首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hexokinase I (ATP:d-hexose 6-phosphotransferase, EC 2.7.1.1), a key regulatory glycolytic enzyme in certain tissues, is known to be markedly inhibited under physiological conditions. The action of the primary inhibitory effector, glucose-6-P, is reversed by inorganic orthophosphate (Pi). A molecular model for inhibition and deinhibition of hexokinase was recently proposed [Ellison, W. R., Lueck, J. D., and Fromm, H. J. (1975) J. Biol. Chem.250, 1864–1871]. One of the central assumptions of this model is that glucose-6-P is a normal product inhibitor of hexokinase. It has long been suggested that glucose-6-P is an allosteric inhibitor of hexokinase, whereas other sugar-phosphate products such as mannose-6-P are normal product inhibitors. In this report we investigated the kinetic mechanism of hexokinase action with mannose as substrate and mannose-6-P as an inhibitor. The data obtained show that there are no qualitative differences between glucose and mannose as substrates and glucose-6-P and mannose-6-P as inhibitors. Binding experiments indicate that glucose-6-P and mannose-6-P are competitive binding ligands with hexokinase I. Furthermore, the activation pattern observed with Pi and glucose-6-P inhibited hexokinase is also found with the mannose-6-P inhibited phosphotransferase. These findings suggest that the mechanism of inhibition of glucose-6-P and mannose-6-P represents a difference in degree rather than a difference in kind. An explanation of the results in terms of a stereochemical model is presented.  相似文献   

2.
Immunohistological analyses for rice ( Oryza sativa ) sucrose-phosphate synthase (SPS, UDP-glucose d -fructose-6-phosphate-2-glucosyltransferase, EC 2.4.1.14) show that the protein is differently localized in photosynthetic and etiolated leaves. Very little is known about SPS regulation in heterotrophic tissues; therefore, we studied the biochemical properties of the enzyme from etiolated seedlings and embryo. Two SPS forms (SPS-1 and SPS-2) were partially purified from etiolated seedlings. The effects of Glc-6-P (activator) and Pi (inhibitor) on SPS activities allowed us to differentiate the two forms. SPS-1 showed high sensitivity to Pi which also strongly decreased enzyme activation by Glc-6-P. SPS-2 was highly activated by Glc-6-P and showed low sensitivity to Pi. In vitro alkaline phosphatase treatment suggested that SPS-1 could be regulated as leaf SPS in darkness and that SPS-2 is present in a dephosphorylated state or is not regulated by protein phosphorylation. The relative MM value (116 kDa) estimated for both SPS forms in SDS-PAGE is identical to the rice leaf SPS polypeptide. Taken together, these data led us to conclude that SPS-2 is an enzyme form only present in non-photosynthetic tissues.  相似文献   

3.
Spinach (Spinacia oleracea L.) leaf sucrose-phosphate synthase (SPS) can be phosphorylated and inactivated in vitro with [γ-32P]ATP (JLA Huber, SC Huber, TH Nielsen [1989] Arch Biochem Biophys 270: 681-690). Thus, it was surprising to find that SPS, extracted from leaves fed mannose in the light to highly activate the enzyme, could be inactivated in an ATP-independent manner when desalted crude extracts were preincubated at 25°C before assay. The “spontaneous” inactivation involved a loss in activity measured with limiting substrate concentrations in the presence of the inhibitor, Pi, without affecting maximum catalytic activity. The spontaneous inactivation was unaffected by exogenous carrier proteins and protease inhibitors, but was inhibited by inorganic phosphate, fluoride, and molybdate, suggesting that a phosphatase may be involved. Okadaic acid, a potent inhibitor of mammalian type 1 and 2A protein phosphatases, had no effect up to 5 micromolar. Inactivation was stimulated about twofold by exogenous Mg2+ and was relatively insensitive to Ca2+ and to pH over the range pH 6.5 to 8.5. Radioactive phosphate incorporated into SPS during labeling of excised leaves with [32P]Pi (initially in the dark and then in the light with mannose) was lost with time when desalted crude extracts were incubated at 25°C, and the loss in radiolabel was substantially reduced by fluoride. These results provide direct evidence for action of an endogenous phosphatase(s) using SPS as substrate. We postulate that highly activated SPS contains phosphorylated residue(s) that increase activation state, and that spontaneous inactivation occurs by removal of these phosphate group(s). Inactivation of SPS in vivo caused by feeding uncouplers to darkened leaf tissue that had previously been fed mannose in the dark, may occur by this mechanism. However, there is no evidence that this mechanism is involved in light-dark regulation of SPS in vivo.  相似文献   

4.
A CDPK type protein kinase is involved in rice SPS light modulation   总被引:3,自引:0,他引:3  
A protein kinase activity that can phosphorylate and inactivate rice ( Oryza sativa ) sucrose-phosphate synthase (SPS; UDP-glucose: d -fructose-6-phosphate-2-glucosyl transferase, EC 2.4.1.14) was measured in extracts prepared from leaves exposed to light-dark transitions. Enzyme activity present in extracts from dark leaves was about 5-fold higher than the activity in extracts from leaves that had been collected in the light. The protein kinase (named R-SPSK) was purified about 100-fold from dark leaves and its biochemical properties were studied. The micromolar dependence of Ca2+ exhibited by R-SPSK, and its response to calmodulin antagonists was similar to the properties associated with members of the plant Calcium-Dependent Protein Kinase (CDPK) family. Two modulators of SPS activity, Pi and Glc-6-P, were examined for an effect on R-SPSK. While Glc-6-P did not affect R-SPSK activity, Pi drastically increased the kinase activity. Taken together, these data provide evidence that SPS may be regulated by a CDPK type protein-kinase whose activity is modulated by light-dark transitions and stimulated by Pi, the negative effector of SPS activity.  相似文献   

5.
One of the major protein kinases (PK(III)) that phosphorylates serine-158 of spinach sucrose-phosphate synthase (SPS), which is responsible for light/dark modulation of activity, is known to be a member of the SNF1-related family of protein kinases. In the present study, we have developed a fluorescence-based continuous assay for measurement of PK(III) activity. Using the continuous assay, along with the fixed-time-point (32)P-incorporation assay, we demonstrate that PK(III) activity is inhibited by glucose-6-phosphate (Glc-6-P). Relative inhibition by Glc-6-P was increased by decreasing pH from 8. 5 to 5.5 and by reducing the concentration of Mg(2+) in the assay from 10 to 2 mM. Under likely physiological conditions (pH 7.0 and 2 mM Mg(2+)), 10 mM Glc-6-P inhibited kinase activity approximately 70%. Inhibition by Glc-6-P could not be ascribed to contaminants in the commercial preparations. Other metabolites inhibited PK(III) in the following order: Glc-6-P > mannose-6-P, fructose-1,6P(2) > ribose-5-P, 3-PGA, fructose-6-P. Inorganic phosphate, Glc, and AMP were not inhibitory, and free Glc did not reverse the inhibition by Glc-6-P. Because SNF1-related protein kinases are thought to function broadly in the regulation of enzyme activity and gene expression, Glc-6-P inhibition of PK(III) activity potentially provides a mechanism for metabolic regulation of the reactions catalyzed by these important protein kinases.  相似文献   

6.
The mechanism of glucose 6-phosphate transport by Escherichia coli   总被引:5,自引:0,他引:5  
To evaluate anion exchange as the mechanistic basis of sugar phosphate transport, natural and artificial membranes were used in studies of glucose 6-phosphate (Glc-6-P) and inorganic phosphate (Pi) accumulation by the uhpT-encoded protein (UhpT) of Escherichia coli. Experiments with intact cells demonstrated that UhpT catalyzed the neutral exchange of internal and external Pi, and work with everted as well as right-side-out membrane vesicles showed further that UhpT mediated the heterologous exchange of Pi and Glc-6-P. When loaded with Pi, but not when loaded with morpholinopropanesulfonate (MOPS), everted vesicles took up Glc-6-P to levels 100-fold above medium concentration in a reaction unaffected by the ionophores valinomycin, valinomycin plus nigericin, and carbonyl cyanide p-trifluoromethoxyphenylhydrazone. Similarly, right-side-out vesicles were capable of Glc-6-P transport, but only if a suitable internal countersubstrate was available. Thus, in MOPS-loaded vesicles, oxidative metabolism established a proton-motive force that supported proline or Pi accumulation, but transport of Glc-6-P was found only if vesicles could accumulate Pi during a preincubation. After reconstitution of UhpT into proteoliposomes it was possible to show as well that the level of accumulation of Glc-6-P (17 to 560 nmol/mg of protein) was related directly to the internal concentration of Pi. These results are most easily understood if the transport of glucose 6-phosphate in E. coli occurs by anion exchange rather than by nH+/anion support.  相似文献   

7.
Colobanthus quitensis (Kunth) Bartl. is widely distributed from Mexico to the Antarctic. C. quitensis is a freezing resistant species that accumulates sucrose in response to cold. We tested the hypothesis that low temperature modifies the kinetic properties of C. quitensis sucrose phosphate synthase (SPS) to increase its activity and ability to synthesize sucrose during cold acclimation. Cold acclimation caused a fourfold increment in sucrose concentration and a 100% increase in SPS activity, without changes in the level of SPS protein. Cold acclimation did not affect the optimal temperature and pH for SPS activity. However, it caused a tenfold increase in the inhibition constant (K i) for inorganic phosphate (Pi) calculated as a function of fructose-6-phosphate (Fruc-6-P). SPS from cold acclimated plants also exhibited a higher reduction of its Michaelis constant (K m) for glucose-6-phosphate (Gluc-6-P) with respect to non-acclimated plants. We suggest that the increase in C. quitensis SPS K i for Pi and the increase in activation by Gluc-6-P in response to cold keep SPS activated, leading to high sucrose accumulation. This may be an important adaptation that allows efficient accumulation of sucrose during the harsh Antarctic summer.  相似文献   

8.
Mechanism of mannose toxicity   总被引:1,自引:0,他引:1  
Mannose toxicity in honeybees is due to a marked shortage of mannosephosphate isomerase that leads to a large accumulation of mannose-6-P and a marked depletion of ATP. Drosophila melanogaster and Ceratitis capitata are insensitive to mannose and have excess of mannosephosphate isomerase over hexokinase. 2-Deoxyglucose is as toxic as mannose for honeybees and is toxic also for the other insects studied, which supports the conclusion that the mechanism of mannose toxicity involves large accumulation of a hexosephosphate.  相似文献   

9.
Phosphoglucomutase (PGM) catalyzes the interconversion of glucose (Glc)-1- and Glc-6-phosphate in the synthesis and consumption of sucrose. We isolated two maize (Zea mays L.) cDNAs that encode PGM with 98.5% identity in their deduced amino acid sequence. Southern-blot analysis with genomic DNA from lines with different Pgm1 and Pgm2 genotypes suggested that the cDNAs encode the two known cytosolic PGM isozymes, PGM1 and PGM2. The cytosolic PGMs of maize are distinct from a plastidic PGM of spinach (Spinacia oleracea). The deduced amino acid sequences of the cytosolic PGMs contain the conserved phosphate-transfer catalytic center and the metal-ion-binding site of known prokaryotic and eukaryotic PGMs. PGM mRNA was detectable by RNA-blot analysis in all tissues and organs examined except silk. A reduction in PGM mRNA accumulation was detected in roots deprived of O2 for 24 h, along with reduced synthesis of a PGM identified as a 67-kD phosphoprotein on two-dimensional gels. Therefore, PGM is not one of the so-called “anaerobic polypeptides.” Nevertheless, the specific activity of PGM was not significantly affected in roots deprived of O2 for 24 h. We propose that PGM is a stable protein and that existing levels are sufficient to maintain the flux of Glc-1-phosphate into glycolysis under O2 deprivation.  相似文献   

10.
The metabolism of mannose was examined in resting cells in vivo using 13C-NMR and 31P-NMR spectroscopy, in cell-free extracts in vitro using 31P-NMR spectroscopy, and by enzyme assays. Plesiomonas shigelloides was shown to transport mannose by a phosphoenolpyruvate-dependent phosphotransferase system producing mannose 6-phosphate. However, a toxic effect was observed when P. shigelloides was grown in the presence of mannose. Investigation of mannose metabolism using in vivo 13C NMR showed mannose 6-phosphate accumulation without further metabolism. In contrast, glucose was quickly metabolized under the same conditions to lactate, ethanol, acetate and succinate. Extracts of P. shigelloides exhibited no mannose-6-phosphate isomerase activity whereas the key enzyme of the Embden-Meyerhof pathway (6-phosphofructokinase) was found. This result explains the mannose 6-phosphate accumulation observed in cells grown on mannose. The levels of phosphoenolpyruvate and Pi were estimated by in vivo 31P-NMR spectroscopy. The intracellular concentrations of phosphoenolpyruvate and Pi were relatively constant in both starved cells and mannose-metabolizing cells. In glucose-metabolizing cells, the phosphoenolpyruvate concentration was lower, and about 80% of the Pi was used during the first 10 min. It thus appears that the toxic effect of mannose on growth is not due to energy depletion but probably to a toxic effect of mannose 6-phosphate.  相似文献   

11.
Softening of the flesh and the rise in ethylene evolution and respiration associated with ripening in pear (Pyrus communis L.) fruit was delayed when mannose was vacuum infiltrated into intact fruit. The extent of delay could be modified by altering the concentration or the volume of mannose applied to the fruit. Inhibition of ripening was associated with phosphorylation of mannose to mannose 6-phosphate (M6P), and accumulation of M6P was associated with lowered levels of inorganic phosphate (Pi), glucose 6-phosphate (G6P), and ATP in the fruit tissue. Subsequently, however, as the M6P was metabolized, the levels of Pi, G6P, and ATP increased and ripening processes were concomitantly released from inhibition. Hence, the degree of inhibition by mannose or the release from inhibition was related to the level of M6P in the fruit and its rate of metabolism. The data provide correlative evidence to support a view that one inhibitory effect of mannose is depletion of Pi in the cell as a result of phosphorylation of mannose to M6P. Inhibition of ripening by mannose was not alleviated by co-application of glucose as a competitive substrate for the hexokinase(s), or by Pi, presumably the depleted metabolite. Also, incubation of tissue disks with M6P resulted in inhibition of ethylene production and respiration. The structural analogs of mannose, glucosamine, and 2-deoxyglucose, which have been shown to mimic mannose action in several plant tissues, did not cause inhibition of ripening of pear fruit comparable with that associated with mannose. Both analogs stimulated respiration, and glucosamine caused only a small inhibition of softening and ethylene evolution. Another mannose analog, α-methylmannoside, did inhibit fruit ripening though to a lesser extent than mannose. Its influence was also associated with accumulation of M6P and a decrease of Pi levels. We conclude that the mannose effect may, in part, be due to M6P toxicity, as well as by depletion of Pi.  相似文献   

12.
Experiments were conducted in which d-mannose was supplied to mature Beta vulgaris L. (sugar beet) leaves, via the transpiration stream, to perturb photosynthetic carbon allocation by sequestering cytosolic Pi. Biochemical and enzymic analyses conducted on this tissue indicated that mannose 6-P was present, that it was only slowly metabolized, and that after a 24-hour pretreatment sugar metabolism was slightly perturbed. However, sucrose retrieval by the mesophyll tissue was greatly impaired in 24-hour mannose-pretreated tissue, a response which was due in part to mannose acting as an osmoticum. Inhibition of glucose, fructose, and arginine uptake into mannose-treated sugar beet leaf discs indicated that mannose may elicit a general perturbation of all membrane transport processes. This conclusion was supported by our finding that sucrose efflux was increased from mannose-treated tissue. Analysis of adenine nucleotide levels showed that whereas these levels declined over the first 3 to 6 hours of the mannose treatment, by 24 hours they had recovered to near control values. Similar experiments conducted on Nicotiana rustica indicated that whereas mannose 6-P was present in mature leaves, it remained at a much lower level than that found in sugar beet. Sucrose uptake into N. rustica was insensitive to mannose pretreatment. However, glucosamine treatment, which is also thought to sequester cytosolic Pi, inhibited sucrose uptake in both N. rustica and B. vulgaris. Further, experiments conducted on N. tabacum L. var Xanthii showed that mannose caused an inhibition of sucrose uptake, indicating that a range of sensitivity to mannose exists between closely related species. These results are discussed in terms of possible mechanisms of inhibition.  相似文献   

13.
Difference spectroscopic investigations on the interaction of brain hexokinase with glucose and glucose 6-phosphate (Glc-6-P) show that the binary complexes E-glucose and E-Glc-6-P give very similar UV difference spectra. However, the spectrum of the ternary E-glucose-Glc-6-P complex differs markedly from the spectra of the binary complexes, but resembles that produced by the E-glucose-Pi complex. Direct binding studies of the interaction of Glc-6-P with brain hexokinase detect only a single high-affinity binding site for Glc-6-P (KD = 2.8 microM). In the ternary E-glucose-Glc-6-P complex, Glc-6-P has a much higher affinity for the enzyme (KD = 0.9 microM) and a single binding site. Ribose 5-phosphate displaces Glc-6-P from E-glucose-Glc-6-P only, but not from E-Glc-6-P complex. It also fails to displace glucose from E-glucose and E-glucose-Glc-6-P complexes. Scatchard plots of the binding of glucose to brain hexokinase reveal only a single binding site but show distinct evidence of positive cooperativity, which is abolished by Glc-6-P and Pi. These ligands, as well as ribose 5-phosphate, substantially increase the binding affinity of glucose for the enzyme. The spectral evidence, as well as the interactive nature of the sites binding glucose and phosphate-bearing ligands, lead us to conclude that an allosteric site for Glc-6-P of physiological relevance occurs on the enzyme only in the presence of glucose, as a common locus where Glc-6-P, Pi, and ribose 5-phosphate bind. In the absence of glucose, Glc-6-P binds to the enzyme at its active site with high affinity. We also discuss the possibility that, in the absence of glucose, Glc-6-P may still bind to the allosteric site, but with very low affinity, as has been observed in studies on the reverse hexokinase reaction.  相似文献   

14.
We have proposed that glucose-6-phosphatase (EC 3.1.3.9) is a two-component system consisting of (a) a glucose-6-P-specific transporter which mediates the movement of the hexose phosphate from the cytosol to the lumen of the endoplasmic reticulum (or cisternae of the isolated microsomal vesicle), and (b) a nonspecific phosphohydrolase-phosphotransferase localized on the luminal surface of the membrane (Arion, W.J., Wallin, B.K., Lange, A.J., and Ballas, L.M. (1975) Mol. Cell. Biochem. 6, 75-83). Additional support for this model has been obtained by studying the interactions of D-mannose-6-P and D-mannose with the enzyme of untreated (i.e. intact) and taurocholate-disrupted microsomes. An exact correspondence was shown between the mannose-6-P phosphohydrolase activity at low substrate concentrations and the permeability of the microsomal membrane to EDTA. The state of intactness of the membrane influenced the kinetics of mannose inhibition of glucose-6-P hydrolysis; uncompetitive and noncompetitive inhibitions were observed for intact and disrupted microsomes, respectively. The apparent Km for glucose-6-P was smaller with intact preparations at mannose concentrations above 0.3 M. Mannose significantly inhibited total glucose-6-P utilization by intact microsomes, whereas D-glucose had a stimulatory effect. Both hexoses markedly enhanced the rate of glucose-6-P utilization by disrupted microsomes. The actions of mannose on the glucose-6-phosphatase of intact microsomes fully support the postulated transport model. They are predictable consequences of the synthesis and accumulation of mannose-6-P in the cisternae of microsomal vesicles which possess a nonspecific, multifunctional enzyme on the inner surface and a limiting membrane permeable to D-glucose, D-mannose, glucose-6-P, but impermeable to mannose-6-P. The latency of the mannose-6-P phosphohydrolase activity is proposed as a reliable, quantitative index of microsomal membrane integrity. The inherent limitations of the use of EDTA permeability for this purpose are discussed.  相似文献   

15.
In Vitro Biosynthesis of Phosphorylated Starch in Intact Potato Amyloplasts   总被引:4,自引:2,他引:2  
Intact amyloplasts from potato (Solanum tuberosum L.) were used to study starch biosynthesis and phosphorylation. Assessed by the degree of intactness and by the level of cytosolic and vacuolar contamination, the best preparations were selected by searching for amyloplasts containing small starch grains. The isolated, small amyloplasts were 80% intact and were free from cytosolic and vacuolar contamination. Biosynthetic studies of the amyloplasts showed that [1-14C]glucose-6-phosphate (Glc-6-P) was an efficient precursor for starch synthesis in a manner highly dependent on amyloplast integrity. Starch biosynthesis from [1-14C]Glc-1-P in small, intact amyloplasts was 5-fold lower and largely independent of amyloplast intactness. When [33P]Glc-6-P was administered to the amyloplasts, radiophosphorylated starch was produced. Isoamylase treatment of the starch followed by high-performance anion-exchange chromatography with pulsed amperometric detection revealed the separated phosphorylated α-glucans. Acid hydrolysis of the phosphorylated α-glucans and high-performance anion-exchange chromatography analyses showed that the incorporated phosphate was preferentially positioned at C-6 of the Glc moiety. The incorporation of radiolabel from Glc-1-P into starch in preparations of amyloplasts containing large grains was independent of intactness and most likely catalyzed by starch phosphorylase bound to naked starch grains.  相似文献   

16.
ADP-glucose (Glc) pyrophosphorylase (AGPase), a key regulatory enzyme in starch biosynthesis, is highly regulated. Transgenic approaches in four plant species showed that alterations in either thermal stability or allosteric modulation increase starch synthesis. Here, we show that the classic regulators 3-phosphoglyceric acid (3-PGA) and inorganic phosphate (Pi) stabilize maize (Zea mays) endosperm AGPase to thermal inactivation. In addition, we show that glycerol phosphate and ribose-5-P increase the catalytic activity of maize AGPase to the same extent as the activator 3-PGA, albeit with higher K(a) (activation constant) values. Activation by fructose-6-P and Glc-6-P is comparable to that of 3-PGA. The reactants ATP and ADP-Glc, but not Glc-1-P and pyrophosphate, protect AGPase from thermal inactivation, a result consistent with the ordered kinetic mechanism reported for other AGPases. 3-PGA acts synergistically with both ATP and ADP-Glc in heat protection, decreasing the substrate concentration needed for protection and increasing the extent of protection. Characterization of a series of activators and inhibitors suggests that they all bind at the same site or at mutually exclusive sites. Pi, the classic "inhibitor" of AGPase, binds to the enzyme in the absence of other metabolites, as determined by thermal protections experiments, but does not inhibit activity. Rather, Pi acts by displacing bound activators and returning the enzyme to its activity in their absence. Finally, we show from thermal inactivation studies that the enzyme exists in two forms that have significantly different stabilities and do not interconvert rapidly.  相似文献   

17.
In this study, we measured the total pool sizes of key cellular metabolites from nitrogen-limited cells of Selenastrum minutum before and during ammonium assimilation in the light. This was carried out to identify the sites at which N assimilation is acting to regulate carbon metabolism. Over 120 seconds following NH4+ addition we found that: (a) N accumulated in glutamine while glutamate and α-ketoglutarate levels fell; (b) ATP levels declined within 5 seconds and recovered within 30 seconds of NH4+ addition; (c) ratios of pyruvate/phosphoenolpyruvate, malate/phosphoenolpyruvate, Glc-1-P/Glc-6-P and Fru-1,6-bisphosphate/Fru-6-P increased; and (d) as previously seen, photosynthetic carbon fixation was inhibited. Further, we monitored starch degradation during N assimilation over a longer time course and found that starch breakdown occurred at a rate of about 110 micromoles glucose per milligram chlorophyll per hour. The results are consistent with N assimilation occurring through glutamine synthetase/glutamate synthase at the expense of carbon previously stored as starch. They also indicate that regulation of several enzymes is involved in the shift in metabolism from photosynthetic carbon assimilation to carbohydrate oxidation during N assimilation. It seems likely that pyruvate kinase, phosphoenolpyruvate carboxylase, and starch degradation are all activated, whereas key Calvin cycle enzyme(s) are inactivated within seconds of NH4+ addition to N-limited S. minutum cells. The rapid changes in glutamate and triose phosphate, recently shown to be regulators of cytosolic pyruvate kinase, are consistent with them contributing to the short-term activation of this enzyme.  相似文献   

18.
Lysine (Lys)-195 in the homotetrameric ADP-glucose pyrophosphorylase (ADPGlc PPase) from Escherichia coli was shown previously to be involved in the binding of the substrate glucose-1-phosphate (Glc-1-P). This residue is highly conserved in the ADPGlc PPase family. Site-directed mutagenesis was used to investigate the function of this conserved Lys residue in the large and small subunits of the heterotetrameric potato (Solanum tuberosum) tuber enzyme. The apparent affinity for Glc-1-P of the wild-type enzyme decreased 135- to 550-fold by changing Lys-198 of the small subunit to arginine, alanine, or glutamic acid, suggesting that both the charge and the size of this residue influence Glc-1-P binding. These mutations had little effect on the kinetic constants for the other substrates (ATP and Mg2+ or ADP-Glc and inorganic phosphate), activator (3-phosphoglycerate), inhibitor (inorganic phosphate), or on the thermal stability. Mutagenesis of the corresponding Lys (Lys-213) in the large subunit had no effect on the apparent affinity for Glc-1-P by substitution with arginine, alanine, or glutamic acid. A double mutant, SK198RLK213R, was also obtained that had a 100-fold reduction of the apparent affinity for Glc-1-P. The data indicate that Lys-198 in the small subunit is directly involved in the binding of Glc-1-P, whereas they appear to exclude a direct role of Lys-213 in the large subunit in the interaction with this substrate.  相似文献   

19.
Phosphorylation of the 64 kilodalton stromal phosphoprotein by incubation of pea (Pisum sativum) chloroplast extracts with [γ-32P]ATP decreased in the presence of Glc-6-P and Glc-1,6-P2, but was stimulated by glucose. Two-dimensional gel electrophoresis following incubation of intact chloroplasts and stromal extracts with [γ-32P]ATP, or incubation of stromal extracts and partially purified phosphoglucomutase (EC 2.7.5.1) with [32P]Glc-1-P showed that the identical 64 kilodalton polypeptide was labeled. A 62 kilodalton polypeptide was phosphorylated by incubation of tobacco (Nicotiana sylvestris) stromal extracts with either [γ-32P]ATP or [32P]Glc-1-P. In contrast, an analogous polypeptide was not phosphorylated in extracts from a tobacco mutant deficient in plastid phosphoglucomutase activity. The results indicate that the 64 (or 62) kilodalton chloroplast stromal phosphoprotein is phosphoglucomutase.  相似文献   

20.
The multicomponent hepatic glucose 6-phosphatase (Glc-6-Pase) system catalyzes the terminal step of hepatic glucose production and plays a key role in the regulation of blood glucose. We used the chlorogenic acid derivative S 3483, a reversible inhibitor of the glucose-6-phosphate (Glc-6-P) translocase component, to demonstrate for the first time upregulation of Glc-6-Pase expression in rat liver in vivo after inhibition of Glc-6-P translocase. In accordance with its mode of action, S 3483-treatment of overnight-fasted rats induced hypoglycemia and increased blood lactate, hepatic Glc-6-P, and glycogen. The metabolic changes were accompanied by rapid and marked increases in Glc-6-Pase mRNA (above 35-fold), protein (about 2-fold), and enzymatic activity (about 2-fold). Maximal mRNA levels were reached after 4 h of treatment. Glycemia, blood lactate, and Glc-6-Pase mRNA levels returned to control values, whereas Glc-6-P and glycogen levels decreased but were still elevated 2 h after S 3483 withdrawal. The capacity for Glc-6-P influx was only marginally increased after 8.5 h of treatment. Prevention of hypoglycemia by euglycemic clamp did not abolish the increase in Glc-6-Pase mRNA induced by S 3483 treatment. A similar pattern of hypoglycemia and possibly of associated counterregulatory responses elicited by treatment with the phosphoenolpyruvate carboxykinase inhibitor 3-mercaptopicolinic acid could account for only a 2-fold induction of Glc-6-Pase mRNA. These findings suggest that the significant upregulation of Glc-6-Pase gene expression observed after treatment of rats in vivo with an inhibitor of Glc-6-P translocase is caused predominantly either by S 3483 per se or by the compound-induced changes of intracellular carbohydrate metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号