首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
AINTEGUMENTA (ANT) was previously shown to be involved in floral organ initiation and growth in Arabidopsis. ant flowers have fewer and smaller floral organs and possess ovules that lack integuments and a functional embryo sac. The present work shows that young floral meristems of ant plants are smaller than those in wild type. Failure to initiate the full number of organ primordia in ant flowers may result from insufficient numbers of meristematic cells. The decreased size of ant floral organs appears to be a consequence of decreased cell division within organ primordia. Ectopic expression of ANT under the control of the constitutive 35S promoter results in the development of larger floral organs. The number and shape of these organs is not altered and the size of vegetative organs is normal. Microscopic and molecular analyses indicate that the increased size of 35S::ANT sepals is the result of increased cell division, whereas the increased sizes of 35S::ANT petals, stamens, and carpels are primarily attributable to increased cell expansion. In addition, 35S::ANT ovules often exhibit increased growth of the nucellus and the funiculus. These results suggest that ANT stimulates cell growth in floral organs.  相似文献   

9.
Phylogeny and domain evolution in the APETALA2-like gene family   总被引:5,自引:0,他引:5  
The combined processes of gene duplication, nucleotide substitution, domain duplication, and intron/exon shuffling can generate a complex set of related genes that may differ substantially in their expression patterns and functions. The APETALA2-like (AP2-like) gene family exhibits patterns of both gene and domain duplication, coupled with changes in sequence, exon arrangement, and expression. In angiosperms, these genes perform an array of functions including the establishment of the floral meristem, the specification of floral organ identity, the regulation of floral homeotic gene expression, the regulation of ovule development, and the growth of floral organs. To determine patterns of gene diversification, we conducted a series of broad phylogenetic analyses of AP2-like sequences from green plants. These studies indicate that the AP2 domain was duplicated prior to the divergence of the two major lineages of AP2-like genes, euAP2 and AINTEGUMENTA (ANT). Structural features of the AP2-like genes as well as phylogenetic analyses of nucleotide and amino acid (aa) sequences of the AP2-like gene family support the presence of the two major lineages. The ANT lineage is supported by a 10-aa insertion in the AP2-R1 domain and a 1-aa insertion in the AP2-R2 domain, relative to all other members of the AP2-like family. MicroRNA172-binding sequences, the function of which has been studied in some of the AP2-like genes in Arabidopsis, are restricted to the euAP2 lineage. Within the ANT lineage, the euANT lineage is characterized by four conserved motifs: one in the 10-aa insertion in the AP2-R1 domain (euANT1) and three in the predomain region (euANT2, euANT3, and euANT4). Our expression studies show that the euAP2 homologue from Amborella trichopoda, the putative sister to all other angiosperms, is expressed in all floral organs as well as leaves.  相似文献   

10.
11.
12.
13.
Recent studies have shown that F‐box proteins constitute a large family in eukaryotes, and play pivotal roles in regulating various developmental processes in plants. However, their functions in monocots are still obscure. In this study, we characterized a recessive mutant dwarf and deformed flower 1‐1 (ddf1‐1) in Oryza sativa (rice). The mutant is abnormal in both vegetative and reproductive development, with significant size reduction in all organs except the spikelet. DDF1 controls organ size by regulating both cell division and cell expansion. In the ddf1‐1 spikelet, the specification of floral organs in whorls 2 and 3 is altered, with most lodicules and stamens being transformed into glume‐like organs and pistil‐like organs, respectively, but the specification of lemma/palea and pistil in whorls 1 and 4 is not affected. DDF1 encodes an F‐box protein anchored in the nucleolus, and is expressed in almost all vegetative and reproductive tissues. Consistent with the mutant floral phenotype, DDF1 positively regulates B‐class genes OsMADS4 and OsMADS16, and negatively regulates pistil specification gene DL. In addition, DDF1 also negatively regulates the Arabidopsis LFY ortholog APO2, implying a functional connection between DDF1 and APO2. Collectively, these results revealed that DDF1, as a newly identified F‐box gene, is a crucial genetic factor with pleiotropic functions for both vegetative growth and floral organ specification in rice. These findings provide additional insights into the molecular mechanism controlling monocot vegetative and reproductive development.  相似文献   

14.
15.
The number of cells in an organ is a major factor that specifies its size. However, the genetic basis of cell number determination is not well understood. To obtain insight into this genetic basis, three grandifolia-D ( gra-D ) mutants of Arabidopsis thaliana were characterized that developed huge leaves with two to three times more cells than the wild-type. Genetic and microarray analyses showed that a large segmental duplication had occurred in all the gra-D mutants, consisting of the lower part of chromosome 4. In the duplications, genes were found that encode AINTEGUMENTA (ANT), a factor that extends the duration of cell proliferation, and CYCD3;1, a G1/S cyclin. The expression levels of both genes increased and the duration of cell proliferation in the leaf primordia was extended in the gra-D mutants. Data obtained by RNAi-mediated knockdown of ANT expression suggested that ANT contributed to the huge-leaf phenotype, but that it was not the sole factor. Introduction of an extra genomic copy of CYCD3;1 into the wild-type partially mimicked the gra-D phenotype. Furthermore, combined elevated expression of ANT and CYCD3;1 enhanced cell proliferation in a cumulative fashion. These results indicate that the duration of cell proliferation in leaves is determined in part by the interaction of ANT and CYCD3;1 , and also demonstrate the potential usefulness of duplication mutants in the elucidation of genetic relationships that are difficult to uncover by standard single-gene mutations or gain-of-function analysis. We also discuss the potential effect of chromosomal duplication on evolution of organ size.  相似文献   

16.
17.
18.
19.
Initiation of axillary and floral meristems in Arabidopsis   总被引:14,自引:0,他引:14  
Shoot development is reiterative: shoot apical meristems (SAMs) give rise to branches made of repeating leaf and stem units with new SAMs in turn formed in the axils of the leaves. Thus, new axes of growth are established on preexisting axes. Here we describe the formation of axillary meristems and floral meristems in Arabidopsis by monitoring the expression of the SHOOT MERISTEMLESS and AINTEGUMENTA genes. Expression of these genes is associated with SAMs and organ primordia, respectively. Four stages of axillary meristem development and previously undefined substages of floral meristem development are described. We find parallels between the development of axillary meristems and the development of floral meristems. Although Arabidopsis flowers develop in the apparent absence of a subtending leaf, the expression patterns of AINTEGUMENTA and SHOOT MERISTEMLESS RNAs during flower development suggest the presence of a highly reduced, "cryptic" leaf subtending the flower in Arabidopsis. We hypothesize that the STM-negative region that develops on the flanks of the inflorescence meristem is a bract primordium and that the floral meristem proper develops in the "axil" of this bract primordium. The bract primordium, although initially specified, becomes repressed in its growth.  相似文献   

20.
The Arabidopsis (Arabidopsis thaliana) gynoecium, the female floral reproductive structure, requires the action of genes that specify positional identities during its development to generate an organ competent for seed development and dispersal. Early in gynoecial development, patterning events divide the primordium into distinct domains that will give rise to specific tissues and organs. The medial domain of the gynoecium gives rise to the ovules, and several other structures critical for reproductive competence. Here we report a synergistic genetic interaction between seuss and aintegumenta mutants resulting in a complete loss of ovule initiation and a reduction of the structures derived from the medial domain. We show that patterning events are disrupted early in the development of the seuss aintegumenta gynoecia and we identify PHABULOSA (PHB), REVOLUTA, and CRABS CLAW (CRC) as potential downstream targets of SEUSS (SEU) and AINTEGUMENTA (ANT) regulation. Our genetic data suggest that SEU additionally functions in pathways that are partially redundant and parallel to PHB, CRC, and ANT. Thus, SEU and ANT are part of a complex and robust molecular system that coordinates patterning cues and cellular proliferation along the three positional axes of the developing gynoecium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号