of fluorescein isothiocyanate-labeled dextran (mol mass, 70 kDa) fromthe hamster cheek pouch (P < 0.05). Suffusion of purified rabbit lung ACEsignificantly attenuated these responses in a concentration-dependentfashion (P < 0.05). These effectswere specific because purified ACE also significantly attenuated the increase in macromolecular efflux elicited by bradykinin, which isproduced in the cheek pouch during suffusion of STE, but did notattenuate the increase elicted by adenosine. Moreover,suffusion of heat-inactivated purified ACE and purified superoxidedismutase had no significant effects on STE- andbradykinin-induced responses. Collectively, these data suggestthat exogenous ACE attenuates STE-induced increase in macromolecularefflux from the in situ oral mucosa, in part, by promoting localbradykinin catabolism.

  相似文献   

18.
19.
The genotoxic effects of tobacco carcinogens have long been recognized, the contribution of tobacco components to cancerogenesis by cell surface receptor signaling is relatively unexplored. Nicotine, the principal tobacco alkaloid, acts through nicotinic acetylcholine receptor (nAChR). nAChR are functionally present on human lung airway epithelial cells, on lung carcinoma [SCLC and NSCLC] and on mesothelioma and build a part of an autocrine-proliferative network that facilitates the growth of neoplastic cells. Different nAChR subunit gene expression patterns are expressed between NSCLC from smokers and non-smokers. Although there is no evidence that nicotine itself could induce cancer, different studies established that nicotine promotes in vivo the growth of cancer cells and the proliferation of endothelial cells suggesting that nicotine might contribute to the progression of tumors already initiated. These observations led to the hypothesis that nicotine might be playing a direct role in the promotion and progression of human lung cancers. Here, we briefly overview the role and the effects of nicotine on pulmonary cell growth and physiology and its feasible implications in lung carcinogenesis.  相似文献   

20.
Tissue inhibitor of metalloproteinase (TIMP-1) is a natural protease inhibitor of matrix metalloproteinases (MMPs). Recent studies revealed a novel function of TIMP-1 as a potent inhibitor of apoptosis in mammalian cells. However, the mechanisms by which TIMP-1 exerts its anti-apoptotic effect are not understood. Here we show that TIMP-1 activates cell survival signaling pathways involving focal adhesion kinase, phosphatidylinositol 3-kinase, and ERKs in human breast epithelial cells to TIMP-1. TIMP-1-activated cell survival signaling down-regulates caspase-mediated classical apoptotic pathways induced by a variety of stimuli including anoikis, staurosporine exposure, and growth factor withdrawal. Consistently, down-regulation of TIMP-1 expression greatly enhances apoptotic cell death. In a previous study, substitution of the second amino acid residue threonine for glycine in TIMP-1, which confers selective MMP inhibition, was shown to obliterate its anti-apoptotic activity in activated hepatic stellate cells suggesting that the anti-apoptotic activity of TIMP-1 is dependent on MMP inhibition. Here we show that the same mutant inhibits apoptosis of human breast epithelial cells, suggesting different mechanisms of TIMP-1 regulation of apoptosis depending on cell types. Neither TIMP-2 nor a synthetic MMP inhibitor protects breast epithelial cells from intrinsic apoptotic cell death. Furthermore, TIMP-1 enhances cell survival in the presence of the synthetic MMP inhibitor. Taken together, the present study unveils some of the mechanisms mediating the anti-apoptotic effects of TIMP-1 in human breast epithelial cells through TIMP-1-specific signal transduction pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号