首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Nine isolates obtained from a great scallop hatchery in Norway were characterized using a polyphasic approach. Strains were Gram-negative, aerobic and motile rods with oxidative metabolism. Phylogenetic analysis based on the sequences of 16S rRNA and rpoB genes showed that these strains formed two different groups associated with members of the genus Neptuniibacter. DNA–DNA hybridization (DDH) and Average Nucleotide Identity (ANI) demonstrated that the isolates constituted two novel species of this genus, which can be phenotypically differentiated from their closest relatives. The names Neptuniibacter marinus sp. nov. and Neptuniibacter pectenicola sp. nov are proposed, with ATR 1.1T (=CECT 8938T = DSM 100783T) and LFT 1.8T (=CECT 8936T = DSM 100781T) as respective type strains.  相似文献   

2.
Two new species of Gram-positive cocci were isolated from the uropygial glands of wild woodpeckers (Dendrocopos major) originating from different locations in Germany. A polyphasic approach confirmed the affiliation of the isolates to the genus Kocuria. Phylogenetic analysis based on the 16S rRNA gene showed high degree of similarity to Kocuria koreensis DSM 23367T (99.0% for both isolates). However, low ANIb values of <80% unequivocally separated the new species from K. koreensis. This finding was further corroborated by DNA fingerprinting and analysis of polar lipid profiles. Furthermore, growth characteristics, biochemical tests, MALDI-TOF MS analysis, and G + C contents clearly differentiated the isolates from their known relatives. Besides, the woodpecker isolates significantly differed from each other in their whole-cell protein profiles, DNA fingerprints, and ANIb values. In conclusion, the isolated microorganisms constitute members of two new species, for which the names Kocuria uropygioeca sp. nov. and Kocuria uropygialis sp. nov. are proposed. The type strains are 36T (DSM 101740T = LMG 29265T) and 257T (=DSM 101741T = LMG 29266T) for K. uropygialis sp. nov. and K. uropygioeca sp. nov., respectively.  相似文献   

3.
Biological denitrification is a significant process in nitrogen biogeochemical cycle of terrestrial geothermal environments, and Thermus species have been shown to be crucial heterotrophic denitrifier in hydrothermal system. Five Gram-stain negative, aerobic and rod-shaped thermophilic bacterial strains were isolated from hot spring sediments in Tibet, China. Phylogenetic analysis based on 16S rRNA gene and whole genome sequences indicated that these isolates should be assigned to the genus Thermus and were most closely related to Thermus caldifontis YIM 73026T, and Thermus brockianus YS38T. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the five strains and the type strains of the genus Thermus were lower than the threshold values (95% and 70%, respectively) recommended for bacterial species, which clearly distinguished the five isolates from other species of the genus Thermus and indicated that they represent independent species. Colonies are circular, convex, non-transparent. Cell growth occurred at 37–80 °C (optimum, 60–65 °C), pH 6.0–8.0 (optimum, pH 7.0) and with 0–2.0% (w/v) NaCl (optimum, 0–0.5%). Denitrification genes (narG, nirK, nirS, and norB genes) detected in their genomes indicated their potential function in nitrogen metabolism. The obtained results combined with those of morphological, physiological, and chemotaxonomic characteristics, including the menaquinones, polar lipids, and cellular fatty acids showed that the isolates are proposed as representing five novel species of the genus Thermus, which are proposed as Thermus hydrothermalis sp. nov. SYSU G00291T, Thermus neutrinimicus sp. nov. SYSU G00388T, Thermus thalpophilus sp. nov. SYSU G00506T, Thermus albus sp. nov. SYSU G00608T, Thermus altitudinis sp. nov. SYSU G00630T.  相似文献   

4.
A polyphasic study was undertaken to establish the taxonomic status of three representative Geodermatophilus strains isolated from an extreme hyper-arid Atacama Desert soil. The strains, isolates B12T, B20 and B25, were found to have chemotaxonomic and morphological properties characteristic of the genus Geodermatophilus. The isolates shared a broad range of chemotaxonomic, cultural and physiological features, formed a well-supported branch in the Geodermatophilus 16S rRNA gene tree in which they were most closely associated with the type strain of Geodermatophilus obscurus. They were distinguished from the latter by BOX-PCR fingerprint patterns and by chemotaxonomic and other phenotypic properties. Average nucleotide identity, average amino acid identity and digital DNA–DNA hybridization values between the whole genome sequences of isolate B12T and G. obscurus DSM 43160T were 89.28%, 87.27% and 37.4%, respectively, metrics consistent with its classification as a separate species. On the basis of these data, it is proposed that the isolates be assigned to the genus Geodermatophilus as Geodermatophilus chilensis sp. nov. with isolate B12T (CECT 9483T = NCIMB 15089T) as the type strain. Analysis of the whole genome sequence of G. chilensis B12T with 5341 open reading frames and a genome size of 5.5 Mb highlighted genes and gene clusters that encode for properties relevant to its adaptation to extreme environmental conditions prevalent in extreme hyper-arid Atacama Desert soils.  相似文献   

5.
Strain USBA-019T, an anaerobic and thermophilic strain, was identified as a new member of the genus Thermoanaerobacterium. USBA-019T cells are gram-positive, strictly anaerobic, thermophilic, chemoorganotrophic, moderately acidophilic, non-motile, endospore-forming, slightly curved, and rod-shaped. Cells measure 0.4 × 3.0–7.0 μm. Optimal growth occurs at 50–55 °C (35–65 °C). Optimum pH is 5.0–5.5 (4.0–8.5). Thiosulfate, elemental sulfur and nitrate were utilized as electron acceptors. Fermentation of glucose, lactose, cellobiose, galactose, arabinose, xylose, starch and xylan primarily produced acetate and butyrate. Xylan, starch and cellobiose produced ethanol and starch, cellobiose, galactose, arabinose and mannose produced lactic acid. Phylogenetic analyses based on 16S rRNA gene sequence comparison and genomic relatedness indices show the close relation of USBA-019T to Thermoanaerobacterium thermostercoris and Thermoanaerobacterium aotearoense (similarity value: 99%). Hybridization of USBA-019T, Th. thermostercoris DSM22141T and Th. aotearoense DMS10170T found DNA–DNA relatedness of 33.2% and 18.2%, respectively. Based on phenotypic, chemotaxonomic and phylogenetic evidence, along with low identity at whole genome level, USBA-019T is a novel species of the genus Thermoanaerobacterium which we propose to name Thermoanaerobacterium butyriciformans sp. nov. The type strain is USBA-019T (=CMPUJ U-019T = DSM 101588T).  相似文献   

6.
Bacteria of the genus Massilia often colonize extreme ecosystems, however, a detailed study of the massilias from the Antarctic environment has not yet been performed. Here, sixty-four Gram-stain-negative, aerobic, motile rods isolated from different environmental samples on James Ross Island (Antarctica) were subjected to a polyphasic taxonomic study. The psychrophilic isolates exhibited slowly growing, moderately slimy colonies revealing bold pink-red pigmentation on R2A agar. The set of strains exhibited the highest 16S rRNA gene sequence similarities (99.5–99.9%) to Massilia violaceinigra B2T and Massilia atriviolacea SODT and formed several phylogenetic groups based on the analysis of gyrB and lepA genes. Phenotypic characteristics allowed four of them to be distinguished from each other and from their closest relatives. Compared to the nearest phylogenetic neighbours the set of six genome-sequenced representatives exhibited considerable phylogenetic distance at the whole-genome level. Bioinformatic analysis of the genomic sequences revealed a high number of putative genes involved in oxidative stress response, heavy-metal resistance, bacteriocin production, the presence of putative genes involved in nitrogen metabolism and auxin biosynthesis. The identification of putative genes encoding aromatic dioxygenases suggests the biotechnology potential of the strains. Based on these results four novel species and one genomospecies of the genus Massilia are described and named Massilia rubra sp. nov. (P3094T = CCM 8692T = LMG 31213T), Massilia aquatica sp. nov. (P3165T = CCM 8693T = LMG 31211T), Massilia mucilaginosa sp. nov. (P5902T = CCM 8733T = LMG 31210T), and Massilia frigida sp. nov. (P5534T = CCM 8695T = LMG 31212T).  相似文献   

7.
Six strains of extremely halophilic and alkaliphilic euryarchaea were enriched and isolated in pure culture from surface brines and sediments of hypersaline alkaline lakes in various geographical locations with various forms of insoluble cellulose as growth substrate. The cells are mostly flat motile rods with a thin monolayer cell wall while growing on cellobiose. In contrast, the cells growing with cellulose are mostly nonmotile cocci covered with a thick external EPS layer. The isolates, designated AArcel, are obligate aerobic heterotrophs with a narrow substrate spectrum. All strains can use insoluble celluloses, cellobiose, a few soluble glucans and xylan as their carbon and energy source. They are extreme halophiles, growing within the range from 2.5 to 4.8 M total Na+ (optimum at 4 M) and obligate alkaliphiles, with the pH range for growth from 7.5 to 9.9 (optimum at 8.5–9). The core archaeal lipids of strain AArcel5T were dominated by C20–C20 dialkyl glycerol ether (DGE) (i.e. archaeol) and C20–C25 DGE in nearly equal proportion. The 16S rRNA gene analysis indicated that all six isolates belong to a single genomic species mostly related to the genera Saliphagus-Natribaculum-Halovarius. Taking together a substantial phenotypic difference of the new isolates from the closest relatives and the phylogenetic distance, it is concluded that the AArcel group represents a novel genus-level branch within the family Natrialbaceae for which the name Natronobiforma cellulositropha gen. nov., sp. nov. is proposed with AArcel5T as the type strain (JCM 31939T = UNIQEM U972T).  相似文献   

8.
The plant tumorigenic strain NCPPB 1650T isolated from Rosa × hybrida, and four nonpathogenic strains isolated from tumors on grapevine (strain 384), raspberry (strain 839) and blueberry (strains B20.3 and B25.3) were characterized by using polyphasic taxonomic methods. Based on 16S rRNA gene phylogeny, strains were clustered within the genus Agrobacterium. Furthermore, multilocus sequence analysis (MLSA) based on the partial sequences of atpD, recA and rpoB housekeeping genes indicated that five strains studied form a novel Agrobacterium species. Their closest relatives were Agrobacterium sp. R89-1, Agrobacterium rubi and Agrobacterium skierniewicense. Authenticity of the novel species was confirmed by average nucleotide identity (ANI) and in silico DNA–DNA hybridization (DDH) comparisons between strains NCPPB 1650T and B20.3, and their closest relatives, since obtained values were considerably below the proposed thresholds for the species delineation. Whole-genome-based phylogeny further supported distinctiveness of the novel species, that forms together with A. rubi, A. skierniewicense and Agrobacterium sp. R89-1 a well-delineated sub-clade of Agrobacterium spp. named “rubi”. As for other species of the genus Agrobacterium, the major fatty acid of the strains studied was 18:1 w7c (73.42–78.12%). The five strains studied were phenotypically distinguishable from other species of the genus Agrobacterium. Overall, polyphasic characterization showed that the five strains studied represent a novel species of the genus Agrobacterium, for which the name Agrobacterium rosae sp. nov. is proposed. The type strain of A. rosae is NCPPB 1650T (=DSM 30203T = LMG 230T = CFBP 4470T = IAM 13558T = JCM 20915T).  相似文献   

9.
Two closely related, thermophilic bacteria, designated strains YIM 76954T and YIM 76947, were isolated from the Rehai Geothermal Field, Tengchong, Yunnan province, south-west China. Polyphasic approach and whole genome sequencing were used to determine the taxonomy status and genomic profiles of the novel strains. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the two isolates were closely related to Thermus scotoductus SE-1T (97.1% sequence similarity), and T. amyloliquefaciens YIM 77409T (96.6%). The strains could be differentiated from most recognized Thermus species by their whitish to slight reddish colony color, distinct DNA fingerprinting profiles and low ANI values. Cells stained Gram-negative, rod-shaped of diameter 0.2–0.5 μm and length 1.5–5.0 μm. Growth occurred at 50–75 °C, pH 6.0–9.0 and in the presence of up to 1.0% (w/v) NaCl concentration. Thiosulfate was found to enhance cell growth, besides improving the intensity of its colony color. Oxygen, nitrate, sulfur, and Fe(III) could be used as terminal electron acceptors for growth. MK-8 was the major respiratory menaquinone. Major fatty acids were iso-C17:0, iso-C15:0, anteiso-C17:0, and anteiso-C15:0. The genome size was 2.26 Mbp with 65.5% average GC content. A total of 2374 genes was predicted, comprising 2322 protein-coding and 52 RNA genes. On the basis of the polyphasic evidence presented, it is proposed that strain YIM 76954T represents a novel species of the genus Thermus, for which the name Thermus tenuipuniceus sp. nov. is proposed. The type strain is YIM 76954T (=JCM 30350T = KCTC 4677T).  相似文献   

10.
Three strains L3B27T, 3CNBAF, L1A4 isolated from a brackish cultivated pokkali rice rhizosphere were characterised using a polyphasic taxonomic approach. Phylogenetic analysis based on 16S rRNA and recA gene sequences revealed that these strains were highly similar among each other and formed a separate monophyletic cluster within the genus Sphingomonas with Sphingomonas pituitosa DSM 13101T, Sphingomonas azotifigens DSM 18530T and Sphingomonas trueperi DSM 7225T as their closest relatives sharing 97.9–98.3% 16S rRNA similarity and 91.3–94.0% recA similarity values, respectively. The average nucleotide identity (ANI), average amino acid identity (AAI) and digital DNA–DNA hybridisation (dDDH) values between L3B27T (representative of the novel strains) and its phylogenetically closest Sphingomonas species were well below the established cut-off <94% (ANI/AAI) and <70% (dDDH) for species delineation. Further, the novel strains can be distinguished from its closest relatives based on several phenotypic traits. Thus, based on the polyphasic approach, we describe a novel Sphingomonas species for which the name Sphingomonas pokkalii sp. nov (type strain L3B27T = KCTC 42098T = MCC 3001T) is proposed. In addition, the novel strains were characterised for their plant associated properties and found to possess several phenotypic traits which probably explain its plant associated lifestyle. This was further confirmed by the presence of several plant associated gene features in the genome of L3B27T. Also, we could identify gene features which may likely involve in brackish water adaptation. Thus, this study provides first insights into the plant associated lifestyle, genome and taxonomy of a novel brackish adapted plant associated Sphingomonas.  相似文献   

11.
Microbiota analysis of blown pack spoiled salami revealed five distinguishable Lactobacillus isolates we could not assign to a known species. Two of the isolates (TMW 1.2172T and TMW 1.1920) are rod-shaped, whilst three isolates (TMW 1.2098T, TMW 1.2118 and TMW 1.2188) appear coccus shaped or as short rods. All isolates are Gram-stain positive, facultative anaerobic, catalase and oxidase negative, non-motile and non-sporulating. Phylogenetic analysis of the 16S rRNA, dnaK, pheS and rpoA gene sequences revealed two distinct lineages within the genus Lactobacillus (L.). The isolates are members of the Lactobacillus alimentarius group with Lactobacillus ginsenosidimutans DSM 24154T (99.4% 16S similarity), Lactobacillus versmoldensis DSM 14857T (97.9%) and Lactobacillus furfuricola DSM 27174T (97.7%) as phylogenetic closest related species and L. alimentarius DSM 20249T (97.7%) and Lactobacillus paralimentarius DSM 13961T (97.5%) as closest relatives, respectively. Average Nucleotide Identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the isolates and their close related type strains are lower than 80% and 25%, respectively. For both designated type strains, the peptidoglycan type is A4α l-Lys-d-Asp and the major fatty acids are C16:0, C18:1ω9c and summed feature 7. Based on phylogenetic, phenotypic and chemotaxonomic analysis we demonstrated that the investigated isolates belong to two novel Lactobacillus species for which we propose the names Lactobacillus salsicarnum with the type strain TMW 1.2098T = DSM 109451T = LMG 31401T and Lactobacillus halodurans with the type strain TMW 1.2172T = DSM 109452T = LMG 31402T.  相似文献   

12.
Two phylogenetically distinct Vibrionaceae strains C4II189T and C4V358T isolated from reef seawater off Ishigaki Island, Japan, in 2014 were studied with advanced genome-based taxonomy approaches. All aspects of phylogenetic (16S rRNA phylogeny, MLSA), phenotypic and genetic (ANI, DDH, AAI, and the number of core genes) cohesions between the two identified species were high enough to propose them as members of a new genus within the family Vibrionaceae. Consequently, an eighth genus Thaumasiovibrio gen. nov. is proposed that contains two new species Thaumasiovibrio occultus sp. nov. strain C4II189T (=DSM 101554T = JCM 31629T) (type species) and Thaumasiovibrio subtropicus sp. nov. strain C4V358T (=DSM 101555T = JCM 31630T). Thaumasiovibrio species were phylogenetically distinct from the other Vibrionaceae species based on pyrH gene sequences. The combination of catalase negative, sensitivity to vibriostatic agent O/129, and green colony formation on TCBS for the phylogenetically affiliated strains was the diagnostic features for the current tentative identification of this genus.  相似文献   

13.
Planctomycetes of the family Gemmataceae are characterized by large genome sizes and cosmopolitan distribution in freshwater and terrestrial environments but their ecological functions remain poorly understood. In this study, we characterized a novel representative of this family, strain PL17T, which was isolated from a littoral tundra wetland and was capable of growth on xylan and cellulose. Cells of this isolate were represented by pink-pigmented spheres that multiplied by budding and occurred singly or in short chains and aggregates. Strain PL17T was obligately aerobic, mildly acidophilic chemoorganotrophic bacterium, which displayed good tolerance of low temperatures. The major fatty acids were C18:0, C16:1ω5, and βOH-C16:1; the major polar lipid was trimethylornithine. The genome of strain PL17T consisted of a 9.83 Mb chromosome and a 24.69 kb plasmid. The G + C contents of the chromosomal and plasmid DNA were 67.4 and 62.3 mol%, respectively. Over 8900 potential protein-coding genes were identified in the genome including a putative cellulase that contains a domain from the GH5 family of glycoside hydrolases. The genome of strain PL17T contained one linked and one unlinked rRNA operons with 16S rRNA gene sequences displaying 94.5% similarity to that in Gemmata obscuriglobus UQM2246T. Based on the results of comparative phenotypic, chemotaxonomic and phylogenomic analyses, we propose to classify strain PL17T (= CECT 9407T = VKM B-3467T) as representing a novel genus and species of the family Gemmataceae, Frigoriglobus tundricola gen. nov., sp. nov.  相似文献   

14.
Three bacterial isolates (CCBAU 101002T, CCBAU 101000 and CCBAU 101001) originating from root nodules of the herbaceous legume Kummerowia stipulacea grown in the campus lawn of China Agricultural University were characterized with a polyphasic taxonomic approach. Comparative 16S rRNA gene sequence analysis showed that the isolates shared 99.85–99.92% sequence similarities and had the highest similarities to the type strains of Rhizobium mesoamericanum (99.31%), R. endophyticum (98.54%), R. tibeticum (98.38%) and R. grahamii (98.23%). Sequence similarity of four concatenated housekeeping genes (atpD, glnII, recA and rpoB) between CCBAU 101002T and its closest neighbor (R. grahamii) was 92.05%. DNA–DNA hybridization values between strain CCBAU 101002T and the four type strains of the most closely related Rhizobium species were less than 28.4 ± 0.8%. The G + C mol% of the genomic DNA for strain CCBAU 101002T was 58.5% (Tm). The major respiratory quinone was ubiquinone (Q-10). Summed feature 8 (18:1ω7cis/18:1ω6cis) and 16:0 were the predominant fatty acids. Strain CCBAU 101002T contained phosphatidylcholine and phosphatidylethanolamine as major polar lipids, and phosphatidylglycerol and cardiolipin as minor ones. No glycolipid was detected. Unlike other strains, this novel species could utilize dulcite or sodium pyruvate as sole carbon sources and it was resistant to 2% (w/v) NaCl. On the basis of the polyphasic study, a new species Rhizobium cauense sp. nov. is proposed, with CCBAU 101002T (=LMG 26832T = HAMBI 3288T) as the type strain.  相似文献   

15.
A group of thirteen bacterial strains was isolated from rock samples collected in a deglaciated northern part of James Ross Island, Antarctica. The cells were rod-shaped, Gram-stain-negative, non-motile, catalase positive, and produced moderately slimy, ultraviolet light (UVC)-irradiation-resistant and red–pink pigmented colonies on R2A agar. A polyphasic taxonomic approach based on 16S rRNA gene sequencing, extensive biotyping, fatty acid profile, chemotaxonomy analyses, and whole genome sequencing were applied in order to clarify the taxonomic position of these isolates. Phylogenetic analysis based on the 16S rRNA gene indicated that all isolates constituted a coherent group belonging to the genus Hymenobacter. The closest relatives to the representative isolate P5136T were Hymenobacter psychrophilus BZ33rT and Hymenobacter rubripertinctus CCM 8852T, exhibiting 97.53% and 97.47% 16S rRNA pairwise similarity, respectively. Average nucleotide identity calculated from the whole-genome sequencing data supported the finding that P5136T represents a distinct Hymenobacter species. The major components in fatty acid profiles were Summed Feature 3 (C16:1 ω7c/C16:1 ω6c), C16:1 ω5c, C15:0 iso and C15:0 anteiso. The cellular quinone content contained unanimously menaquinone MK-6 and MK-7 (ratio 1:5.1). The predominant polar lipid was phosphatidylethanolamine, and moderate to minor amounts of two unknown polar lipids, two unknown aminolipids, one unknown glycolipid and two unknown glycophospholipids were present. The G + C content of genomic DNAs is 60.31 mol%. Based on all the obtained results, we propose a novel species for which the name Hymenobacter amundsenii sp. nov. is suggested, with the type strain P5136T (= CCM 8682T = LMG 29687T).  相似文献   

16.
A Gram-stain positive, strict anaerobe, spore-forming, motile rod-shaped bacterial strain with peritrichous flagella, designated YMB-57T, was isolated from the intestine of a cinereous vulture (Aegypius monachus) in Korea. StrainYMB-57T was found to show optimal growth at 37 °C, pH 7.5 and 1.0 % (w/v) NaCl. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain YMB-57T belongs to the genus Clostridium and is most closely related to the type strains of Clostridium subterminale (96.9 % sequence similarity), Clostridium thiosulfatireducens (96.7 %) and Clostridium sulfidigenes (96.6 %). The main fermentation end-products identified following growth in PYG medium were acetate, butyrate, ethanol, propanol, carbon dioxide and hydrogen. Peptone was converted to ethanol, and butanol, whereas glucose was fermented to ethanol. The major cellular fatty acids were identified as C16:0, C18:1 ω9c, and C18:1 ω9c DMA and the DNA G+C content was determined to be 34.0 mol%. Phenotypic and phylogenetic differences indicate that strain YMB-57T is distinct from other Clostridium species. It is proposed that strain YMB-57T be classified as the type strain of a novel species of the genus Clostridium, with the name Clostridium vulturis sp. nov. The type strain is YMB-57T (=KCTC 15114T = JCM 17998T).  相似文献   

17.
Two novel Gram-staining positive, rod-shaped, moderately halotolerant, endospore forming bacterial strains 5.5LF 38TD and 5.5LF 48TD were isolated and taxonomically characterized from a landfill in Chandigarh, India. The analysis of 16S rRNA gene sequences of the strains confirmed their closest identity to Bacillus thermotolerans SgZ-8T with 99.9% sequence similarity. A comparative phylogenetic analysis of strains 5.5LF 38TD, 5.5LF 48TD and B. thermotolerans SgZ-8T confirmed their separation into a novel genus with B. badius and genus Domibacillus as the closest phylogenetic relatives. The major fatty acids of the strains are iso-C15:0 and iso-C16:0 and MK-7 is the only quinone. The major polar lipids are diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The digital DNA-DNA hybridization (DDH) and ortho average nucleotide identity (ANI) values calculated through whole genome sequences indicated that the three strains showed low relatedness with their phylogenetic neighbours. Based on evidences from phylogenomic analyses and polyphasic taxonomic characterization we propose reclassification of the species B. thermotolerans into a novel genus named Quasibacillus thermotolerans gen. nov., comb. nov with the type strain SgZ-8T (= CCTCC AB2012108T = KACC 16706T). Further our analyses also revealed that B. encimensis SGD-V-25T is a later heterotypic synonym of Bacillus badius DSM 23T.  相似文献   

18.
Two Gram-stain-positive, small ellipsoidal cocci, non-motile, oxidase- and catalase-negative, and facultative anaerobic strains (UCMA15228T and UCMA17102) were isolated in France, from fermented apple juices (ciders). The 16S rRNA gene sequence was identical between the two isolates and showed 97 % similarity with respect to the closest related species Oenococcus oeni and O. kitaharae. Therefore, the two isolates were classified within the genus Oenococcus. The phylogeny based on the pheS gene sequences also confirmed the position of the new taxon. DNA–DNA hybridizations based on in silico genome-to-genome comparisons (GGDC) and Average Nucleotide Identity (ANI) values, as well as species-specific PCR, validated the novelty of the taxon. Various phenotypic characteristics such as the optimum temperature and pH for growth, the ability to metabolise sugars, the aptitude to perform the malolactic fermentation, and the resistance to ethanol and NaCl, revealed that the two strains are distinguishable from the other members of the Oenococcus genus. The combined genotypic and phenotypic data support the classification of strains UCMA15228T and UCMA17102 into a novel species of Oenococcus, for which the name O. sicerae sp. nov. is proposed. The type strain is UCMA15228T (=DSM107163T = CIRM-BIA2288T).  相似文献   

19.
Two isolates, belonging to a new species of a novel genus of the Phylum “Deinococcus/Thermus ”, were recovered from hot spring runoffs on the Island of São Miguel in the Azores. Strains RQ-24T and TU-8 are the first cultured representatives of a distinct phylogenetic lineage within this phylum. These strains form orange/red colonies, spherical-shaped cells, have an optimum growth temperature of about 50 °C, an optimum pH for growth between about 7.5 and 9.5, and do not grow at pH below 6.5 or above pH 11.2. These organisms grow in complex media without added NaCl, but have a maximum growth rate in media with 1.0% NaCl and grow in media containing up to 6.0% NaCl. The organisms are extremely ionizing radiation resistant; 60% of the cells survive 5.0 kGy. These strains are chemoorganotrophic and aerobic; do not grow in Thermus medium under anaerobic conditions with or without nitrate as electron acceptor and glucose as a source of carbon and energy, but ferment glucose to d-lactate without formation of gas. The organisms assimilate a large variety of sugars, organic acids and amino acids. Fatty acids are predominantly iso- and anteiso-branched; long chain 1,2 diols were also found in low relative proportions; menaquinone 8 (MK-8) is the primary respiratory quinone. Peptidoglycan was not detected. Based on 16S rRNA gene sequence analysis, physiological, biochemical and chemical analysis we describe a new species of one novel genus represented by strain RQ-24T (CIP 108686T = LMG 22925T = DSM 17093T) for which we propose the name Truepera radiovictrix. We also propose the family Trueperaceae fam. nov. to accommodate this new genus.  相似文献   

20.
Three moderately halophilic strains, TMW 2.2308T, TMW 2.2299 and TMW 2.2304, were isolated from a lupine-based moromi fermentation. Initial identification based on their low molecular sub-proteome using mass spectrometry showed relation to the genus Halomonas, however, low score values indicated novelty. The comparison of 16S rRNA gene sequences placed these strains within the genus Chromohalobacter with C. japonicus CECT 7219T (99.67% 16S rRNA sequence similarity to strain TMW 2.2308T), C. canadensis DSM 6769T (99.54%) and C. beijerinckii LMG 2148T (99.32%) being their closest relatives. However, average nucleotide highest identity values of TMW 2.2308T to C. beijerinckii LMG 2148T of 93.12% and 92.88% to C. japonicus CECT 7219T demonstrate that it represents a novel species within the genus Chromohalobacter with additional strains TMW 2.2299 (96.91%) and TMW 2.2304 (96.98%). The isolated strains were non-spore-forming, motile and able to grow at temperatures from 5 to 45 °C with an optimum at 37 °C. Growth of TMW 2.2308T occurs at 5 to 25% (w/v) NaCl with optimum growth between 10 and 12.5%. The genome of TMW 2.2308T has a size of 3.47 Mb and a G + C content of 61.0 mol%. The polyphasic evidence lead to the classification of TMW 2.2308T, TMW 2.2299 and TMW 2.2304 as members of a novel species of the genus Chromohalobacter. We propose a novel species as Chromohalobacter moromii sp. nov., with TMW 2.2308T (=DSM 113153T =CECT 30422T) as the type strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号