首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Adventitious roots of Primula acaulis Jacq. are characterized by broad cortex and narrow stele during the primary development. Secondary thickening of roots occurs through limited cambial growth together with secondary dilatation growth of the persisting cortex. Close to the root tip, at a distance of ca. 4 mm from the apex, Casparian bands (state I of endodermal development) within endodermal cells develop synchronously. During late, asynchronous deposition of suberin lamellae (state II of endodermal development), a positional effect is clearly expressed - suberization starts in the cells opposite to the phloem sectors of the vascular cylinder at a distance of 30 – 40 mm from the root tip. The formation of secondary walls in endodermis (state III of endodermal development) correlates with the beginning of secondary growth of the root at a distance of ca. 60 mm. Endodermis is the only cortical layer of primrose, where not only cell enlargement but also renewed cell division participate in the secondary dilatation growth. The original endodermal cells additionally divide anticlinally only once. Newly-formed radial walls acquire a typical endodermal character by forming Casparian bands and deposition of suberin lamellae. A network of endodermal Casparian bands of equal density develops during the root thickening by the tangential expansion of cells and by the formation of new radial walls with characteristic wall modifications. These data are important since little attention has been paid up till now to the density of endodermal network as a generally significant structural and functional trait of the root. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Roots of virtually all vascular plants have an endodermis with a Casparian band, and the majority of angiosperm roots tested also have an exodermis with a Casparian band. Both the endodermis and exodermis may develop suberin lamellae and thick, tertiary walls. Each of these wall modifications has its own function(s). The endodermal Casparian band prevents the unimpeded movement of apoplastic substances into the stele and also prevents the backflow of ions that have moved into the stele symplastically and then were released into its apoplast. In roots with a mature exodermis, the barrier to apoplastic inflow of ions occurs near the root surface, but prevention of backflow of ions from the stele remains a function of the endodermis. The suberin lamellae protect against pathogen invasion and possibly root drying during times of stress. Tertiary walls of the endodermis and exodermis are believed to function in mechanical support of the root, but this idea remains to be tested. During stress, root growth rates decline, and the endodermis and exodermis develop closer to the root tip. In two cases, stress is known to induce the formation of an exodermis, and in several other cases to accelerate the development of both the exodermis and endodermis. The responses of the endodermis and exodermis to drought, exposure to moist air, flooding, salinity, ion deficiency, acidity, and mechanical impedance are discussed.  相似文献   

3.
Martinka M  Dolan L  Pernas M  Abe J  Lux A 《Annals of botany》2012,110(2):361-371

Background and Aims

Apoplasmic barriers in plants fulfil important roles such as the control of apoplasmic movement of substances and the protection against invasion of pathogens. The aim of this study was to describe the development of apoplasmic barriers (Casparian bands and suberin lamellae) in endodermal cells of Arabidopsis thaliana primary root and during lateral root initiation.

Methods

Modifications of the endodermal cell walls in roots of wild-type Landsberg erecta (Ler) and mutants with defective endodermal development – scarecrow-3 (scr-3) and shortroot (shr) – of A. thaliana plants were characterized by light, fluorescent, confocal laser scanning, transmission and cryo-scanning electron microscopy.

Key Results

In wild-type plant roots Casparian bands initiate at approx. 1600 µm from the root cap junction and suberin lamellae first appear on the inner primary cell walls at approx. 7000–8000 µm from the root apex in the region of developing lateral root primordia. When a single cell replaces a pair of endodermal and cortical cells in the scr-3 mutant, Casparian band-like material is deposited ectopically at the junction between this ‘cortical’ cell and adjacent pericycle cells. Shr mutant roots with an undeveloped endodermis deposit Casparian band-like material in patches in the middle lamellae of cells of the vascular cylinder. Endodermal cells in the vicinity of developing lateral root primordia develop suberin lamellae earlier, and these are thicker, compared wih the neighbouring endodermal cells. Protruding primordia are protected by an endodermal pocket covered by suberin lamellae.

Conclusions

The data suggest that endodermal cell–cell contact is required for the spatial control of Casparian band development. Additionally, the endodermal cells form a collet (collar) of short cells covered by a thick suberin layer at the base of lateral root, which may serve as a barrier constituting a ‘safety zone’ protecting the vascular cylinder against uncontrolled movement of water, solutes or various pathogens.  相似文献   

4.
Roots of virtually all vascular plants have an endodermis with a Casparian band, and the majority of angiosperm roots tested also have an exodermis with a Casparian band. Both the endodermis and exodermis may develop suberin lamellae and thick, tertiary walls. Each of these wall modifications has its own function(s). The endodermal Casparian band prevents the unimpeded movement of apoplastic substances into the stele and also prevents the backflow of ions that have moved into the stele symplastically and then were released into its apoplast. In roots with a mature exodermis, the barrier to apoplastic inflow of ions occurs near the root surface, but prevention of backflow of ions from the stele remains a function of the endodermis. The suberin lamellae protect against pathogen invasion and possibly root drying during times of stress. Tertiary walls of the endodermis and exodermis are believed to function in mechanical support of the root, but this idea remains to be tested. During stress, root growth rates decline, and the endodermis and exodermis develop closer to the root tip. In two cases, stress is known to induce the formation of an exodermis, and in several other cases to accelerate the development of both the exodermis and endodermis. The responses of the endodermis and exodermis to drought, exposure to moist air, flooding, salinity, ion deficiency, acidity, and mechanical impedance are discussed.  相似文献   

5.
Growing tree roots are characteristically brown with white tips. The browning process, which occurs as the white region matures, has often been attributed to the deposition of suberin in various tissues. However, in pouch-grown tree seedlings of jack pine (Pinus banksiana Lamb.) and eucalyptus (Eucalyptus pilularis Sm.), browning was not linked to suberization but was caused by the deposition of condensed tannins in the walls of all cells external to the stele. Therefore, we propose using the term “tannin zone” to refer to this region of the root. Vitality tests indicated that the cells of the epidermis and cortex were alive in white regions but were dead in brown regions. Following sequential treatment with berberine hemisulfate and potassium thiocyanate, the cortical walls external to the endodermal Casparian band were full of berberine thiocyanate crystals, indicating that they were permeable to berberine. These walls should also be permeable to water and ions, which have smaller molecular dimensions than the tracer dye. Based on the anatomy and permeability of the tannin zone, we predict that its capacity for ion uptake would be reduced compared to the white zone because of a reduced absorptive plasmalemma surface area. In jack pine, some uptake could be effected by the passage cells of the endodermis. The tannin zone should be even less absorptive in eucalyptus because the exodermis remains an apoplastic barrier and the endodermis lacks passage cells. It is difficult to predict the difference between the tannin and white zones with respect to water uptake. Death of the cells external to the endodermis would reduce the resistance of the root to water movement, but deposition of tannins would increase it. The deposition of suberin lamellae in increasing numbers of endodermal cells may also retard water flow. The anatomy and physiological properties of the tannin zone are unique from those of the distal, white zone and the proximal, cork-clad zone.  相似文献   

6.
7.
Ultrastructure and development of apoplastic barriers within indeterminate root nodules formed by Vicia faba L. were examined by light and electron microscopy. The nodule outer cortex is separated from the inner cortex by a heavily suberized nodule endodermis, which matures in submeristematic regions and possesses suberin lamellae. Unsuberized passage cells are present near vascular strands, which are surrounded by a vascular endodermis attached on the inner side of the nodule endodermal cell walls. The vascular endodermis appears immediately below the meristematic apex in developmental state I (Casparian bands), gradually develops suberin lamellae, and attains developmental state II at the base of the nodule. For chemical analysis apoplastic barrier tissues were dissected after enzymatic digestion of non-impregnated tissues. Root epidermal and endodermal cell walls as well as nodule outer cortex could be isolated as pure fractions; nodule endodermal cell walls could not be separated from vascular endodermal cell walls and enclosed xylem vessels. Gas chromatography-flame ionization detection and gas chromatography-mass spectrometry were applied for quantitative and qualitative analysis of suberin and lignin in isolated cell walls of these tissues. The suberin content of isolated endodermal cell walls of nodules was approximately twice that of the root endodermal cell walls. The suberin content of the nodule outer cortex and root epidermal cell walls was less than one-tenth of that of the nodule endodermal cell wall. Substantial amounts of lignin could only be found in the nodule endodermal cell wall fraction. Organic solvent extracts of the isolated tissues revealed long-chain aliphatic acids, steroids, and triterpenoid structures of the lupeol type. Surprisingly, extract from the outer cortex consisted of 89% triterpenoids whereas extracts from all other cell wall isolates contained not more than 16% total triterpenoids. The results of ultrastructural and chemical composition are in good correspondence and underline the important role of the examined tissues as apoplastic barriers.  相似文献   

8.
植物根系最主要的作用之一是从土壤中获取养分并将其运输至地上部。水和营养物质径向穿过根的表皮、皮层、内皮层等所有外部细胞层,才能到达中柱,以供地上部代谢所需。其中,内皮层细胞在发育过程中会经历两个特殊的分化阶段,分别形成凯氏带和木栓层两种扩散屏障,二者在控制养分获取与流失方面起着重要的作用。该文就近年来国内外有关植物内皮层分化过程及其屏障功能方面的研究进展进行了综述,以期对深入探索内皮层屏障在植物生长发育和逆境适应中的作用提供参考,为植物育种工作开辟新的思路。  相似文献   

9.
The root endodermis of Clivia miniata Reg. was successfully isolated using the cell wall degrading enzymes cellulase and pectinase. The enzymes did not depolymerize those regions of the primary cell walls of anticlinal endodermal root cells where the Casparian strips were located. Since the endodermis of C. miniata roots remained in its primary developmental state over the whole root length, endodermal isolates essentially represented Casparian strips. Thus, sufficient amounts of isolated Casparian strips could be obtained to allow further detailed investigations of the isolates by microscopic, histochemical and analytical methods. Scanning electron microscopy revealed the reticular structure of the Casparian strips completely surrounding the central cylinder of the roots. Whereas in younger parts of the root only the anticlinal cell walls of the endodermis remained intact in the isolates, in older parts of the root the periclinal walls also restricted enzymatic degradation due to the deposition of lignin. Extracts of the isolates with organic solvents did not reveal any wax-like substances which might have been deposited within the cell wall forming a transport barrier, as is the case with cutin and suberin. However, several histochemical and analytical methods (elemental analysis and FTIR spectroscopy) showed that the chemical nature of the Casparian strips of C. miniata roots can definitely be a lignified cell wall. These findings are in complete agreement with studies carried out at the beginning of this century on the chemical nature of the Casparian strips of several other plant species. The implications of these results concerning apoplasmatic transport of solutes and water across Casparian strips are discussed.  相似文献   

10.
Summary Suberin lamellae and a tertiary cellulose wall in endodermal cells are deposited much closer to the tip of apple roots than of annual roots. Casparian strips and lignified thickenings differentiate in the anticlinal walls of all endodermal andphi layer cells respectively, 4–5 mm from the root tip. 16 mm from the root tip and only in the endodermis opposite the phloem poles, suberin lamellae are laid down on the inner surface of the cell walls, followed 35 mm from the root tip by an additional cellulosic layer. Coincidentally with this last development, the suberin and cellulose layers detach from the outer tangential walls and the cytoplasm fragments. 85 mm from the root tip the xylem pole endodermis (50% of the endodermis) develops similarly, but does not collapse. 100–150 mm from the root tip, the surface colour of the root changes from white to brown, a phellogen develops from the pericycle and sloughing of the cortex begins. A few secondary xylem elements are visible at this stage.Plasmodesmata traverse the suberin and cellulose layers of the endodermis, but their greater frequency in the outer tangential and radial walls of thephi layer when compared with the endodermis suggests that this layer may regulate the inflow of water and nutrients to the stele.  相似文献   

11.
The root endodermis is characterized by the Casparian strip and by the suberin lamellae, two hydrophobic barriers that restrict the free diffusion of molecules between the inner cell layers of the root and the outer environment. The presence of these barriers and the position of the endodermis between the inner and outer parts of the root require that communication between these two domains acts through the endodermis. Recent work on hormone signaling, propagation of calcium waves, and plant-fungal symbiosis has provided evidence in support of the hypothesis that the endodermis acts as a signaling center. The endodermis is also a unique mechanical barrier to organogenesis, which must be overcome through chemical and mechanical cross talk between cell layers to allow for development of new lateral organs while maintaining its barrier functions. In this review, we discuss recent findings regarding these two important aspects of the endodermis.Soil contains water and dissolved nutrients needed for plant growth, but also holds pathogens and toxic compounds that can be detrimental to the plant. The root system, which is directly in contact with soil particles, can integrate environmental cues to adjust its development in order to optimize nutrient (Péret et al., 2011; Lynch, 2013) and water uptake (Cassab et al., 2013; Lynch, 2013; Bao et al., 2014) or avoid regions of high salinity (Galvan-Ampudia et al., 2013). Once anchored in the soil, roots must deal with the constraints of their local environment and develop specific barriers to balance uptake of nutrients, water, and interactions with symbionts with protection against detrimental biotic and abiotic factors.In young roots, these barriers are mainly formed by the deposition of hydrophobic polymers such as lignin and suberin within the primary cell wall of the endodermis, which separates the pericycle from the cortex (Fig. 1), and of the exodermis, which lies between the cortex and the epidermis (Nawrath et al., 2013). Although formation of an exodermis is species dependent, the endodermis is a distinguishing figure of extant vascular plants (Raven and Edwards, 2001). Within this layer, two barriers (i.e. the Casparian strip and the suberin lamellae) are sequentially deposited and regulate water and nutrient movements between the inner and outer parts of the root. In this review, we discuss how the presence of these two major endodermal barriers affects communication between the different cell layers of the root. We focus on recent articles highlighting the importance of the endodermis in this communication during various biological and developmental processes.Open in a separate windowFigure 1.Endodermal barriers affect radial movement of water and solutes through the root. A, At the root tip, to move from the soil to the outer tissues of the root and then into the stele, water and solute molecules can use either the apoplastic (black lines), symplastic (dotted lines), or transcellular (dashed lines) pathways. B, The deposition of the Casparian strip in the endodermis prevents the free apoplastic diffusion of molecules between the outer part and the inner part of the root forcing molecules to pass through the symplast of endodermal cells. C, The deposition of suberin lamellae prevents the uptake of molecules from the apoplast directly into the endodermis forcing molecules to enter the symplast from more outer tissue layers. Suberin deposition is also likely to prevent the backflow of water and ions out of the stele. Passage cells are unsuberized and may facilitate the uptake of water and nutrients in older parts of the root. Cor, Cortex; End, endodermis; Epi, epidermis; Peri, pericycle; Vasc, vasculature. Figure redrawn and modified from Geldner et al. (2013).  相似文献   

12.
The absorption of soil water by roots allows plants to maintain their water status. At the endodermis, water transport can be affected by initial formation of a Casparian strip and further deposition of suberin lamellas and regulated by the function of aquaporins. Four Casparian strip membrane domain protein‐like (CASPL; CASPL1B1, CASPL1B2, CASPL1D1, and CASPL1D2) were previously shown to interact with PIP2;1. The present work shows that CASPL1B1, CASPL1B2, and CASPL1D2 are exclusively expressed in suberized endodermal cells, suggesting a cell‐specific role in suberization and/or water transport regulation. When compared with wild‐type plants, and by contrast to caspl1b1*caspl1b2 double loss of function, caspl1d1*caspl1d2 double mutants showed, in some control or NaCl stress experiments and not upon abscisic acid (ABA) treatment, a weak enlargement of the continuous suberization zone. None of the mutants showed root hydraulic conductivity (Lpr) phenotype, whether in control, NaCl, or ABA treatment conditions. The data suggest a slight negative role for CASPL1D1 and CASPL1D2 in suberization under control or salt stress conditions, with no major impact on whole root transport functions. At the molecular level, CASPL1B1 was able to physically interact with PIP2;1 and potentially could influence the regulation of aquaporins by acting on their phosphorylated form.  相似文献   

13.
Rice plants were grown hydroponically and roots were prepared for light and electron microscopy using standard techniques. The roots are bounded by an epidermis, exodermis, and fibrous layer. The exodermis has a suberin lamella along its inner tangential wall. The fibrous layer is composed of thick-walled lignified cells with little pitting. The cortical parenchyma is compact when young, but expands and separates to form a zone of cell walls and air spaces in a spoked arrangement. Supporting columns of living parenchyma cells are occasionally present, particularly near lateral roots. The endodermis is typical for grasses with Casparian strips, suberin lamellae, and tertiary state walls with numerous pits. The pericycle and pith become sclerified. Protoxylem elements alternate with protophloem in the young root; later, early metaxylem, late metaxylem, and metaphloem proliferate. The exodermis, fibrous layer, lacunate cortex, and endodermis appear to present a formidable barrier to radial ion movement in the mature portions of the root.  相似文献   

14.
When the basal zones of 4-d-old hydroponically grown maize ( Zea mays L. cv. Seneca Horizon) roots were exposed to moist air for 2 d, the development of both endodermis and exodermis was affected. In the endodermis, Casparian bands enlarged and more cells developed suberin lamellae. The most striking effect was seen in the exodermis. In submerged controls, only 4% of the cells had Casparian bands, whereas in root regions exposed to air, 93% developed these structures. Similarly, in submerged roots 11% of the exodermal cells had either developing or mature suberin lamellae compared with 92% in the air-treated region. The majority of epidermal cells remained alive in the zone exposed to air. Some cell death had occurred earlier in the experiment when the seedlings were transferred from vermiculite to hydroponic culture. The precise stimulus(i) associated with the air treatment which led to accelerated development in both endodermis and exodermis is as yet unknown.  相似文献   

15.
The development of tap root anatomical features was investigated in seedlings of loblolly pine (Pinus taeda L.) under both pot and pouch growth regimes. The roots possessed the three anatomical zones previously observed in jack pine (Pinus banksiana Lamb) and Eucalyptus pilularis Sm. - white, condensed tannin (CT), and cork - suggesting that this developmental sequence is preserved over species and growth conditions. Xylem development was centripetal and similar to that found earlier in P. sylvestris. Tracheids with lignified, secondary walls were detected distal to the point of endodermal Casparian band deposition. However, tests for ability to conduct fluid indicated that the protoxylem was capable of transport only proximal to the Casparian bands. Detailed examination of suberin lamella deposition in the endodermis demonstrated that passage cells were present through the white and CT zones. Progressive, centripetal cortical death in the CT zone did not include the endodermis, which remained alive until the cork layer formed, at which point the endodermis was crushed. Therefore, passage cells remain as functional portals for nutrient and water uptake in the CT zone even though the central cortex is dead. Tracer tests indicated that the endodermis provides an apoplastic barrier to tracer diffusion into the stele and that this function was taken over by the young cork layers. Results of this study point to a strong role for the endodermis in the regulation of nutrient and water uptake until the maturation of the first cork layer.  相似文献   

16.
Plants consist of distinct cell types distinguished by position, morphological features and metabolic activities. We recently developed a method to extract cell-type specific mRNA populations by immunopurification of ribosome-associated mRNAs. Microarray profiles of 21 cell-specific mRNA populations from seedling roots and shoots comprise the Arabidopsis Translatome dataset. This gene expression atlas provides a new tool for the study of cell-specific processes. Here we provide an example of how genes involved in a pathway limited to one or few cell-types can be further characterized and new candidate genes can be predicted. Cells of the root endodermis produce suberin as an inner barrier between the cortex and stele, whereas the shoot epidermal cells form cutin as a barrier to the external environment. Both polymers consist of fatty acid derivates, and share biosynthetic origins. We use the Arabidopsis Translatome dataset to demonstrate the significant cell-specific expression patterns of genes involved in those biosynthetic processes and suggest new candidate genes in the biosynthesis of suberin and cutin.Key words: cell-type specific expression, polysome immunopurification, translatome, suberin, cutin, endodermis, epidermis, arabidopsis  相似文献   

17.
The dimorphic exodermis of the root of onion (Allium cepa L.) consists of long and short cells, both of which have Casparian bands. The long cells and some of the short cells also have suberin lamellae. The proportion of short cells with lamellae increases with distance from the root tip and with plant age, but is not influenced by drought stress. In young regions of onion roots, characterized by a mature endodermis and an immature exodermis, the plasmalemma surface area that can be contacted by the soil solution is 90·9 mm2 per mm length of root, i.e. the sum of the plasmalemma surface areas of the epidermis, immature exodermis, cortical parenchyma and endodermis external to the Casparian band. This is reduced to 14·5–14·7 mm2 by the development of a Casparian band in the exodermis, which cuts off access to the cortical parenchyma, and by the development of suberin lamellae, which cut off access to the plasmalemmae of the long and some of the short cells of the exodermis. Death of all the epidermal cells, a consequence of drought, further reduces this area to 0·205–0·0183 mm2, i.e. the area of the outer tangential plasmalemmae of the short cells without suberin lamellae. In this condition, the root's capacity for ion uptake should be reduced but its capacity to resist water loss to the soil should be increased.  相似文献   

18.
The chemical nature of enzymatically isolated endodermal cell walls from Cicer arietinum L., Clivia miniata Reg. and Iris germanica L. was studied by FTIR (Fourier transform infrared) spectroscopy. Observed frequencies were assigned to functional groups present in the cell wall and relative amounts of the biopolymers suberin and lignin, cell wall carbohydrates and proteins were determined. Infrared absorption spectra indicated structural characteristics for the three different developmental states of the isolated endodermal cell wall: primary endodermis with Casparian strips (state I), secondary endodermis with suberin lamellae (state II), and tertiary endodermis with U-shaped cell wall depositions (state III). The data obtained from this study are compared with previous results obtained by chemical degradation of isolated endodermal cell walls and subsequent determination of monomeric degradation products by gas chromatography and mass spectrometry. It is concluded that FTIR spectroscopy represents a direct and nondestructive method suitable for the rapid investigation of isolated plant cell walls. Furthermore, the observation that the suberin-assigned absorption bands disappeared after transesterification of the samples with BF3-methanol confirmed that suberin is completely degraded by this treatment. Received: 20 February 1999 / Accepted: 25 May 1999  相似文献   

19.
Soybean (Glycine max L. Merr.) is a versatile and important agronomic crop grown worldwide. Each year millions of dollars of potential yield revenues are lost due to a root rot disease caused by the oomycete Phytophthora sojae (Kaufmann & Gerdemann). Since the root is the primary site of infection by this organism, we undertook an examination of the physicochemical barriers in soybean root, namely, the suberized walls of the epidermis and endodermis, to establish whether or not preformed suberin (i.e. naturally present in noninfected plants) could have a role in partial resistance to P. sojae. Herein we describe the anatomical distribution and chemical composition of soybean root suberin as well as its relationship to partial resistance to P. sojae. Soybean roots contain a state I endodermis (Casparian bands only) within the first 80 mm of the root tip, and a state II endodermis (Casparian bands and some cells with suberin lamellae) in more proximal regions. A state III endodermis (with thick, cellulosic, tertiary walls) was not present within the 200-mm-long roots examined. An exodermis was also absent, but some walls of the epidermal and neighboring cortical cells were suberized. Chemically, soybean root suberin resembles a typical suberin, and consists of waxes, fatty acids, omega-hydroxy acids, alpha,omega-diacids, primary alcohols, and guaiacyl- and syringyl-substituted phenolics. Total suberin analysis of isolated soybean epidermis/outer cortex and endodermis tissues demonstrated (1) significantly higher amounts in the endodermis compared to the epidermis/outer cortex, (2) increased amounts in the endodermis as the root matured from state I to state II, (3) increased amounts in the epidermis/outer cortex along the axis of the root, and (4) significantly higher amounts in tissues isolated from a cultivar ('Conrad') with a high degree of partial resistance to P. sojae compared with a susceptible line (OX760-6). This latter correlation was extended by an analysis of nine independent and 32 recombinant inbred lines (derived from a 'Conrad' x OX760-6 cross) ranging in partial resistance to P. sojae: Strong negative correlations (-0.89 and -0.72, respectively) were observed between the amount of the aliphatic component of root suberin and plant mortality in P. sojae-infested fields.  相似文献   

20.
植物根中质外体屏障结构和生理功能研究进展   总被引:2,自引:0,他引:2  
综述了近10年来植物根中质外体屏障结构和功能的研究进展。质外体屏障指根中内、外皮层初生壁的凯氏带,或次生壁栓质化和木质化,以及植物体表角质层组成的保护组织,能隔绝水、离子和氧气不能自由进出植物体的屏障结构,具有保护植物体的生理功能。根中凯氏带的分子发育机理研究表明根内皮层类似哺乳动物上皮组织的保护作用。植物根中质外体保证内部各种生理代谢在稳定的内部环境中进行,是植物适应各种逆境的重要屏障结构。根中质外体屏障在植物适应干旱、洪涝灾害、离子胁迫和病虫害的侵袭等方面具有重要作用,在探索适应并修复极端生态环境的植物资源中有广阔的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号