首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
4.
5.
It was previously reported that the N-terminal domain of Azospirillum brasilense NifA was a negative regulator of the NifA activity and that the P(II) protein prevented this inhibition under nitrogen fixing conditions. Here, we show that a mutation of a single Tyr residue at position 18 of the N-terminal domain of NifA led to an active NifA protein that did not require P(II) for activation under nitrogen fixation conditions.  相似文献   

6.
Hepatocellular carcinoma (HCC), the major manifestation of primary liver cancer, is one of the most frequent and malignant cancers worldwide, especially in Taiwan. Estrogen receptors (ERs) have been reported to play either a proliferation- or apoptosis-enhancing role in the differentiation of cancers, including HCC. In a previous experiment, we showed that transient overexpressed estrogen receptor-α induced early stage HCC cell line Hep 3B cell apoptosis by increasing the hTNF-α gene expression in a ligand-independent manner. To further clarify if the apoptotic effect occurs in poorly differentiated HCC cell line, HA22T, and elucidate the roles of ERs and TNF-α, DNA fragmentation and caspase activity were measured in late stage HCC cell line, HA22T, by measuring the expression of hER-α and hER-β using a Tetracycline-induciable system (Tet-on). Increased DNA fragmentation and caspase-3 activity were found in hERβ-overexpressed HA22T cells treated with estrogen (10−8 M) but not in hERα-overexpressed HA22T cells. Using RT-PCR/PCR and western blotting in HA22T cells, overexpressed hER-β was also found to increase the expression of hTNF-α mRNA and induce hTNF-α-dependent luciferase activity in a ligand-dependent manner. Additionally, LPS treatment and hER-β overexpression both enhance caspase-8 activities, whereas neither hER-β nor E2 treatment affected caspase-9 activities. In addition, the overexpressed hER-β plus E2 enhanced DNA fragmentation and caspase-8 activities were only partially reduced by anti-hTNF-α (0.1ng/ml), which was possibly due to the involvement of P53 and TGF-β. Taken together, our data indicates that overexpressed hER-β but not hER-α may induce caspase-8-mediated apoptosis by increasing the hTNF-α gene expression in a ligand-dependent manner in poorly differentiated HA22T cells. (Mol Cell Biochem xxx: 1–9, 2005)Shares equally contribution Contract grant sponsor: National Science Council; Contract grant number: NSC 91-2314-B-075A-006, NSC 92-2314-B-075A-014.  相似文献   

7.
gamma B-crystallin is a monomeric member of the beta gamma-superfamily of vertebrate eye lens proteins. It consists of two similar domains with all-beta Greek key topology associating about an approximate two-fold axis. At pH 2, with urea as the denaturant, the domains show independent equilibrium unfolding transitions, suggesting different intrinsic stabilities. Denaturation experiments using recombinant one- or two-domain proteins showed that the N-terminal domain on its own exhibits unaltered intrinsic stability but contributes significantly to the stability of its C-terminal partner. It has been suggested that docking of the domains is determined by a hydrophobic interface that includes phenylalanine at position 56 of the N-terminal domain. In order to test this hypothesis, F56 was substituted by site-directed mutagenesis in both complete gamma B-crystallin and its isolated N-terminal domain. All mutations destabilize the N-terminal domain to about the same extent but affect the C-terminal domain in a different way. Replacement by the small alanine side chain or the charged aspartic acid residue results in a significant destabilization of the C-terminal domain, whereas the more bulky tryptophan residue causes only a moderate decrease in stability. In the mutants F56A and F56D, equilibrium unfolding transitions obtained by circular dichroism and intrinsic fluorescence differ, suggesting a more complex denaturation behavior than the one observed for gamma B wild type. These results confirm how mutations in one crystallin domain can affect the stability of another when they occur at the interface. The results strongly suggest that size, hydrophobicity, and optimal packing of amino acids involved in these interactions are critical for the stability of gamma B-crystallin.  相似文献   

8.
Drosophila brain tumor (Brat) is a translational repressor belonging to the tripartite motif (TRIM) protein superfamily. During the asymmetric division of Drosophila neuroblasts, Brat localizes at the basal cortex via direct interaction with the scaffolding protein Miranda (Mira), and segregates into the basal ganglion mother cells after cell division. It was previously reported that both the coiled-coil (CC) and NHL domains of Brat are required for the interaction with Mira, but the underlying structural basis is elusive. Here, we determine the crystal structure of Brat-CC domain (aa 376-511) at 2.5 Å, showing that Brat-CC forms an elongated antiparallel dimer through an unconventional CC structure. The dimeric assembly in Brat-CC structure is similar to its counterparts in other TRIM proteins, but Brat-CC also exhibits some distinct structural features. We also demonstrate that the CC domain could not bind Mira by its own, neither does the isolated NHL domain of Brat. Rather, Brat binds to Mira through the CC-NHL domain tandem, indicating that the function of the CC domain is to assemble Brat-NHL in dimeric form, which is necessary for Mira binding.  相似文献   

9.
The effect of plasmid multimerization on segregational instability was investigated using a structured, segregated model of genetically modified Escherichia coli cells. By including the multimerization of plasmids, the model can predict the proportion of each multimer in the total plasmid population. Simulation results suggest that the plasmid copy number is controlled by the total plasmid content (i.e., total number of plasmid origins) in the host cell and that multimerization reduces the total number of independent, monomeric segregation units. However, multimerization is found to have a minor effect on decreasing plasmid segregational stability for multicopy plasmids with average copy number per cell greater than about 25. Also model predictions were used to test whether or not a nonrandom plasmid distribution at cell fission could cause segregational instability. Even in the case of severely biased partitioning, plasmids whose copy number is above 45 per cell do not show significant segregational instability. The results suggest that when the ColE1-type plasmid does not encode and express any large or disruptive foreign proteins, the copy number of 45 per cell may be the threshold at which only growth rate-dependent instability is responsible for overall plasmid instability.  相似文献   

10.
11.
Liu YP  Chang CW  Chang KY 《FEBS letters》2003,554(3):403-409
Structure-based mutagenesis was used to probe the binding surface for the activation domain of sterol-responsive element binding protein (SREBP) in the KIX domain of CREB binding protein. A set of conserved residues scattering in the alpha2 helix and the extended C-terminal region of alpha 3 helix in the KIX domain including two arginines previously characterized as a hot spot for cofactor-mediated methylation was shown to be crucial for SREBP-KIX interaction, and was not essential for phosphorylated KID recognition. Therefore, our results suggest the existence of a SREBP binding site formed by positively charged residues in the C-terminal part of the extended alpha 3 helix of the KIX domain distinct from the previously identified phosphorylated KID binding site.  相似文献   

12.
Activation of Raf-1 kinase is preceded by a translocation of Raf-1 to the plasma membrane in response to external stimuli. The membrane localization of Raf-1 is facilitated through its interaction with activated Ras and with membrane phospholipids. Previous evidence suggests that the interaction of Raf-1 with Ras is mediated by two distinct domains within the N-terminal region of Raf-1 comprising amino acid residues 51-131 and residues 139-184, the latter of which codes for a zinc containing cysteine-rich domain. The cysteine-rich domain of Raf-1 is also reported to associate with other proteins, such as 14-3-3, and for selectively binding acidic phospholipids, particularly phosphatidylserine (PS). In the present study, we have investigated the consequences of progressive deletions and point mutations within the cysteine-rich domain of Raf-1 on its ability to bind PS. A reduced interaction with PS was observed in vitro for all deletion mutants of Raf-1 expressed either as full-length proteins or as fragments containing the isolated cysteine-rich domain. In particular, the cluster of basic amino acids R143, K144, and K148 appeared to be critical for interaction with PS, since substitution of all three residues to alanine resulted in a protein that failed to interact with liposomes enriched for PS. Expression of Raf-1 in vivo, containing point mutations in the cysteine-rich domain resulted in a truncated polypeptide that lacked both the Ras and PS binding sites and could no longer translocate to the plasma membrane upon serum stimulation. These results indicate that the basic residues 143, 144 and 148 in the anterior half of Raf-1 cysteine-rich domain play a role in the association with the lipid bilayer and possibly in protein stability, therefore they might contribute to Raf-1 localization and subsequent activation.  相似文献   

13.

Background

This study was designed to determine whether the cardiac ryanodine receptor (RyR2) central domain, a region associated with catecholamine polymorphic ventricular tachycardia (CPVT) mutations, interacts with the RyR2 regulators, ATP and the FK506-binding protein 12.6 (FKBP12.6).

Methods

Wild-type (WT) RyR2 central domain constructs (G2236to G2491) and those containing the CPVT mutations P2328S and N2386I, were expressed as recombinant proteins. Folding and stability of the proteins were examined by circular dichroism (CD) spectroscopy and guanidine hydrochloride chemical denaturation.

Results

The far-UV CD spectra showed a soluble stably-folded protein with WT and mutant proteins exhibiting a similar secondary structure. Chemical denaturation analysis also confirmed a stable protein for both WT and mutant constructs with similar two-state unfolding. ATP and caffeine binding was measured by fluorescence spectroscopy. Both ATP and caffeine bound with an EC50 of ~ 200–400 μM, and the affinity was the same for WT and mutant constructs. Sequence alignment with other ATP binding proteins indicated the RyR2 central domain contains the signature of an ATP binding pocket. Interaction of the central domain with FKBP12.6 was tested by glutaraldehyde cross-linking and no association was found.

Conclusions

The RyR2 central domain, expressed as a ‘correctly’ folded recombinant protein, bound ATP in accord with bioinformatics evidence of conserved ATP binding sequence motifs. An interaction with FKBP12.6 was not evident. CPVT mutations did not disrupt the secondary structure nor binding to ATP.

General significance

Part of the RyR2 central domain CPVT mutation cluster, can be expressed independently with retention of ATP binding.  相似文献   

14.
FSP27 (CIDE-3 in humans) plays critical roles in lipid metabolism and apoptosis and is known to be involved in regulation of lipid droplet (LD) size and lipid storage and apoptotic DNA fragmentation. Given that CIDE-containing proteins including FSP27 are associated with many human diseases including cancer, aging, diabetes, and obesity, studies of FSP27 and other CIDE-containing proteins are of great biological importance. As a first step toward elucidating the molecular mechanisms of FSP27-mediated lipid droplet growth and apoptosis, we report the crystal structure of the CIDE-N domain of FSP27 at a resolution of 2.0 Å. The structure revealed a possible biologically important homo-dimeric interface similar to that formed by the hetero-dimeric complex, CAD/ICAD. Comparison with other structural homologues revealed that the PB1 domain of BEM1P, ubiquitin-like domain of BAG6 and ubiquitin are structurally similar proteins. Our homo-dimeric structure of the CIDE-N domain of FSP27 will provide important information that will enable better understanding of the function of FSP27.  相似文献   

15.
Protein synthesis in adenovirus-infected cells is regulated during the late phase of infection. The rate of initiation is maintained by a small viral RNA, virus-associated (VA) RNAI, which prevents the phosphorylation of eukaryotic initiation factor eIF-2 by a double-stranded RNA-activated protein kinase, DAI. On the basis of nuclease sensitivity analysis, a secondary-structure model was proposed for VA RNA. The model predicts a complex stem-loop structure in the central part of the molecule, the central domain, joining two duplexed stems. The central domain is required for the inhibition of DAI activation and participates in the binding of VA RNA to DAI. To assess the significance of the postulated stem-loop structure in the central domain, we generated compensating, deletion, and substitution mutations. A substitution mutation which disrupts the structure in the central domain abolishes VA RNA function in vitro and in vivo. Base-compensating mutations failed to restore the function or structure of the mutant, implying that the stem-loop structure may not exist. To confirm this observation, we tested mutants with alterations in the hypothetical loop and short stem that constitute the main features of the wild-type model structure. The upper part of the hypothetical loop could be deleted without abolishing the ability of the RNA to block DAI activation in vitro, whereas other loop mutations were deleterious for function and caused major rearrangements in the molecule. Base-compensating mutations in the stem did not restore the expected base pairing, even though the mutant RNAs were still functional in vitro. Surprisingly, a mutant with a noncompensating substitution mutation in the stem was more effective than wild-type VA RNAI in DAI inhibition assays but was ineffective in vivo. The structural and functional consequences of these mutations do not support the proposed model structure for the central domain, and we therefore suggest an alternative structure in which tertiary interactions may play a significant role in shaping the specificity of VA RNA function in the infected cell. Discrepancies between the functionality of mutant forms of VA RNA in vivo and in vitro are consistent with the existence of additional roles for VA RNA in the cell.  相似文献   

16.
Law PY  Wong YH  Loh HH 《Biopolymers》1999,51(6):440-455
The cloning of the opioid receptors allows the investigation of receptor domains involved in the peptidic and nonpeptidic ligand interaction and activation of the opioid receptors. Receptor chimera studies and mutational analysis of the primary sequences of the opioid receptors have provided insights into the structural domains required for the ligand recognition and receptor activation. In the current review, we examine the current reports on the possible involvement of extracellular domains and transmembrane domains in the high-affinity binding of peptidic and nonpeptidic ligands to the opioid receptor. The structural requirement for the receptors' selectivity toward different ligands is discussed. The receptor domains involved in the activation and subsequent cellular regulation of the receptors' activities as determined by mutational analysis will also be discussed. Finally, the validity of the conclusions based on single amino acid mutations is examined.  相似文献   

17.
We report here the first crystal structure of the N-terminal domain of an A-type Lon protease. Lon proteases are ubiquitous, multidomain, ATP-dependent enzymes with both highly specific and non-specific protein binding, unfolding, and degrading activities. We expressed and purified a stable, monomeric 119-amino acid N-terminal subdomain of the Escherichia coli A-type Lon protease and determined its crystal structure at 2.03 A (Protein Data Bank [PDB] code 2ANE). The structure was solved in two crystal forms, yielding 14 independent views. The domain exhibits a unique fold consisting primarily of three twisted beta-sheets and a single long alpha-helix. Analysis of recent PDB depositions identified a similar fold in BPP1347 (PDB code 1ZBO), a 203-amino acid protein of unknown function from Bordetella parapertussis, crystallized as part of a structural genomics effort. BPP1347 shares sequence homology with Lon N-domains and with a family of other independently expressed proteins of unknown functions. We postulate that, as is the case in Lon proteases, this structural domain represents a general protein and polypeptide interaction domain.  相似文献   

18.
The previously isolated hemiplegic, induction-negative, repression-positive mutants, H80R and Y82C, were found to be defective in the binding of arabinose. Randomization of other residues close to arabinose in the three-dimensional structure of AraC or that make strong interactions with arabinose yielded induction-negative, repression-positive mutants. The induction and repression properties of mutants obtained by randomizing individual residues of the N-terminal arm of AraC allowed identification of the domain with which that residue very likely makes its predominant interactions. Residues 8-14 of the arm appear to make their predominant interaction with the DNA-binding domain. Although the side-chain of residue 15 interacts directly with arabinose bound to the N-terminal dimerization domain, the properties of mutant F15L indicate that this mutation increases the affinity of the arm for the DNA-binding domain.  相似文献   

19.
EMSY is a recently discovered gene encoding a BRCA2-associated protein and is amplified in some sporadic breast and ovarian cancers. The EMSY sequence contains no known domain except for a conserved approximately 100 residue segment at the N terminus. This so-called ENT domain is unique in the human genome, although multiple copies are found in Arabidopsis proteins containing members of the Royal family of chromatin remodelling domains. Here, we report the crystal structure of the ENT domain of EMSY, consisting of a unique arrangement of five alpha-helices that fold into a helical bundle arrangement. The fold shares regions of structural homology with the DNA-binding domain of homeodomain proteins. The ENT domain forms a homodimer via the anti-parallel packing of the extended N-terminal alpha-helix of each molecule. It is stabilized mainly by hydrophobic residues at the dimer interface and has a dissociation constant in the low micromolar range. The dimerisation of EMSY mediated by the ENT domain could provide flexibility for it to bind two or more different substrates simultaneously.  相似文献   

20.
Discoidin domain receptor (DDR) is a cell-surface receptor tyrosine kinase activated by the binding of its discoidin (DS) domain to fibrillar collagen. Here, we have determined the NMR structure of the DS domain in DDR2 (DDR2-DS domain), and identified the binding site to fibrillar collagen by transferred cross-saturation experiments. The DDR2-DS domain structure adopts a distorted jellyroll fold, consisting of eight beta-strands. The collagen-binding site is formed at the interloop trench, consisting of charged residues surrounded by hydrophobic residues. The surface profile of the collagen-binding site suggests that the DDR2-DS domain recognizes specific sites on fibrillar collagen. This study provides a molecular basis for the collagen-binding mode of the DDR2-DS domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号