首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 2 毫秒
1.
Sleep deprivation has a complex set of neurological effects that go beyond a mere slowing of mental processes. While cognitive and perceptual impairments in sleep deprived individuals are widespread, some abilities remain intact. In an effort to characterize these effects, some have suggested an impairment of complex decision making ability despite intact ability to follow simple rules. To examine this trade-off, 24-hour total sleep deprived individuals performed two versions of a resource acquisition foraging task, one in which exploration is optimal (to succeed, abandon low value, high saliency options) and another in which exploitation is optimal (to succeed, refrain from switching between options). Sleep deprived subjects exhibited decreased performance on the exploitation task compared to non-sleep deprived controls, yet both groups exhibited increased performance on the exploratory task. These results speak to previous neuropsychological work on cognitive control.  相似文献   

2.
One function of sleep is thought to be the restoration of energy stores in the brain depleted during wakefulness. One such energy store found in mammalian brains is glycogen. Many of the genes involved in glycogen regulation in mammals have also been found in Drosophila melanogaster and rest behavior in Drosophila has recently been shown to have the characteristics of sleep. We therefore examined, in the fly, variation in the glycogen contents of the brain, the whole head and the body throughout the rest/activity cycle and after rest deprivation. Glycogen in the brain varies significantly throughout the day (p=0.001) and is highest during rest and lowest while flies are active. Glycogen levels in the whole head and body do not show diurnal variation. Brain glycogen drops significantly when flies are rest deprived for 3 h (p=0.034) but no significant differences are observed after 6 h of rest deprivation. In contrast, glycogen is significantly depleted in the body after both 3 and 6 h of rest deprivation (p<0.0001 and p<0.0001, respectively). Glycogen in the fly brain changes in relationship to rest and activity and demonstrates a biphasic response to rest deprivation similar to that observed in mammalian astrocytes in culture.  相似文献   

3.
The deleterious effects of prolonged sleep deprivation on behavior and cognition are a concern in modern society. Persons at risk for impaired performance and health-related issues resulting from prolonged sleep loss would benefit from agents capable of reducing these detrimental effects at the time they are sleep deprived. Agents capable of improving cognition by enhancing brain activity under normal circumstances may also have the potential to reduce the harmful or unwanted effects of sleep deprivation. The significant prevalence of excitatory alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamatergic receptors in the brain provides a basis for implementing a class of drugs that could act to alter or remove the effects of sleep deprivation. The ampakine CX717 (Cortex Pharmaceuticals), a positive allosteric modulator of AMPA receptors, was tested for its ability to enhance performance of a cognitive, delayed match-to-sample task under normal circumstances in well-trained monkeys, as well as alleviate the detrimental effects of 30-36 h of sleep deprivation. CX717 produced a dose-dependent enhancement of task performance under normal alert testing conditions. Concomitant measures of regional cerebral metabolic rates for glucose (CMRglc) during the task, utilizing positron emission tomography, revealed increased activity in prefrontal cortex, dorsal striatum, and medial temporal lobe (including hippocampus) that was significantly enhanced over normal alert conditions following administration of CX717. A single night of sleep deprivation produced severe impairments in performance in the same monkeys, accompanied by significant alterations in task-related CMRglc in these same brain regions. However, CX717 administered to sleep-deprived monkeys produced a striking removal of the behavioral impairment and returned performance to above-normal levels even though animals were sleep deprived. Consistent with this recovery, CMRglc in all but one brain region affected by sleep deprivation was also returned to the normal alert pattern by the drug. The ampakine CX717, in addition to enhancing cognitive performance under normal alert conditions, also proved effective in alleviating impairment of performance due to sleep deprivation. Therefore, the ability to activate specific brain regions under normal alert conditions and alter the deleterious effects of sleep deprivation on activity in those same regions indicate a potential role for ampakines in sustaining performance under these types of adverse conditions.  相似文献   

4.
5.
Sleep deprivation is common in Western societies and is associated with increased cardiovascular morbidity and mortality in epidemiological studies. However, the effects of partial sleep deprivation on the cardiovascular system are poorly understood. In the present study, we evaluated 13 healthy male volunteers (age: 31 ± 2 yr) monitoring sleep diary and wrist actigraphy during their daily routine for 12 nights. The subjects were randomized and crossover to 5 nights of control sleep (>7 h) or 5 nights of partial sleep deprivation (<5 h), interposed by 2 nights of unrestricted sleep. At the end of control and partial sleep deprivation periods, heart rate variability (HRV), blood pressure variability (BPV), serum norepinephrine, and venous endothelial function (dorsal hand vein technique) were measured at rest in a supine position. The subjects slept 8.0 ± 0.5 and 4.5 ± 0.3 h during control and partial sleep deprivation periods, respectively (P < 0.01). Compared with control, sleep deprivation caused significant increase in sympathetic activity as evidenced by increase in percent low-frequency (50 ± 15 vs. 59 ± 8) and a decrease in percent high-frequency (50 ± 10 vs. 41 ± 8) components of HRV, increase in low-frequency band of BPV, and increase in serum norepinephrine (119 ± 46 vs. 162 ± 58 ng/ml), as well as a reduction in maximum endothelial dependent venodilatation (100 ± 22 vs. 41 ± 20%; P < 0.05 for all comparisons). In conclusion, 5 nights of partial sleep deprivation is sufficient to cause significant increase in sympathetic activity and venous endothelial dysfunction. These results may help to explain the association between short sleep and increased cardiovascular risk in epidemiological studies.  相似文献   

6.
7.
We hypothesized that one of the functions of REM sleep is to maintain brain excitability and therefore, REM sleep deprivation is likely to modulate neuronal transmembrane potential; however, so far there was no direct evidence to support the claim. In this study a cationic dye, 3,3'-diethylthiacarbocyanine iodide was used to estimate the potential in synaptosomal samples prepared from control and REM sleep deprived rat brains. The activity of Na-K-ATPase that maintains the transmembrane potential was also estimated in the same sample. Further, the roles of noradrenaline and alpha1-adrenoceptor in mediating the responses were studied both in vivo as well as in vitro. Rats were REM sleep deprived for 4 days by the classical flower-pot method; large platform and recovery controls were carried out in addition to free-moving control. The fluorescence intensity increased in samples prepared from REM sleep deprived rat brain as compared to control, which reflected synaptosomal depolarization after deprivation. The Na-K-ATPase activity also increased in the same deprived sample. Furthermore, both the effects were mediated by noradrenaline acting on alpha1-adrenoceptors in the brain. This is the first direct evidence showing that REM sleep deprivation indeed increased neuronal depolarization, which is the likely cause for increased brain excitability, thus supporting our hypothesis and the effect was mediated by noradrenaline acting through the alpha1-adrenoceptor.  相似文献   

8.
The effect of prolonged wakefulness on adenosine kinase (AK), ecto-5'-nucleotidase and endo-5'-nucleotidase activity was assessed in the present study. Rats were sleep deprived for 3 or 6h, and one group was allowed to sleep 2h of recovery sleep after the 6h deprivation. The cortex and the basal forebrain were dissected, and frozen rapidly on dry ice. The enzyme activity of adenosine kinase was measured by monitoring the conversion of [2-3H]-adenosine into [3H]-adenosine monophosphate (AMP) and the ecto-5'-nucleotidase and endo-5'-nucleotidase activities by monitoring the conversion of [2-3H]-AMP into [3H]-adenosine. The enzyme activities did not change during deprivation or recovery sleep in either cortex or basal forebrain when compared to unhandled controls. Significant diurnal variation in enzyme activities was noted in both brain areas. In the basal forebrain adenosine kinase and both nucleotidases showed their lowest activity in the middle of the rest phase, 6h after lights on, suggesting a low level of adenosine metabolism, both production and degradation at this time point. In the cortex adenosine kinase had a diurnal activity pattern similar to the basal forebrain and the ecto-5'-nucleotidase activity was low already early in the rest phase, 3h after lights on, and remained low until the end part of the rest phase, 8h after lights on. Endo-5'-nucleotidase lacked diurnal variation. These activity patterns may be associated with the lower level of energy metabolism during sleep compared to wakefulness.  相似文献   

9.
Individual juvenile three-spined sticklebacks Gasterosteus aculeatus and European minnow Phoxinus phoxinus , from sympatric populations, were subjected to four cycles of 1 week of food deprivation and 2 weeks of ad libitum feeding. Mean specific growth rate during the weeks of deprivation was negative and did not differ between species. The three-spined stickleback showed sufficient growth compensation to recover to the growth trajectory shown by control fish daily fed ad libitum . The compensation was generated by hyperphagia during the re-feeding periods, and in the last two periods of re-feeding, the gross growth efficiencies of deprived three-spined sticklebacks were greater than in control fish. The expression of the compensatory changes in growth and food consumption became clearer over the successive periods of re-feeding. The European minnow developed only a weak compensatory growth response and the mass trajectory of the deprived fish deviated more and more from the control trajectory. During re-feeding periods, there were no significant differences in food consumption or gross growth efficiency between control and deprived European minnows. The differences between the two species are discussed in terms of the possible costs of compensatory growth, the control of growth and differences in feeding biology.  相似文献   

10.

To investigate the usefulness of the enzyme salivary alpha amylase as a biochemical marker of sleep deprivation in human subjects. Total 168 healthy school-going adolescents studying in 9th grade were selected randomly from morning shift (n = 84) and dayshift (n = 84) schools. The study was undertaken longitudinally for a period of 2 years. Study encompassed administration of questionnaire and collection of saliva samples from the participants. Activity of salivary alpha amylase (sAA) activity was estimated spectrophotometrically and statistical analysis was performed to determine the association between sAA activity and sleep duration. Excessive daytime sleepiness among students was also studied in association with sAA activity. sAA activity of students was found to have a negative correlation with the duration of sleep and a positive correlation with their level of sleepiness. Morning shift students were found to have significantly less sleep and correspondingly higher sAA activity as compared to dayshift students. A significant increase in the sAA activity was noticed in the second year as the students progressed from 9th to 10th grade. Higher amylase activity was also observed in sleep deprived students suffering from excessive daytime sleepiness irrespective of school timings. Salivary alpha amylase activity increases in saliva in response to sleep deprivation. School timings may modulate sleep duration of students. Present finding reveals that sAA could be an appropriate non-invasive biochemical marker for the objective assessment of sleep deprivation among individuals as well as at population level.

  相似文献   

11.
This study was intended to determine the effects of continuous bright light exposure on cardiovascular responses, particularly heart rate variability (HRV), at rest and during performance of mental tasks with acute nocturnal sleep deprivation. Eight healthy male subjects stayed awake from 21.00 to 04.30 hours under bright (BL, 2800 lux) or dim (DL, 120 lux) light conditions. During sleep deprivation, mental tasks (Stroop color-word conflict test: CWT) were performed for 15 min each hour. Blood pressure, electrocardiogram, respiratory rate, urinary melatonin concentrations and rectal temperature were measured. During sleep deprivation, BL exposure depressed melatonin secretion in comparison to DL conditions. During sleep deprivation, exposure to BL delayed the decline in heart rate (HR) for 4 h in resting periods. A significant increment of HR induced by each CWT was detected, especially at 03.00 h and later, under DL conditions only. In addition, at 04.00 h, an index of sympathetic activity and sympatho-vagal balance on HRV during CWT increased significantly under DL conditions. In contrast, an index of parasympathetic activity during CWT decreased significantly under DL conditions. However, the indexes of HRV during CWT did not change throughout sleep deprivation under BL conditions. Our results suggest that BL exposure not only delays the nocturnal decrease in HR at rest but also maintains HR and balance of cardiac autonomic modulation to mental tasks during nocturnal sleep deprivation.  相似文献   

12.
Robust critical systems are characterized by power laws which occur over a broad range of conditions. Their robust behaviour has been explained by local interactions. While such systems could be widespread in nature, their properties are not well understood. Here, we study three robust critical ecosystem models and a null model that lacks spatial interactions. In all these models, individuals aggregate in patches whose size distributions follow power laws which melt down under increasing external stress. We propose that this power-law decay associated with the connectivity of the system can be used to evaluate the level of stress exerted on the ecosystem. We identify several indicators along the transition to extinction. These indicators give us a relative measure of the distance to extinction, and have therefore potential application to conservation biology, especially for ecosystems with self-organization and critical transitions.  相似文献   

13.
Under normal sleep-wake conditions, noradrenaline (NA) secretions in supine subjects exhibit a weak circadian variation with a peak that occurs around noon; the sleep span is characterized by reduced NA secretion. Some investigators have reported that the circadian NA rhythm is completely obliterated during sleep deprivation. In our laboratory, plasma NA was assayed every hour for 24 h in nine healthy men 20-23 years of age. All men were deprived of sleep and were required to eat and walk around every hour to prevent sleep. However, subjects remained supine for 20 min before blood samples were collected to eliminate the effect of activity. Persistence of a slight decrease in the night concentration in several subjects, despite sleep deprivation, suggests that NA secretion may be influenced by a biological clock whose activity becomes visible when the influence of posture is removed.  相似文献   

14.
To assess the effects of selective sleep loss on ventilation during recovery sleep, we deprived 10 healthy young adult humans of rapid-eye-movement (REM) sleep for 48 h and compared ventilation measured during the recovery night with that measured during the baseline night. At a later date we repeated the study using awakenings during non-rapid-eye-movement (NREM) sleep at the same frequency as in REM sleep deprivation. Neither intervention produced significant changes in average minute ventilation during presleep wakefulness, NREM sleep, or the first REM sleep period. By contrast, both interventions resulted in an increased frequency of breaths, in which ventilation was reduced below the range for tonic REM sleep, and in an increased number of longer episodes, in which ventilation was reduced during the first REM sleep period on the recovery night. The changes after REM sleep deprivation were largely due to an increase in the duration of the REM sleep period with an increase in the total phasic activity and, to a lesser extent, to changes in the relationship between ventilatory components and phasic eye movements. The changes in ventilation after partial NREM sleep deprivation were associated with more pronounced changes in the relationship between specific ventilatory components and eye movement density, whereas no change was observed in the composition of the first REM sleep period. These findings demonstrate that sleep deprivation leads to changes in ventilation during subsequent REM sleep.  相似文献   

15.
Abstract— The effect of sleep deprivation on the in vivo and in vitro tritiated amino acid incorporation into brain proteins was studied in the rat at three age levels. Sleep deprivation was induced either by water tank or handling methods. Three experimental groups of animals were used: control, sleep deprived and post deprivation sleeping rats.
A significant decrease of protein synthesis was found in the cerebellum, telencephalon and in crude subcellular fractions of brainstem of adult rats selectively deprived of paradoxical sleep. However, no alteration of protein synthesis was observed either in vivo or in vitro , in the same brain regions or in the liver after the rebound of paradoxical sleep following deprivation.
In four crude subcellular protein fractions a specific increase of the in vitro labelled amino acid incorporation was observed in the brain stem of 24-day-old rats allowed to recuperate after sleep deprivation as compared with the deprived rats. No significant changes were seen in the telencephalon.
No alteration of incorporation was found in 7-day-old rats deprived of sleep.
The possible functional significance of these results is discussed in relation to stress and to variations in the size of the precursor pool for protein synthesis.  相似文献   

16.
Sleep deprivation reduces total plasma homocysteine levels in rats   总被引:7,自引:0,他引:7  
Hyperhomocysteinemia has been associated with pathological and stressful conditions and is a risk factor for cardiovascular disease. Since sleep deprivation is a stressful condition that is associated with disruption of various physiological processes, we investigated whether it would also be associated with increases in plasma homocysteine levels. Further, since hyperhomocysteinemia may promote oxidative stress, and we had previously found evidence of oxidative stress in brain following sleep deprivation, we also searched for evidence of systemic oxidative stress by measuring glutathione and thiobarbituric acid reactive substance levels. Rats were sleep deprived for 96 h using the platform technique. A group was killed after sleep deprivation and another two groups were allowed to undergo sleep recovery for 24 or 48 h. Contrary to expectation, plasma homocysteine was reduced in sleep-deprived rats as compared with the control group and did not revert to normal levels after 24 or 48 h of sleep recovery. A trend was observed towards decreased glutathione and increased thiobarbituric acid reactive substance levels in sleep-deprived rats. It is possible that the observed decreases in homocysteine levels may represent a self-correcting response to depleted glutathione in sleep-deprived animals, which would contribute to the attenuation of the deleterious effects of sleep deprivation.  相似文献   

17.
This study evaluated the impact of sex on the short term consequences of different periods of sleep deprivation and the effect of the respective sleep recovery periods on nociceptive responses. Male and female C57BL/6J mice were assigned to the following groups: paradoxical sleep deprived (PSD) for 72 h, sleep restricted (SR) for 15 days, exposed to respective recovery periods for 24 h, or untreated home-cage controls (CTRL). Mice were submitted to a noxious thermal stimulus to evaluate their nociceptive response after PSD, SR, or recovery periods. Blood was collected for hormonal analysis. The nociceptive response was significantly lower in PSD and SR mice compared to CTRL animals, regardless of the sex. However, SR females had a lower paw withdrawal threshold than males. Sleep recovery was able to restore normal nociceptive sensitivity after PSD in both sexes. The hyperalgesia induced by SR was not reversed by sleep rebound. In females, low concentrations of estradiol were found after SR, and these concentrations continued to decrease after 24 hours of sleep recovery. The PSD male mice exhibited higher concentrations of corticosterone than the CTRL and SR male mice. Corticosterone levels were not affected by SR. Our study revealed that PSD and SR induce hyperalgesia in mice. The SR groups showed marked changes in the nociceptive response, and the females were more sensitive to these alterations. This finding indicates that, although different periods of sleep deprivation change the nociceptive sensitivity in male and female mice, sex could influence hyperalgesia induced by chronic sleep loss.  相似文献   

18.
The purpose of this study was to investigate the effect of the exposure to bright light on EEG activity and subjective sleepiness at rest and at the mental task during nocturnal sleep deprivation. Eight male subjects lay awake in semi-supine in a reclining seat from 21:00 to 04:30 under the bright (BL; >2500 lux) or the dim (DL; <150 lux) light conditions. During the sleep deprivation, the mental task (Stroop color-word conflict test: CWT) was performed each 15 min in one hour. EEG, subjective sleepiness, rectal and mean skin temperatures and urinary melatonin concentrations were measured. The subjective sleepiness increased with time of sleep deprivation during both rest and CWT under the DL condition. The exposure to bright light delayed for 2 hours the increase in subjective sleepiness at rest and suppressed the increase in that during CWT. The bright light exposure also delayed the increase in the theta and alpha wave activities in EEG at rest. In contrast, the effect of the bright light exposure on the theta and alpha wave activities disappeared by CWT. Additionally, under the BL condition, the entire theta activity during CWT throughout nocturnal sleep deprivation increased significantly from that in a rest condition. Our results suggest that the exposure to bright light throughout nocturnal sleep deprivation influences the subjective sleepiness during the mental task and the EEG activity, as well as the subjective sleepiness at rest. However, the effect of the bright light exposure on the EEG activity at the mental task diminishes throughout nocturnal sleep deprivation.  相似文献   

19.
Physiological and/or pathological implications of the dynamics of sleep stage transitions have not, to date, been investigated. We report detailed duration and transition statistics between sleep stages in healthy subjects and in others with chronic fatigue syndrome (CFS); in addition, we also compare our data with previously published results for rats. Twenty-two healthy females and 22 female patients with CFS, characterized by complaints of unrefreshing sleep, underwent one night of polysomnographic recording. We find that duration of deep sleep (stages III and IV) follows a power-law probability distribution function; in contrast, stage II sleep durations follow a stretched exponential and stage I, and REM sleep durations follow an exponential function. These stage duration distributions show a gradually increasing departure from the exponential form with increasing depth of sleep toward a power-law type distribution for deep sleep, suggesting increasing complexity of regulation of deeper sleep stages. We also find a substantial number of REM to non-REM sleep transitions in humans, while this transition is reported to be virtually nonexistent in rats. The relative frequency of this REM to non-REM sleep transition is significantly lower in CFS patients than in controls, resulting in a significantly greater relative transition frequency of moving from both REM and stage I sleep to awake. Such an alteration in the transition pattern suggests that the normal continuation of sleep in light or REM sleep is disrupted in CFS. We conclude that dynamic transition analysis of sleep stages is useful for elucidating yet-to-be-determined human sleep regulation mechanisms with pathophysiological implications.  相似文献   

20.
Study of EEG in 45 patients, suffering from endogenic and psychogenic depression, in the state of rest, in mental and emotional loads, SGR, orienting reaction and night sleep before and after a course of sleep deprivation has shown that neurophysiological shifts in the cycle alertness-sleep have one direction. The weakening of depression was accompanied by rather unidirected alterations of neurophysiological relations, which testified to the normalization of biological periods of the organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号