首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Prothymosin alpha (ProTα), a nuclear protein devoid of signal sequence, has been shown to possess a number of cellular functions including cell survival. Most recently, we demonstrated that ProTα is localized in the nuclei of neurons, while it is found in both nuclei and cytoplasm in the astrocytes and microglia of adult brain. However, the cell type‐specific non‐classical release of ProTα under cerebral ischemia is yet unknown. In this study, we report that ProTα is non‐classically released along with S100A13 from neurons in the hippocampus, striatum and somatosensory cortex at 3 h after cerebral ischemia, but amlexanox (an anti‐allergic compound) reversibly blocks this neuronal ProTα release. We found that none of ProTα is released from astrocytes and microglia under ischemic stress. Indeed, ProTα intensity is increased gradually in astrocytes and microglia through 24 h after the cerebral ischemia. Interestingly, Z‐Val‐Ala‐Asp fluoromethyl ketone, a caspase 3 inhibitor, pre‐treatment induces ProTα release from astrocytes in the ischemic brain, but this release is reversibly blocked by amlexanox. However, Z‐Val‐Ala‐Asp fluoromethyl ketone as well as amlexanox has no effect on ProTα distribution in microglia upon cerebral ischemia. Taken together, these results suggest that only neurons have machineries to release ProTα upon cerebral ischemic stress in vivo.  相似文献   

2.
Tissue distribution of bikunin mRNA, which encodes a Kunitz-type serine protease inhibitor of the inter-alpha-inhibitor family (IalphaI), was studied in rats and mice by the reverse-transcripsion polymerase chain reaction (RT-PCR). We found that the liver as well as other tissues, such as the kidney, testis and adrenal gland, expressed bikunin mRNA. Although signals of bikunin mRNA were faint in the whole brain of rats and mice, distinct signals were found in limited portions of rat brain, such as the hippocampus, cerebral cortex and pituitary, but undetectable in cerebellum, medulla oblongata, hypothalamus, striatum, midbrain and choroid plexus. In three distinct types of cells, such as neurons, astrocytes and meningeal cells, in primary cultures isolated from the cerebral cortex and meninges of 1-day-old newborn rats, only neurons positively expressed bikunin mRNA. These results suggest that, in addition to peripheral tissues, neurons in the hippocampus and cerebral cortex produce bikunin, suggesting a potential role of bikunin/IalphaI family in these brain regions.  相似文献   

3.
Our previous study has shown that an extremely low‐frequency magnetic field (ELF‐MF) induces nitric oxide (NO) synthesis by Ca2+‐dependent NO synthase (NOS) in rat brain. The present study was designed to confirm that ELF‐MF affects neuronal NOS (nNOS) in several brain regions and to investigate the correlation between NO and nNOS activation. The exposure of rats to a 2 mT, 60 Hz ELF‐MF for 5 days resulted in increases of NO levels in parallel with cGMP elevations in the cerebral cortex, striatum, and hippocampus. Cresyl violet staining and electron microscopic evaluation revealed that there were no significant differences in the morphology and number of neurons in the cerebral cortex, striatum, and hippocampus. Differently, the numbers of nNOS‐immunoreactive (IR) neurons were significantly increased in those cerebral areas in ELF‐MF‐exposed rats. These data suggest that the increase in NO could be due to the increased expression and activation of nNOS in cells. Based on NO signaling in physiological and pathological states, ELF‐MF created by electric power systems may induce various physiological changes in modern life. Bioelectromagnetics 33:568–574, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
目的比较研究大鼠局灶性脑缺血再灌注后神经元和星形胶质细胞的凋亡规律。方法建立大鼠大脑中动脉阻塞(middle cerebral artery occlusion,MCAO)再灌注模型,在缺血再灌注后1、3、7、14d断头取脑,应用流式细胞分选技术和原位末端标记法分别检测各组MCAO后不同时期神经元和星形胶质细胞凋亡情况。结果局灶性脑缺血再灌注后,海马区星形胶质细胞凋亡数量超过神经元,其凋亡以再灌注3d最为显著,而神经元则以7d最为显著;而皮层区神经元凋亡数量超过星形胶质细胞,两种细胞凋亡均在再灌注后7d达高峰。结论脑缺血再灌注后,皮层和海马区的神经元及星形胶质细胞均可发生凋亡,海马区星形胶质细胞比皮层区更易凋亡,而皮层区神经元比海马区更易凋亡。  相似文献   

5.
The mannose receptor, a glycoprotein expressed in a soluble and membrane form by macrophages, plays an important role in homeostasis and immunity. Using biochemical and immunohistochemical analyses, we demonstrate that this receptor, both in its soluble and membrane forms, is expressed in vivo in the post-natal murine brain and that its expression is developmentally regulated. Its expression is at its highest in the first week of life and dramatically decreases thereafter, being maintained at a low level throughout adulthood. The receptor is present in most brain regions at an early post-natal age, the site of the most intense expression being the meninges followed by the cerebral cortex, brain stem and the cerebellum. With age, expression of the mannose receptor is maintained in regions such as the cerebral cortex and the brain stem, whereas it disappears from others such as the hippocampus or the striatum. In healthy brain, no expression can be detected in oligodendrocytes, ependymal cells, endothelial cells or parenchymal microglia. The mannose receptor is expressed by perivascular macrophages/microglia and meningeal macrophages, where it might be important for the brain immune defence, and by two populations of endogenous brain cells, astrocytes and neurons. The developmentally dependent, regionally regulated expression of the mannose receptor in glial and neuronal cells strongly suggests that this receptor plays an important role in homeostasis during brain development and/or neuronal function.  相似文献   

6.
目的比较研究成年大鼠细胞周期蛋白在神经元和星形胶质细胞的表达差异。方法应用免疫荧光和激光扫描共聚焦显微镜观察成年大鼠生理状态下大脑皮层或海马CA1区神经元和星形胶质细胞细胞周期素D1、E、A、B1、(CyclinD1、E、A、B1)的表达。结果成年大鼠海马CA1区和大脑皮层的神经元有Cyclin D1、E、A和B1的表达,细胞核和细胞浆均有表达,以胞核为主;星形胶质细胞也有上述细胞周期蛋白的表达但细胞数目较少,并且表达这些指标的星形胶质细胞多聚集在海马CA1区。结论成年大鼠大脑皮层和海马区的神经元和星形胶质细胞均表达细胞周期蛋白,而其在神经元的表达较星形胶质细胞更为普遍。  相似文献   

7.
We have previously demonstrated that psychological stress (PS) can cause iron to accumulate in the cerebral cortex, hippocampus, and striatum of rats. However, why iron accumulates and in what oxidation state iron it accumulates in the brain of PS-exposed rats has not been well elucidated. In the present study, we investigated the influence of PS on the low molecular weight iron pool (LMWIP) in the rat brain. The results showed that: (1) PS significantly expanded LMWIP in the cerebral cortex, hippocampus, and striatum in rats; (2) PS caused derangement of pyramidal cells and reduced the layers of pyramidal CA1 and CA2 neurons; (3) PS exposure greatly lowered the expression of ferritin (Fn) and hephaestin (HP) in the rat cortex and hippocampus; and (4) PS decreased superoxide dismutase, glutathione peroxidase, and glutathione level and increased malondialdehyde level in the cerebral cortex, hippocampus, and striatum in rats. These results indicated that PS could expand LMWIP significantly, which may be attributed to PS-induced decrease in Fn, HP expression, and the subsequent reduction in iron storage and utilization, and expansion of LMWIP could in turn lead to aggravation of oxidative damage.  相似文献   

8.
Mu opioid receptor (MOR) is involved in various brain functions, such as pain modulation, reward processing, and addictive behaviors, and mediates the main pharmacologic effects of morphine and other opioid compounds. To gain genetic access to MOR‐expressing cells, and to study physiological and pathological roles of MOR signaling, we generated a MOR‐CreER knock‐in mouse line, in which the stop codon of the Oprm1 gene was replaced by a DNA fragment encoding a T2A peptide and tamoxifen (Tm)‐inducible Cre recombinase. We show that the MOR‐CreER allele undergoes Tm‐dependent recombination in a discrete subtype of neurons that express MOR in the adult nervous system, including the olfactory bulb, cerebral cortex, striosome compartments in the striatum, hippocampus, amygdala, thalamus, hypothalamus, interpeduncular nucleus, superior and inferior colliculi, periaqueductal gray, parabrachial nuclei, cochlear nucleus, raphe nuclei, pontine and medullary reticular formation, ambiguus nucleus, solitary nucleus, spinal cord, and dorsal root ganglia. The MOR‐CreER mouse line combined with a Cre‐dependent adeno‐associated virus vector enables robust gene manipulation in the MOR‐enriched striosomes. Furthermore, Tm treatment during prenatal development effectively induces Cre‐mediated recombination. Thus, the MOR‐CreER mouse is a powerful tool to study MOR‐expressing cells with conditional gene manipulation in developing and mature neural tissues.  相似文献   

9.
The effect of bilateral cerebral ischemia on noradrenaline, dopamine, and serotonin concentrations in six brain regions (i.e., the cerebral cortex, striatum, hippocampus, midbrain-diencephalon, cerebellum, and pons-medulla oblongata) was examined in the gerbil stroke model. The relative changes in regional cerebral blood flow after bilateral common carotid occlusion were also assessed using the radioactive microsphere technique. At 1 h after bilateral carotid occlusion, a significant decrease of monoamine concentration was observed in the cerebral cortex, striatum, hippocampus, and midbrain-diencephalon whereas no significant change was detected in the cerebellum and pons-medulla oblongata. The fall in NA content was most prominent in the cerebral cortex and hippocampus and percentage reductions of dopamine and serotonin were greatest in the striatum and cerebral cortex, respectively. These results suggest that the monoamine neurons in various brain regions might have different vulnerabilities to ischemic insult and show no evidence of transtentorial diaschisis.  相似文献   

10.
Development of cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD) is associated with failure of elimination of amyloid‐β (Aβ) from the brain along perivascular basement membranes that form the pathways for drainage of interstitial fluid and solutes from the brain. In transgenic APP mouse models of AD, the severity of cerebral amyloid angiopathy is greater in the cerebral cortex and hippocampus, intermediate in the thalamus, and least in the striatum. In this study we test the hypothesis that age‐related regional variation in (1) vascular basement membranes and (2) perivascular drainage of Aβ contribute to the different regional patterns of CAA in the mouse brain. Quantitative electron microscopy of the brains of 2‐, 7‐, and 23‐month‐old mice revealed significant age‐related thickening of capillary basement membranes in cerebral cortex, hippocampus, and thalamus, but not in the striatum. Results from Western blotting and immunocytochemistry experiments showed a significant reduction in collagen IV in the cortex and hippocampus with age and a reduction in laminin and nidogen 2 in the cortex and striatum. Injection of soluble Aβ into the hippocampus or thalamus showed an age‐related reduction in perivascular drainage from the hippocampus but not from the thalamus. The results of the study suggest that changes in vascular basement membranes and perivascular drainage with age differ between brain regions, in the mouse, in a manner that may help to explain the differential deposition of Aβ in the brain in AD and may facilitate development of improved therapeutic strategies to remove Aβ from the brain in AD.  相似文献   

11.
The effects of aging on in vivo DNA and RNA labeling and on RNA content in various brain regions of 4-, 12-, and 24-month-old rats were investigated. No difference in [methyl-14C]thymidine incorporation into DNA of cerebral cortex and cerebelllum during aging was observed.The ratio of RNA/DNA content significantly decreased from 4 to 24 months of age in cerebral cortex, cerebellum and striatum. RNA labeling decreased by 15% in cerebral cortex of 24-month-old animals while in the other brain areas examined (cerebellum, hippocampus, hypothalamus, brainstem, striatum) did not change during aging.In the cerebral cortex, the ratio of the specific radioactivity of microsomal RNA to that of nuclear RNA, determined by in vivo experiments, was not affected by the aging process. A significant decrease of total, poly(A)+ RNA and poly(A)- RNA content was observed in the same brain area of 24-month-old rats compared to 4-month-old ones. Moreover, densitometric and radioactivity patterns obtained by gel electrophoresis of labeled RNA after in vitro experiments (tissue slices of cerebral cortex) showed a different ribosomal RNA processing during aging. In vivo chronic treatment with CDP-choline was able to increase RNA labeling in corpus striatum of 24-month-old animals.  相似文献   

12.
Cell specific markers were quantified in the hippocampus, the amygdala/pyriform cortex, the frontal cerebral cortex and the striatum of the rat brain after systemic administration of kainic acid. Neuron specific enolase (NSE) reflects loss of neurons, glial fibrillary acidic protein (GFAP) reflects reactive gliosis, and brain levels of serum proteins measures blood-brain-barrier permeability. While the concentration of NSE remained unaffected in the frontal cerebral cortex and the striatum, their GFAP content increased during the first three days. In the hippocampus and amygdala, NSE levels decreased significantly. GFAP levels in the hippocampus were unaffected after one day and decreased in the amygdala/pyriform cortex. After that, GFAP increased strikingly until day 9 or, in the case of amygdala/pyriform cortex, even longer. This biphasic time course for GFAP was accompanied by a decrease of S-100 during days 1-9 followed by a significant increase at day 27 above the initial level. The regional differences in GFAP and S-100 could result from the degree of neuronal degeneration, the astrocytic receptor set-up and/or effects on the blood-brain barrier.  相似文献   

13.
There has been a dramatic expansion of the literature on RNA interference and with it, increasing interest in the potential clinical utility of targeted inhibition of gene expression and associated protein knockdown. However, a critical factor limiting the experimental and therapeutic application of RNA interference is the ability to deliver small interfering RNAs (siRNAs), particularly in the central nervous system, without complications such as toxicity and inflammation. Here we show that a single intracerebroventricular injection of Accell siRNA, a new type of naked siRNA that has been modified chemically to allow for delivery in the absence of transfection reagents, even into differentiated cells such mature neurons, leads to neuron-specific protein knockdown in the adult rat brain. Following in vivo delivery, targeted Accell siRNAs were incorporated successfully into various types of mature neurons, but not glia, for 1 week in diverse brain regions (cortex, striatum, hippocampus, midbrain, and cerebellum) with an efficacy of delivery of approximately 97%. Immunohistochemical and Western blotting analyses revealed widespread, targeted inhibition of the expression of two well-known reference proteins, cyclophilin-B (38-68% knockdown) and glyceraldehyde 3-phosphate dehydrogenase (23-34% knockdown). These findings suggest that this novel procedure is likely to be useful in experimental investigations of neuropathophysiological mechanisms.  相似文献   

14.
目的:观察NDRG2(N-myc下游调节基因2)与GFAP(胶质纤维酸性蛋白)在不同脑区星形胶质细胞的表达与分布。方法:利用免疫荧光NDRG2与GFAP双标技术以及Western Blot技术观察皮层、海马及纹状体等不同脑区星形胶质细胞NDRG2和GFAP的表达与分布。结果:免疫荧光结果显示NDRG2阳性细胞广泛而均匀地分布于不同脑区,并与GFAP存在较好的共定位;NDRG2与GFAP标记的星形胶质细胞形态不尽相同。Western Blot结果显示NDRG2在皮层中表达比海马和纹状体多,而GFAP在海马中表达比皮层和纹状体多。结论:NDRG2广泛表达于不同脑区星形胶质细胞,并于GFAP存在较好的共定位。  相似文献   

15.
Subcellular Location and Neuronal Release of Diazepam Binding Inhibitor   总被引:6,自引:0,他引:6  
Diazepam binding inhibitor (DBI), a peptide located in CNS neurons, blocks the binding of benzodiazepines and beta-carbolines to the allosteric modulatory sites of gamma-aminobutyric acid (GABAA) receptors. Subcellular fractionation studies of rat brain indicate that DBI is compartmentalized. DBI-like immunoreactivity is highly enriched in synaptosomes obtained by differential centrifugation in isotonic sucrose followed by a Percoll gradient. In synaptosomal lysate, DBI-like immunoreactivity is primarily associated with synaptic vesicles partially purified by differential centrifugation and continuous sucrose gradient. Depolarization induced by high K+ levels (50 mM) or veratridine (50 microM) released DBI stored in neurons of superfused slices of hypothalamus, hippocampus, striatum, and cerebral cortex. The high K+ level-induced release is Ca2+ dependent, and the release induced by veratridine is blocked by 1.7 microM tetrodotoxin. Depolarization released GABA and Met5-enkephalin-Arg6-Phe7 together with DBI. DBI is also released by veratridine depolarization, in a tetrodotoxin-sensitive fashion, from primary cultures of cerebral cortical neurons, but not from cortical astrocytes. Depolarization fails to release DBI from slices of liver and other peripheral organs. These data support the view that DBI may be released as a putative neuromodulatory substance from rat brain neurons.  相似文献   

16.
We previously reported a deficit of methionine enkephalin-like immunoreactivity (ME-LI), in the cerebral cortex, septal area, hippocampus, and striatum and the abnormal metabolism of opioid peptides in the hippocampus and striatum of seizure-susceptible El mice, which are involved in the pathogenesis of seizures. However, these findings suggest that the ME-LI does not necessarily reflect the bioactive methionine enkephalin (ME). Herein, we measured the biologically active peptide, ME excluding cross-reactive substances by using HPLC coupled with radioimmunoassay to clarify the abnormal function of enkephalinergic neurons in the El mouse brain. The ME content in 25-day-old El mice that had no seizures was significantly decreased in the hippocampus and septal area, as compared with corresponding regions in ddY mice (seizure-nonsusceptible; the mother strain of El). At the age of 50 days when El mice displayed abortive seizures, this content in both stimulated El[s] and nonstimulated El[ns] was significantly reduced in the septal area and cerebral cortex. At the age of 150 days when El mice exhibit tonic-clonic seizures, this content in both El[s] and El[ns] was significantly reduced in the septal area, cerebral cortex and striatum. These findings were generally compatible with our previous findings. This study further supports our hypothesis that a deficit of anticonvulsant endogenous ME, in the cerebral cortex, septal area, and hippocampus of seizuresusceptible El mice play an important role in the pathogenesis of seizures.  相似文献   

17.
神经发生是神经干细胞在适当的条件下分化成功能性整合神经元的过程,主要包括细胞的增殖、迁移、分化和存活。成年神经发生区以前脑室管膜下区(Subventricular zones,SVZ)和海马齿状回颗粒层下区(Subgranular zones,SGZ)为主,但皮质作为神经元和神经胶质细胞数量最多、分布最广,同时也是哺乳动物高度发展的脑区,是否有成年神经元新生,已成为近年来神经科学领域的研究热点[1,2]。现本文就未成熟神经元在皮质区的研究方法、分布、来源与转归、病理生理功能影响等方面探讨成年哺乳动物皮质神经发生现象。  相似文献   

18.
In the present in situ hybridization and immunocytochemical studies in the mouse central nervous system (CNS), a strong expression of spastin mRNA and protein was found in Purkinje cells and dentate nucleus in the cerebellum, in hippocampal principal cells and hilar neurons, in amygdala, substantia nigra, striatum, in the motor nuclei of the cranial nerves and in different layers of the cerebral cortex except piriform and entorhinal cortices where only neurons in layer II were strongly stained. Spastin protein and mRNA were weakly expressed in most of the thalamic nuclei. In selected human brain regions such as the cerebral cortex, cerebellum, hippocampus, amygdala, substania nigra and striatum, similar results were obtained. Electron microscopy showed spastin immunopositive staining in the cytoplasma, dendrites, axon terminals and nucleus. In the mouse pilocarpine model of status epilepticus and subsequent temporal lobe epilepsy, spastin expression disappeared in hilar neurons as early as at 2h during pilocarpine induced status epilepticus, and never recovered. At 7 days and 2 months after pilocarpine induced status epilepticus, spastin expression was down-regulated in granule cells in the dentate gyrus, but induced expression was found in reactive astrocytes. The demonstration of widespread distribution of spastin in functionally different brain regions in the present study may provide neuroanatomical basis to explain why different neurological, psychological disorders and cognitive impairment occur in patients with spastin mutation. Down-regulation or loss of spastin expression in hilar neurons may be related to their degeneration and may therefore initiate epileptogenetic events, leading to temporal lobe epilepsy.  相似文献   

19.
Metabotrophic glutamate receptors (mGluRs) modulate cellular activities involved in the processes of differentiation and degeneration. In this study, we have analysed the expression pattern of group-I metabotropic glutamate receptor (mGlu-5) in cerebral cortex, corpus striatum, brainstem and hippocampus of streptozotocin induced and insulin treated diabetic rats (D+I) as a function of age. Also, the functional role of glutamate receptors in intra cellular calcium release from the pancreatic islets was studied in vitro. The gene expression studies showed that mGlu-5 mRNA in the cerebral cortex increased siginficantly in 7 weeks old diabetic rats whereas decreased expression was observed in brainstem, corpus striatum and hippocampus when compared to control. 90 weeks old diabetic rats showed decreased expression in cerebral cortex, corpus striatum and hippocampus whereas in brainstem the expression increased significantly compared to their respective controls. In 7 weeks old D+I group, mGlu-5 mRNA expression was significantly decreased in cerebral cortex and corpus striatum whereas the expression increased significantly in brainstem and hippocampus. 90 weeks old D+I group showed an increased expression in cerebral cortex, while it was decreased significantly in corpus striatum, brainstem and hippocampus compared to their respective controls. In vitro studies showed that glutamate at lower concentration (10-7 M) stimulated calcium release from the pancreatic islets. Our results suggest that mGlu-5 receptors have differential expression in brain regions of diabetes and D+I groups as a function of age. This will have clinical significance in management of degeneration in brain function and memory enhancement through glutamate receptors. Also, the regulatory role of glutamate receptors in calcium release has immense therapeutic application in insulin secretion and function.  相似文献   

20.
Abstract: Patients with cancer cachexia often suffer from psychiatric disorders. In the present study, we investigated the changes in monoaminergic activities in the brain in tumor-bearing mice with reference to the development of cachexia. Two clones, clone-5 (noncachectic clone) and clone-20 (cachectic clone), derived from the murine Colon-26 adenocarcinoma cell line (Nippon Roche Research Center), were inoculated subcutaneously at 1 × 106 cells/0.2 ml into the right lower back of BALB/c mice. In clone-20 mice, body weight and locomotor activity decreased significantly 10–15 days after tumor inoculation. The levels of noradrenaline, dopamine, and 3,4-dihydroxyphenylacetic acid showed no significant change among the three groups. The noradrenaline turnover rate in clone-20 mice was increased in cerebral cortex, hypothalamus, and midbrain. The 5-hydroxytryptamine turnover rate in clone-20 mice was increased in hippocampus, cerebral cortex, midbrain, and pons-medulla oblongata. In contrast, the dopamine turnover rate in clone-20 mice was decreased markedly in hippocampus, cerebral cortex, striatum, hypothalamus, and cerebellum. There was no significant change in amine turnover between control and clone-5 mice except for dopamine in hippocampus, cerebral cortex, and striatum and 5-hydroxytryptamine in striatum. No significant change in the levels of amino acids in the brain was observed among the three groups of mice. It is concluded that some of the psychiatric disorders from which cancer cachectic patients suffer might be ascribable to changes in monoaminergic activities in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号