首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The 2‐[2‐(2‐phenylethenyl)cyclopent‐3‐en‐1‐yl]‐1,3‐benzothiazoles were synthesized from the reactions of 7‐benzylidenebicyclo[3.2.0]hept‐2‐en‐6‐ones with 2‐aminobenzenethiol. The antiproliferative activities of 2‐[2‐(2‐phenylethenyl)cyclopent‐3‐en‐1‐yl]‐1,3‐benzothiazoles were determined against C6 (rat brain tumor) and HeLa (human cervical carcinoma cells) cell lines using BrdU cell proliferation ELISA assay. Cisplatin and 5‐fluorouracil (5‐FU) were used as standards. The most active compound was 2‐{(1S,2S)‐2‐[(E)‐2‐(4‐methylphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against C6 cell lines with IC50=5.89 μm value (cisplatin, IC50=14.46 μm and 5‐FU, IC50=76.74 μm ). Furthermore, the most active compound was 2‐{(1S,2S)‐2‐[(E)‐2‐(2‐methoxyphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against HeLa cell lines with IC50=3.98 μm (cisplatin, IC50=37.95 μm and 5‐FU, IC50=46.32 μm ). Additionally, computational studies of related molecules were performed by using B3LYP/6‐31G+(d,p) level in the gas phase. Experimental IR and NMR data were compared with the calculated results and were found to be compatible with each other. Molecular electrostatic potential (MEP) maps of the most active 2‐{(1S,2S)‐2‐[(E)‐2‐(2‐methoxyphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against HeLa and the most active 2‐{(1S,2S)‐2‐[(E)‐2‐(4‐methylphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against C6 were investigated, aiming to determine the region that the molecule is biologically active. Biological activities of mentioned molecules were investigated with molecular docking analyses. The appropriate target protein (PDB codes: 1 M17 for the HeLa cells and 1JQH for the C6 cells) was used for 2‐{(1S,2S)‐2‐[(E)‐2‐(2‐methoxyphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole and 2‐{(1S,2S)‐2‐[(E)‐2‐(4‐methylphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole molecules exhibiting the highest biological activity against HeLa and C6 cells in the docking studies. As a result, it was determined that these molecules are the best candidates for the anticancer drug.  相似文献   

2.
A novel series of hybrid arylisoxazole‐chromenone carboxamides were designed, synthesized, and evaluated for their cholinesterase (ChE) inhibitory activity based on the modified Ellman's method. Among synthesized compounds, 5‐(3‐nitrophenyl)‐N‐{4‐[(2‐oxo‐2H‐1‐benzopyran‐7‐yl)oxy]phenyl}‐1,2‐oxazole‐3‐carboxamide depicted the most acetylcholinesterase (AChE) inhibitory activity (IC50=1.23 μm ) and 5‐(3‐chlorophenyl)‐N‐{4‐[(2‐oxo‐2H‐1‐benzopyran‐7‐yl)oxy]phenyl}‐1,2‐oxazole‐3‐carboxamide was found to be the most potent butyrylcholinesterase (BChE) inhibitor (IC50=9.71 μm ). 5‐(3‐Nitrophenyl)‐N‐{4‐[(2‐oxo‐2H‐1‐benzopyran‐7‐yl)oxy]phenyl}‐1,2‐oxazole‐3‐carboxamide was further investigated for its BACE1 inhibitory activity as well as neuroprotectivity and metal chelating ability as important factors involved in onset and progress of Alzheimer's disease. It could inhibit BACE1 by 48.46 % at 50 μm . It also showed 6.4 % protection at 25 μm and satisfactory chelating ability toward Zn2+, Fe2+, and Cu2+ ions. Docking studies of 5‐(3‐nitrophenyl)‐N‐{4‐[(2‐oxo‐2H‐1‐benzopyran‐7‐yl)oxy]phenyl}‐1,2‐oxazole‐3‐carboxamide and 5‐(3‐chlorophenyl)‐N‐{4‐[(2‐oxo‐2H‐1‐benzopyran‐7‐yl)oxy]phenyl}‐1,2‐oxazole‐3‐carboxamide confirmed desired interactions with those amino acid residues of the AChE and BChE, respectively.  相似文献   

3.
This study investigated a set of new potential antidiabetes agents. Derivatives of usnic acid were designed and synthesized. These analogs and nineteen benzylidene analogs from a previous study were evaluated for enzyme inhibition of α-glucosidase. Analogs synthesized using the Dakin oxidative method displayed stronger activity than the pristine usnic acid (IC50>200 μM). Methyl (2E,3R)-7-acetyl-4,6-dihydroxy-2-(2-methoxy-2-oxoethylidene)-3,5-dimethyl-2,3-dihydro-1-benzofuran-3-carboxylate ( 6b ) and 1,1′-(2,4,6-trihydroxy-5-methyl-1,3-phenylene)di(ethan-1-one) ( 6e ) were more potent than an acarbose positive control (IC50 93.6±0.49 μM), with IC50 values of 42.6±1.30 and 90.8±0.32 μM, respectively. Most of the compounds synthesized from the benzylidene series displayed promising activity. (9bR)-2,6-Bis[(2E)-3-(2-chlorophenyl)prop-2-enoyl]-3,7,9-trihydroxy-8,9b-dimethyldibenzo[b,d]furan-1(9bH)-one ( 1c ), (9bR)-3,7,9-trihydroxy-8,9b-dimethyl-2,6-bis[(2E)-3-phenylprop-2-enoyl]dibenzo[b,d]furan-1(9bH)-one ( 1g ), (9bR)-2-acetyl-6-[(2E)-3-(2-chlorophenyl)prop-2-enoyl]-3,7,9-trihydroxy-8,9b-dimethyldibenzo[b,d]furan-1(9bH)-one ( 2d ), (9bR)-2-acetyl-6-[(2E)-3-(3-chlorophenyl)prop-2-enoyl]-3,7,9-trihydroxy-8,9b-dimethyldibenzo[b,d]furan-1(9bH)-one ( 2e ), (6bR)-8-acetyl-3-(4-chlorophenyl)-6,9-dihydroxy-5,6b-dimethyl-2,3-dihydro-1H-[1]benzofuro[2,3-f][1]benzopyran-1,7(6bH)-dione ( 3e ), (6bR)-8-acetyl-6,9-dihydroxy-5,6b-dimethyl-3-phenyl-2,3-dihydro-1H-[1]benzofuro[2,3-f][1]benzopyran-1,7(6bH)-dione ( 3h ), (6bR)-3-(2-chlorophenyl)-8-[(2E)-3-(2-chlorophenyl)prop-2-enoyl]-6,9-dihydroxy-5,6b-dimethyl-2,3-dihydro-1H-[1]benzofuro[2,3-f][1]benzopyran-1,7(6bH)-dione ( 4b ), and (9bR)-6-acetyl-3,7,9-trihydroxy-8,9b-dimethyl-2-[(2E)-3-phenylprop-2-enoyl]dibenzo[b,d]furan-1(9bH)-one ( 5c ) were the most potent α-glucosidase enzyme inhibitors, with IC50 values of 7.0±0.24, 15.5±0.49, 7.5±0.92, 10.9±0.56, 1.5±0.62, 15.3±0.54, 19.0±1.00, and 12.3±0.53 μM, respectively.  相似文献   

4.
A series of new acetohydrazone‐containing 1,2,4‐triazolo[1,5‐a]pyrimidine derivatives were designed and synthesized for the purpose of searching for novel agrochemicals with higher fungicidal activity. Their in vitro fungicidal activities against Rhizoctonia solani were evaluated, and the most promising compound, 2‐[(5,7‐dimethyl[1,2,4]triazolo[1,5‐a]pyrimidin‐2‐yl)sulfanyl]‐2′‐[(2‐hydroxyphenyl)methylidene]acetohydrazide ( 2‐17 ), showed a lower EC50 value (5.34 μg ml?1) than that of commercial carbendazim (EC50=7.62 μg ml?1). Additionally, compound 2‐17 was also found to display broad‐spectrum fungicidal activities, and its EC50 value (4.56 μg ml?1) against Botrytis cinereapers was very similar to that of carbendazim. Qualitative structure–activity relationships (QSARs) of the synthesized compounds were also discussed.  相似文献   

5.
We synthesized new tropolone derivatives substituted with cyclic amines: piperidine, piperazine or pyrrolidine. The most active anti-helicase compound (IC50 = 3.4 μM), 3,5,7-tri[(4′-methylpiperazin-1′-yl)methyl]tropolone (2), inhibited RNA replication by 50% at 46.9 μM (EC50) and exhibited the lowest cytotoxicity (CC50) >1 mM resulting in a selectivity index (SI = CC50/EC50) >21. The most efficient replication inhibitor, 3,5,7-tri[(4′-methylpiperidin-1′-yl)methyl]tropolone (6), inhibited RNA replication with an EC50 of 32.0 μM and a SI value of 17.4, whereas 3,5,7-tri[(3′-methylpiperidin-1′-yl)methyl]tropolone (7) exhibited a slightly lower activity with an EC50 of 35.6 μM and a SI of 9.8.  相似文献   

6.
Investigation of yellow flower extract of Tagetes patula L. led to the identification of an aggregate of five phytoceramides. Among them, (2R)‐2‐hydroxy‐N‐[(2S,3S,4R,8E)‐1,3,4‐trihydroxyicos‐8‐en‐2‐yl]icosanamide, (2R)‐2‐hydroxy‐N‐[(2S,3S,4R,8E)‐1,3,4‐trihydroxyicos‐8‐en‐2‐yl]heneicosanamide, (2R)‐2‐hydroxy‐N‐[(2S,3S,4R,8E)‐1,3,4‐trihydroxyicos‐8‐en‐2‐yl]docosanamide, and (2R)‐2‐hydroxy‐N‐[(2S,3S,4R,8E)‐1,3,4‐trihydroxyicos‐8‐en‐2‐yl]tricosanamide were identified as new compounds and termed as tagetceramides, whereas (2R)‐2‐hydroxy‐N‐[(2S,3S,4R,8E)‐1,3,4‐trihydroxyicos‐8‐en‐2‐yl]tetracosanamide was a known ceramide. A steroid (β‐sitosterol glucoside) was also isolated from the subsequent fraction. The structures of these compounds were determined on the basis of spectroscopic analyses, as well as chemical method. Several other compounds were also identified by GC/MS analysis. The fractions and some commercial products, a ceramide HFA, β‐sitosterol, and stigmasterol were evaluated against an economically important cyst nematode, Heterodera zeae. Ceramide HFA showed 100 % mortality, whereas, β‐sitosterol and stigmasterol were 40–50 % active, at 1 % concentration after 24 h of exposure time, while β‐sitosterol glucoside revealed no activity against the nematode.  相似文献   

7.
Phaeanthus vietnamensis Bân is a well‐known medicinal plant which has been used for the treatment of various inflammatory diseases in traditional medicine. Using various chromatographic methods, three new compounds, (7S,8R,8′R)‐9,9′‐epoxy‐3,5,3′,5′‐tetramethoxylignan‐4,4′,7‐triol ( 1 ), 8α‐hydroxyoplop‐11(12)‐en‐14‐one ( 5 ), and (1R,2S,4S)‐4‐acetyl‐2‐[(E)‐(cinnamoyloxy)]‐1‐methylcyclohexan‐1‐ol ( 12 ) along with twelve known compounds were isolated from the leaves of Pvietnamensis. Their chemical structures were elucidated by physical and chemical methods. All compounds were evaluated for the inhibitory activities of nitric oxide production in LPS‐stimulated BV2 cells. As the results, compound 6 showed the most potent inhibitory activity on LPS‐stimulated NO production in BV2 cells with the IC50 values of 15.7 ± 1.2 μm . Compounds 2 , 7 , and 8 significantly inhibited inflammatory NO production with IC50 values ranging from 22.6 to 25.3 μm .  相似文献   

8.
The fruit of Tetradium ruticarpum is widely used in healthcare products for the improvement of blood circulation, headache, abdominal pain, amenorrhea, chill limbs, migraine, and nausea. A new quinolone, 2‐[(6Z,9Z)‐pentadeca‐6,9‐dienyl]quinolin‐4(1H)‐one ( 1 ), has been isolated from the fruits of T. ruticarpum, together with eleven known compounds. The structure of the new compound was determined by NMR and MS analyses. Rutaecarpine ( 4 ), evodiamine ( 5 ), and skimmianine ( 7 ) exhibited inhibition (IC50≤20.9 μM ) of O$\rm{{_{2}^{{^\cdot} -}}}$ generation by human neutrophils in response to N‐formyl‐L ‐methionyl‐L ‐leucyl‐L ‐phenylalanine/cytochalasin B (fMLP/CB). In addition, 1 , evocarpine ( 2 ), 4, 7 , and evodol ( 8 ) inhibited fMLP/CB‐induced elastase release with IC50 values ≤14.4 μM .  相似文献   

9.
Two new oleanane‐type saponins: β‐d ‐xylopyranosyl‐(1 → 4)‐6‐deoxy‐α‐l ‐mannopyranosyl‐(1 → 2)‐1‐O‐{(3β)‐28‐oxo‐3‐[(2‐Oβ‐d ‐xylopyranosyl‐β‐d ‐glucopyranosyl)oxy]olean‐12‐en‐28‐yl}‐β‐d ‐glucopyranose ( 1 ) and 1‐O‐[(3β)‐28‐oxo‐3‐{[β‐d ‐xylopyranosyl‐(1 → 2)‐α‐l ‐arabinopyranosyl‐(1 → 6)‐2‐acetamido‐2‐deoxy‐β‐d ‐glucopyranosyl]oxy}olean‐12‐en‐28‐yl]β‐d ‐glucopyranose ( 2 ), along with two known saponins: (3β)‐3‐[(β‐d ‐Glucopyranosyl‐(1 → 2)‐β‐d ‐glucopyranosyl)oxy]olean‐12‐en‐28‐oic acid ( 3 ) and (3β)‐3‐{[α‐l ‐arabinopyranosyl‐(1 → 6)‐[β‐d ‐glucopyranosyl‐(1 → 2)]‐β‐d ‐glucopyranosyl]oxy}olean‐12‐en‐28‐oic acid ( 4 ) were isolated from the acetone‐insoluble fraction obtained from the 80% aqueous MeOH extract of Albizia anthelmintica Brongn . leaves. Their structures were identified using different NMR experiments including: 1H‐ and 13C‐NMR, HSQC, HMBC and 1H,1H‐COSY, together with HR‐ESI‐MS/MS, as well as by acid hydrolysis. The four isolated saponins and the fractions of the extract exhibited cytotoxic activity against HepG‐2 and HCT‐116 cell lines. Compound 2 showed the most potent cytotoxic activity among the other tested compounds against the HepG2 cell line with an IC50 value of 3.60μm . Whereas, compound 1 showed the most potent cytotoxic effect with an IC50 value of 4.75μm on HCT‐116 cells.  相似文献   

10.
Four previously unreported chromones, 5‐hydroxy‐2‐(hydroxymethyl)‐8‐methoxy‐4H‐chromen‐4‐one ( 1 ), (5R,7S)‐5,7‐dihydroxy‐2‐propyl‐5,6,7,8‐tetrahydro‐4H‐chromen‐4‐one ( 2 ), (5R,7S)‐5,7‐dihydroxy‐2‐methyl‐5,6,7,8‐tetrahydro‐4H‐chromen‐4‐one ( 3 ), and (5R,7S)‐5,7‐dihydroxy‐2‐[(E)‐prop‐1‐en‐1‐yl]‐5,6,7,8‐tetrahydro‐4H‐chromen‐4‐one ( 4 ), as well as one known analogue 5‐hydroxy‐2‐methyl‐4H‐chromen‐4‐one ( 5 ) were isolated from the fermentation broth of the endophytic fungus Colletotrichum gloeosporioides derived from the mangrove Ceriops tagal. Their structures were elucidated based on extensive spectroscopic analyses. The absolute configurations of 2 – 4 were determined by comparison the experimental and calculated electronic circular dichroism (ECD) spectra. Compound 2 showed cytotoxic activity against A549 cell line with the IC50 value of 0.094 mm .  相似文献   

11.
A novel series of benzimidazole‐1,2,3‐triazole hybrids containing substituted benzyl moieties were designed, synthesized and evaluated for their inhibitory activity against mushroom tyrosinase. The results indicated that 2‐(4‐{[1‐(3,4‐dichlorobenzyl)‐1H‐1,2,3‐triazol‐4‐yl]methoxy}phenyl)‐1H‐benzimidazole ( 6g ) and 2‐(4‐{[1‐(4‐bromobenzyl)‐1H‐1,2,3‐triazol‐4‐yl]methoxy}phenyl)‐1H‐benzimidazole ( 6h ) exhibited effective inhibitory activity with IC50 values of 9.42 and 10.34 μm , respectively, comparable to that of kojic acid as the reference drug (IC50 = 9.28 μm ). Kinetic study of compound 6g confirmed mixed‐type inhibitory activity towards tyrosinase indicating that it can bind to free enzyme as well as enzyme‐substrate complex. Also, molecular docking analysis was performed to determine the binding mode of the most potent compounds ( 6g and 6h ) in the active site of tyrosinase. Consequently, 6g and 6h derivatives might serve as promising candidates in cosmetics, medicine or food industry, and development of such compounds may be of an interest.  相似文献   

12.
Phthalides and their precursors have demonstrated a large variety of biological activities. Eighteen phthalides were synthesized and tested on the stored grain pest Rhyzopertha dominica. In the screening bioassay, compounds rac‐(2R,2aS,4R,4aS,6aR,6bS,7R)‐7‐bromohexahydro‐2,4‐methano‐1,6‐dioxacyclopenta[cd]pentalen‐5(2H)‐one ( 15 ) and rac‐(3R,3aR,4R,7S,7aS)‐3‐(propan‐2‐yloxy)hexahydro‐4,7‐methano‐2‐benzofuran‐1(3H)‐one ( 17 ) showed mortality similar to the commercial insecticide, Bifenthrin® (≥90 %). The time (LT50) and dose (LD50) necessary to kill 50 % of the R. dominica population were determined for the most efficacious phthalides 15 and 17 . Compound 15 presented the lowest LD50 (1.97 μg g?1), being four times more toxic than Bifenthrin® (LD50=9.11 μg g?1). Both compounds presented an LT50 value equal to 24 h. When applied at a sublethal dose, both phthalides (especially compound 15 ), reduced the emergence of the first progeny of R. dominica. These findings highlight the potential of phthalides 15 and 17 as precursors for the development of insecticides for R. dominica control.  相似文献   

13.
A series of quinazolin-4-one Schiff bases were synthesized and tested in vitro for their cytotoxicity against two cancerous cell lines (MCF-7, Caco-2) and a human embryonic cell line (HEK-293) including their antibacterial evaluation against two Gram-positive and four Gram-negative bacterial strains. Most of the quinazoline-Schiff bases exhibited potent cytotoxicity against Caco-2. 3-[(Z)-({4-[(But-2-yn-1-yl)oxy]phenyl}methylidene)amino]-2-methylquinazolin-4(3H)-one ( 6f ) with the O-butyne functional group displayed three-fold higher cytotoxic activity (IC50=376.8 μM) as compared to 5-fluorouracil (5-FU; IC50=1086.1 μM). However, all compounds were found to be toxic to HEK-293, except for 3-[(Z)-({4-[(2,4-difluorophenyl)methoxy]phenyl}methylidene)amino]-2-methylquinazolin-4(3H)-one ( 6h ) that showed ∼three-fold lower toxicity and higher selectivity index than 5-FU. Structure–activity relationship (SAR) analysis revealed that O-alkylation generally increased the anticancer activity and selectivity of quinazoline-4-one Schiff bases toward Caco-2 cells. The fluorinated Schiff-base generally exhibited even more significant cytotoxic activity compared to their chlorine analogs. Surprisingly, none of the quinazoline-4-one Schiff bases displayed encouraging antibacterial activity against the bacterial strains investigated. Most of the compounds were predicted to show compliance with the Lipinski parameters and ADMET profiles, indicating their drug-like properties.  相似文献   

14.
Three new tirucallane triterpenoids, brumollisols A–C ( 1 – 3 , resp.), together with five known analogues, (23R,24S)‐23,24,25‐trihydroxytirucall‐7‐ene‐3,6‐dione ( 4 ), piscidinol A ( 5 ), 24‐epipiscidinol A ( 6 ), 21α‐methylmelianodiol ( 7 ), and 21β‐methylmelianodiol ( 8 ), were isolated from an EtOH extract of the stems of Brucea mollis. Their structures were elucidated by means of spectroscopic methods including 1D‐ and 2D‐NMR techniques and mass spectrometry. In the in vitro assays, compound 6 exhibited significant cytotoxic activity against A549 and BGC‐823 cancer cells with IC50 values of 1.16 and 3.01 μM , respectively. At a concentration of 10 μM , compounds 1 – 5, 7 , and 8 were found to inhibit NO production in mouse peritoneal macrophages with inhibitory ratios ranging from 39.8±7.7 to 68.2±4.5%.  相似文献   

15.
Three (9βH)‐pimaranes, 1, 2 , and 3 , and two (9βH)‐17‐norpimaranes, 4 and 5 , belonging to a rare compound class in nature, were obtained from the tubers of Icacina trichantha for the first time. Compound 1 is a new natural product, and 2 – 5 have been previously reported. The structures were elucidated based on NMR and MS data, and optical rotation values. The absolute configurations of (9βH)‐pimaranes were unambiguously established based on X‐ray crystallographic analysis. Full NMR signal assignments for the known compounds 2, 4 , and 5 , which were not available in previous publications, are also reported. All five isolates displayed cytotoxic activities on MDA‐MB‐435 cells (IC50 0.66–6.44 μM ), while 2, 3 , and 4 also exhibited cytotoxicities on HT‐29 cells (IC50 3.00–4.94 μM ).  相似文献   

16.
A series of novel 2‐oxoimidazolidine derivatives were synthesized and their antiviral activities against BK human polyomavirus type 1 (BKPyV) were evaluated in vitro. Bioassays showed that the synthesized compounds 1‐{[(4E)‐5‐(dichloromethylidene)‐2‐oxoimidazolidin‐4‐ylidene]sulfamoyl}piperidine‐4‐carboxylic acid ( 5 ) and N‐Cyclobutyl‐N′‐[(4E)‐5‐(dichloromethylidene)‐2‐oxoimidazolidin‐4‐ylidene]sulfuric diamide ( 4 ) exhibited moderate activities against BKPyV (EC50=5.4 and 5.5 μm , respectively) that are comparable to the standard drug Cidofovir. Compound 5 exhibited the same cytotoxicity in HFF cells and selectivity index (SI50) as Cidofovir. The selectivity index of compound 4 is three times less than that of Cidofovir due to the higher toxicity of this compound. Hence, these compounds may be taken as lead compound for further development of novel ant‐BKPyV agents.  相似文献   

17.
Piptadenin ( 1 ), a new triterpene along with piptadenamide ( 10 ), a new ceramide, have been isolated from the AcOEt‐soluble fraction of the MeOH extract of the stem bark of Piptadeniastrum africanum along with nine known compounds, 1‐O‐[(3β,22β)‐3,22‐dihydroxy‐28‐oxoolean‐12‐en‐28‐yl]‐β‐d ‐glucopyranose ( 2 ), 22β‐hydroxyoleanic acid ( 3 ), oleanic acid ( 4 ), lupeol ( 5 ), betulinic acid ( 6 ), 5α‐stigmasta‐7,22‐dien‐3β‐ol ( 7 ), 5α‐stigmasta‐7,22‐dien‐3‐one ( 8 ), (3β)‐stigmast‐5‐en‐3‐yl β‐d ‐glucopyranoside ( 9 ) and 2,3‐dihydroxypropyl hexacosanoate ( 11 ). Except for compound 11 , all the isolated compounds are reported for the first time from this plant. The structures of the isolated compounds were elucidated by spectroscopic data including 1D and 2D NMR. The pure compounds 1 – 11 were subjected to the pharmacological screening and compounds 2 , 5 – 7 and 9 exhibited potent urease inhibitory activity with IC50 value of 25.8, 28.9, 30.1, 31.8 and 32.7 μm , respectively, whereas compound 1 showed moderate activity (IC50 = 98.7 μm ). The potent urease inhibitory activity supplemented the previous literature reports and medicinal uses of this plant.  相似文献   

18.
Four limonoids, 1  –  4 , five alkaloids, 5  –  9 , and four phenolic compounds, 10  –  13 , were isolated from a MeOH extract of the bark of Phellodendron amurense (Rutaceae). Among these, compound 13 was new, and its structure was established as rel‐(1R,2R,3R)‐5‐hydroxy‐3‐(4‐hydroxy‐3‐methoxyphenyl)‐6‐methoxy‐1‐(methoxycarbonylmethyl)indane‐2‐carboxylic acid methyl ester (γ‐di(methyl ferulate)) based on the spectrometric analysis. Upon evaluation of compounds 1  –  13 against the melanogenesis in the B16 melanoma cells induced with α‐melanocyte‐stimulating hormone (α‐MSH), four compounds, limonin ( 1 ), noroxyhydrastinine ( 6 ), haplopine ( 7 ), and 4‐methoxy‐1‐methylquinolin‐2(1H)‐one ( 8 ), exhibited potent melanogenesis‐inhibitory activities with almost no toxicity to the cells. Western blot analysis revealed that compound 6 inhibited melanogenesis, at least in part, by inhibiting the expression of protein levels of tyrosinase, TRP‐1, and TRP‐2 in α‐MSH‐stimulated B16 melanoma cells. In addition, when compounds 1  –  13 were evaluated for their cytotoxic activities against leukemia (HL60), lung (A549), duodenum (AZ521), and breast (SK‐BR‐3) cancer cell lines, five compounds, berberine ( 5 ), 8 , canthin‐6‐one ( 9 ), α‐di‐(methyl ferulate) ( 12 ), and 13 , exhibited cytotoxicities against one or more cancer cell lines with IC50 values in the range of 2.6 – 90.0 μm . In particular, compound 5 exhibited strong cytotoxicity against AZ521 (IC50 2.6 μm ) which was superior to that of the reference cisplatin (IC50 9.5 μm ).  相似文献   

19.
This study aims to synthesize some novel pyrazolo[1,5-a]pyrimidine derivatives, and investigate their biological activities. These compounds exhibited good to high antioxidant activities [2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capabilities]. Among them, Ethyl 5-(2-ethoxy-2-oxoethyl)-7-hydroxy-2-methylpyrazolo[1,5-a]pyrimidine-3-carboxylate ( 3h ) showed the highest antioxidant activity [Half-maximal Inhibitory Concentration (IC50)=15.34 μM] compared to ascorbic acid (IC50=13.53 μM) as a standard compound. Their antibacterial activities were investigated against two Gram-positive bacteria (Bacillus subtilis, and Staphylococcus aureus) and two Gram-negative bacteria (Pseudomonas aeruginosa, and Escherichia coli). The results showed that Ethyl 7-hydroxy-5-phenylpyrazolo[1,5-a]pyrimidine-3-carboxylate ( 3i ) has the best antibacterial activity against Gram-positive B. subtilis [Zone of Inhibition (ZOI)=23.0±1.4 mm, Minimum Inhibitory Concentration (MIC)=312 μM]. Also, the cytotoxicity of these compounds was assessed against breast cancer cell lines [human breast adenocarcinoma (MCF-7)], which 7-Hydroxy-2-methyl-5-phenylpyrazolo[1,5-a]pyrimidine-3-carbonitrile ( 3f ) displayed the most cytotoxicity (IC50=55.97 μg/mL), in contrast with Lapatinib (IC50=79.38 μg/mL) as a known drug.  相似文献   

20.
Two new benzopyran derivatives, (2R,4S)‐5‐methoxy‐2‐methyl‐3,4‐dihydro‐2H‐1‐benzopyran‐4‐ol and (2S,4R,2′S,4′R)‐4,4′‐oxybis(5‐methoxy‐2‐methyl‐3,4‐dihydro‐2H‐1‐benzopyran), and a new aliphatic compound, (3E,5Z,8S,10E)‐8‐hydroxytrideca‐3,5,10,12‐tetraen‐2‐one, together with three known benzopyran derivatives, were obtained from a mangrove endophytic fungus Penicillium citrinum QJF‐22 collected in Hainan island. Their structures were determined by analysis of spectroscopic data and the relative configuration of (2R,4S)‐5‐methoxy‐2‐methyl‐3,4‐dihydro‐2H‐1‐benzopyran‐4‐ol was also confirmed by single‐crystal X‐ray diffraction. The absolute configurations of four compounds were established by comparison of ECD spectra to calculations. The configuration of (3E,5Z,8S,10E)‐8‐hydroxytrideca‐3,5,10,12‐tetraen‐2‐one was confirmed by comparison of optical value to the similar compound. The configurations of the compounds (2S,4S)‐5‐methoxy‐2‐methyl‐3,4‐dihydro‐2H‐1‐benzopyran‐4‐ol and (2R,4R)‐5‐methoxy‐2‐methyl‐3,4‐dihydro‐2H‐1‐benzopyran‐4‐ol were first determined. (3R,4S)‐3,4,8‐Trihydroxy‐3,4‐dihydronaphthalen‐1(2H)‐one exhibited moderate inhibitory effects on LPS‐induced NO production in RAW264.7 cells with IC50 of 44.7 μM, and without cytotoxicity to RAW264.7 cells within 50 μM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号