首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 161 毫秒
1.
Retrograde transport pathways from early/recycling endosomes to the trans-Golgi network (TGN) are poorly defined. We have investigated the role of TGN golgins in retrograde trafficking. Of the four TGN golgins, p230/golgin-245, golgin-97, GCC185, and GCC88, we show that GCC88 defines a retrograde transport pathway from early endosomes to the TGN. Depletion of GCC88 in HeLa cells by interference RNA resulted in a block in plasma membrane-TGN recycling of two cargo proteins, TGN38 and a CD8 mannose-6-phosphate receptor cytoplasmic tail fusion protein. In GCC88-depleted cells, cargo recycling was blocked in the early endosome. Depletion of GCC88 dramatically altered the TGN localization of the t-SNARE syntaxin 6, a syntaxin required for endosome to TGN transport. Furthermore, the transport block in GCC88-depleted cells was rescued by syntaxin 6 overexpression. Internalized Shiga toxin was efficiently transported from endosomes to the Golgi of GCC88-depleted cells, indicating that Shiga toxin and TGN38 are internalized by distinct retrograde transport pathways. These findings have identified an essential role for GCC88 in the localization of TGN fusion machinery for transport from early endosomes to the TGN, and they have allowed the identification of a retrograde pathway which differentially selects TGN38 and mannose-6-phosphate receptor from Shiga toxin.  相似文献   

2.
Phosphorothioate (PS) modified antisense oligonucleotide (ASO) drugs can trigger RNase H1 cleavage of cellular target RNAs to modulate gene expression. Internalized PS-ASOs must be released from membraned endosomal organelles, a rate limiting step that is not well understood. Recently we found that M6PR transport between Golgi and late endosomes facilitates productive release of PS-ASOs, raising the possibility that Golgi-mediated transport may play important roles in PS-ASO activity. Here we further evaluated the involvement of Golgi in PS-ASO activity by examining additional Golgi proteins. Reduction of certain Golgi proteins, including Golgi-58K, GCC1 and TGN46, decreased PS-ASO activity, without substantial effects on Golgi integrity. Upon PS-ASO cellular uptake, Golgi-58K was recruited to late endosomes where it colocalized with PS-ASOs. Reduction of Golgi-58K caused slower PS-ASO release from late endosomes, decreased GCC2 late endosome relocalization, and led to slower retrograde transport of M6PR from late endosomes to trans-Golgi. Late endosome relocalization of Golgi-58K requires Hsc70, and is most likely mediated by PS-ASO–protein interactions. Together, these results suggest a novel function of Golgi-58K in mediating Golgi-endosome transport and indicate that the Golgi apparatus plays an important role in endosomal release of PS-ASO, ensuring antisense activity.  相似文献   

3.
Four mammalian golgins are specifically targeted to the trans-Golgi network (TGN) membranes via their C-terminal GRIP domains. The TGN golgins, p230/golgin-245 and golgin-97, are recruited via the GTPase Arl1, whereas the TGN golgin GCC185 is recruited independently of Arl1. Here we show that GCC185 is localized to a region of the TGN distinct from Arl1 and plays an essential role in maintaining the organization of the Golgi apparatus. Using both small interfering RNA (siRNA) and microRNA (miRNA), we show that depletion of GCC185 in HeLa cells frequently resulted in fragmentation of the Golgi apparatus. Golgi apparatus fragments were dispersed throughout the cytoplasm and contained both cis and trans markers. Trafficking of anterograde and retrograde cargo was analysed over an extended period following GCC185 depletion. Early effects of GCC185 depletion included a perturbation in the distribution of the mannose-6-phosphate receptor and a block in shiga toxin trafficking to the Golgi apparatus, which occurred in parallel with the fragmentation of the Golgi ribbon. Internalized shiga toxin accumulated in Rab11-positive endosomes, indicating GCC185 is essential for transport between the recycling endosome and the TGN. In contrast, the plasma membrane-TGN recycling protein TGN38 was efficiently transported into GCC185-depleted Golgi apparatus fragments throughout a 96-h period, and anterograde transport of E-cadherin was functional until a late stage of GCC185 depletion. This study demonstrated (i) a more effective long-term depletion of GCC185 using miRNA than siRNA and (ii) a dual role for the GCC185 golgin in the regulation of endosome-to-TGN membrane transport and in the organization of the Golgi apparatus.  相似文献   

4.
Protein recycling is an important cellular process required for cell homeostasis. Results from prior studies have shown that vacuolar sorting protein‐1 (Vps1), a dynamin homolog in yeast, is implicated in protein recycling from the endosome to the trans‐Golgi Network (TGN). However, the function of Vps1 in relation to Ypt6, a master GTPase in the recycling pathway, remains unknown. The present study reveals that Vps1 physically interacts with Ypt6 if at least one of them is full‐length. We found that overexpression of full‐length Vps1, but not GTP hydrolysis‐defective Vps1 mutants, is sufficient to rescue abnormal phenotypes of Snc1 distribution provoked by the loss of Ypt6, and vice versa. This suggests that Vps1 and Ypt6 function in parallel pathways instead of in a sequential pathway and that GTP binding/hydrolysis of Vps1 is required for proper traffic of Snc1 toward the TGN. Additionally, we identified two novel Vps1‐binding partners, Vti1 and Snc2, which function for the endosome‐derived vesicle fusion at the TGN. Taken together, the present study demonstrates that Vps1 plays a role in later stages of the endosome‐to‐TGN traffic.  相似文献   

5.
Mannose 6-phosphate receptors (MPRs) deliver newly synthesized lysosomal enzymes to endosomes and then recycle to the Golgi. MPR recycling requires Rab9 GTPase; Rab9 recruits the cytosolic adaptor TIP47 and enhances its ability to bind to MPR cytoplasmic domains during transport vesicle formation. Rab9-bearing vesicles then fuse with the trans-Golgi network (TGN) in living cells, but nothing is known about how these vesicles identify and dock with their target. We show here that GCC185, a member of the Golgin family of putative tethering proteins, is a Rab9 effector that is required for MPR recycling from endosomes to the TGN in living cells, and in vitro. GCC185 does not rely on Rab9 for its TGN localization; depletion of GCC185 slightly alters the Golgi ribbon but does not interfere with Golgi function. Loss of GCC185 triggers enhanced degradation of mannose 6-phosphate receptors and enhanced secretion of hexosaminidase. These data assign a specific pathway to an interesting, TGN-localized protein and suggest that GCC185 may participate in the docking of late endosome-derived, Rab9-bearing transport vesicles at the TGN.  相似文献   

6.
The GRIP domain is a targeting sequence found in a family of coiled-coil peripheral Golgi proteins. Previously we demonstrated that the GRIP domain of p230/golgin245 is specifically recruited to tubulovesicular structures of the trans-Golgi network (TGN). Here we have characterized two novel Golgi proteins with functional GRIP domains, designated GCC88 and GCC185. GCC88 cDNA encodes a protein of 88 kDa, and GCC185 cDNA encodes a protein of 185 kDa. Both molecules are brefeldin A-sensitive peripheral membrane proteins and are predicted to have extensive coiled-coil regions with the GRIP domain at the C terminus. By immunofluorescence and immunoelectron microscopy GCC88 and GCC185, and the GRIP protein golgin97, are all localized to the TGN of HeLa cells. Overexpression of full-length GCC88 leads to the formation of large electron dense structures that extend from the trans-Golgi. These de novo structures contain GCC88 and co-stain for the TGN markers syntaxin 6 and TGN38 but not for alpha2,6-sialyltransferase, beta-COP, or cis-Golgi GM130. The formation of these abnormal structures requires the N-terminal domain of GCC88. TGN38, which recycles between the TGN and plasma membrane, was transported into and out of the GCC88 decorated structures. These data introduce two new GRIP domain proteins and implicate a role for GCC88 in the organization of a specific TGN subcompartment involved with membrane transport.  相似文献   

7.
Simkania negevensis is an obligate intracellular bacterial pathogen that grows in amoeba or human cells within a membrane‐bound vacuole forming endoplasmic reticulum (ER) contact sites. The membrane of this Simkania‐containing vacuole (SnCV) is a critical host–pathogen interface whose origin and molecular interactions with cellular organelles remain poorly defined. We performed proteomic analysis of purified ER‐SnCV‐membranes using label free LC‐MS2 to define the pathogen‐containing organelle composition. Of the 1,178 proteins of human and 302 proteins of Simkania origin identified by this strategy, 51 host cell proteins were enriched or depleted by infection and 57 proteins were associated with host endosomal transport pathways. Chemical inhibitors that selectively interfere with trafficking at the early endosome‐to‐trans‐Golgi network (TGN) interface (retrograde transport) affected SnCV formation, morphology and lipid transport. Our data demonstrate that Simkania exploits early endosome‐to‐TGN transport for nutrient acquisition and growth.  相似文献   

8.
S A Wood  J E Park  W J Brown 《Cell》1991,67(3):591-600
Brefeldin A (BFA) is a fungal metabolite that causes a redistribution of the stacked cisternae of the Golgi complex into the endoplasmic reticulum by inhibiting anterograde transport. We report that BFA also causes membrane tubules derived from the trans-Golgi network (TGN) to fuse with early endosomes. In the presence of BFA, a mannose-6-phosphate receptor (M6PR)-enriched tubular network rapidly forms from the TGN, not from the prelysosomal compartment, and can be labeled with endocytic tracers after only 5 min of uptake at either 20 degrees C or 37 degrees C, indicating that it is also functionally an early endosome. Formation of the TGN-early endosome network is microtubule dependent and may involve modification of membrane processes affected by microtubule-associated motor activity. Concomitant with the formation of the fused TGN-early endosome network, there is a greater than 5-fold increase in cell surface M6PRs. The data suggest that BFA has revealed a membrane transport cycle between the TGN and early endosomes, perhaps used for the secretion or delivery of molecules to the cell surface.  相似文献   

9.
Rab9 is a small GTPase that localizes to the trans‐Golgi Network (TGN) and late endosomes. Its main function has long been connected to the recycling of mannose‐6‐phosphate receptors (MPRs). However, recent studies link Rab9 also to autophagy and lysosome biogenesis. In this paper, using confocal imaging, we characterize for the first time the live dynamics of the Rab9 constitutively active mutant, Rab9Q66L. We find that it localizes predominantly to late endosomes and that its expression in HeLa cells disperses TGN46 and cation‐independent (CI‐MPR) away from the Golgi yet, has no effect on the retrograde transport of CI‐MPR. We also show that CI‐MPR and Rab9 enter the endosomal pathway together at the transition stage between early, Rab5‐positive, and late, Rab7a‐positive, endosomes. CI‐MPR localizes transiently to separate domains on these endosomes, where vesicles carrying CI‐MPR attach and detach within seconds. Taken together, our results demonstrate that Rab9 mediates the delivery of CI‐MPR to the endosomal pathway, entering the maturing endosome at the early‐to‐late transition.   相似文献   

10.
The endosomal deubiquitylase USP8 has profound effects on endosomal morphology and organisation. Previous reports have proposed both positive (EGFR, MET) and negative roles in the down‐regulation of receptors (Frizzled, Smoothened). Here we report an additional influence of USP8 on the retromer‐dependent shuttling of ci‐M6PR between the sorting endosome and biosynthetic pathway. Depletion of USP8 leads to a steady state redistribution of ci‐M6PR from the Trans‐Golgi Network (TGN) to endosomal compartments. Consequently we observe a defect in sorting of lysosomal enzymes, evidenced by increased levels of unprocessed Cathepsin D, which is secreted into the medium. The normal distribution of receptor can be restored by expression of siRNA‐resistant USP8 but not by a catalytically inactive mutant or a truncated form, lacking a MIT domain required for endosomal localisation. We suggest that effects of USP8 depletion may reflect the loss of ESCRT‐0 components which associate with retromer components Vps35 and SNX1, whilst failure to efficiently deliver lysosomal enzymes may also contribute to the observed block in receptor tyrosine kinase degradation.   相似文献   

11.
Lysosomes serve key degradative functions for the turnover of membrane lipids and protein components. Its biogenesis is principally dependent on exocytic traffic from the late endosome via the trans‐Golgi network, and it also receives cargo to be degraded from the endocytic pathway. Membrane trafficking to the late endosome–lysosome is tightly regulated to maintain the amplitude of signalling events and cellular homeostasis. Key coordinators of lysosomal traffic include members of the Rab small GTPase family. Amongst these, Rab7, Rab9 and the more recently studied Rab22B/31 have all been reported to regulate membrane trafficking processed at the late endosome–lysosome system. We discuss what is known about the roles of these Rab proteins and their interacting partners on the regulation of traffic of important receptor proteins such as the epidermal growth factor receptor (EGFR) and the mannose 6‐phosphate receptor (M6PR), in association with the late endosome–lysosome system. Better knowledge of EGFR and M6PR traffic in this regard may aid in understanding the pathological processes, such as oncogenic transformations associated with these receptors. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Retrograde trafficking transports proteins, lipids and toxins from the plasma membrane to the Golgi and endoplasmic reticulum (ER). To reach the Golgi, these cargos must transit the endosomal system, consisting of early endosomes (EE), recycling endosomes, late endosomes and lysosomes. All cargos pass through EE, but may take different routes to the Golgi. Retromer-dependent cargos bypass the late endosomes to reach the Golgi. We compared how two very different retromer-dependent cargos negotiate the endosomal sorting system. Shiga toxin B, bound to the external layer of the plasma membrane, and chimeric CD8-mannose-6-phosphate receptor (CI-M6PR), which is anchored via a transmembrane domain. Both appear to pass through the recycling endosome. Ablation of the recycling endosome diverted both of these cargos to an aberrant compartment and prevented them from reaching the Golgi. Once in the recycling endosome, Shiga toxin required EHD1 to traffic to the TGN, while the CI-M6PR was not significantly dependent on EHD1. Knockdown of retromer components left cargo in the EE, suggesting that it is required for retrograde exit from this compartment. This work establishes the recycling endosome as a required step in retrograde traffic of at least these two retromer-dependent cargos. Along this pathway, retromer is associated with EE to recycling endosome traffic, while EHD1 is associated with recycling endosome to TGN traffic of STxB.  相似文献   

13.
β-Site APP-cleaving enzyme (BACE1) cleaves the amyloid precursor protein (APP) at the β-secretase site to initiate the production of Aβ peptides. These accumulate to form toxic oligomers and the amyloid plaques associated with Alzheimer's disease (AD). An increase of BACE1 levels in the brain of AD patients has been mostly attributed to alterations of its intracellular trafficking. Golgi-associated adaptor proteins, GGA sort BACE1 for export to the endosomal compartment, which is the major cellular site of BACE1 activity. BACE1 undergoes recycling between endosome, trans-Golgi network (TGN), and the plasma membrane, from where it is endocytosed and either further recycled or retrieved to the endosome. Phosphorylation of Ser498 facilitates BACE1 recognition by GGA1 for retrieval to the endosome. Ubiquitination of BACE1 C-terminal Lys501 signals GGA3 for exporting BACE1 to the lysosome for degradation. In addition, the retromer mediates the retrograde transport of BACE1 from endosome to TGN. Decreased levels of GGA proteins and increased levels of retromer-associated sortilin have been associated with AD. Both would promote the co-localization of BACE1 and the amyloid precursor protein in the TGN and endosomes. Decreased levels of GGA3 also impair BACE1 degradation. Further understanding of BACE1 trafficking and its regulation may offer new therapeutic approaches for the treatment of Alzheimer's disease.  相似文献   

14.
Mannose 6-phosphate receptors (MPRs) are transported from endosomes to the Golgi after delivering lysosomal enzymes to the endocytic pathway. This process requires Rab9 guanosine triphosphatase (GTPase) and the putative tether GCC185. We show in human cells that a soluble NSF attachment protein receptor (SNARE) complex comprised of syntaxin 10 (STX10), STX16, Vti1a, and VAMP3 is required for this MPR transport but not for the STX6-dependent transport of TGN46 or cholera toxin from early endosomes to the Golgi. Depletion of STX10 leads to MPR missorting and hypersecretion of hexosaminidase. Mouse and rat cells lack STX10 and, thus, must use a different target membrane SNARE for this process. GCC185 binds directly to STX16 and is competed by Rab6. These data support a model in which the GCC185 tether helps Rab9-bearing transport vesicles deliver their cargo to the trans-Golgi and suggest that Rab GTPases can regulate SNARE–tether interactions. Importantly, our data provide a clear molecular distinction between the transport of MPRs and TGN46 to the trans-Golgi.  相似文献   

15.
Vesicle-mediated transport between the trans-Golgi network (TGN) and the late endosome/prevacuolar compartment (PVC) is an essential step in lysosomal/vacuolar biogenesis. In addition, localization of integral membrane proteins to the TGN requires continual cycles of vesicular transport between the TGN and endosomal compartments. Genetic and biochemical analyses in yeast have identified a variety of proteins required for TGN-to-PVC transport. However, the precise mechanisms of vesicle formation, transport, and fusion have not been fully elucidated. To study the steps of TGN-to-PVC transport in mechanistic detail, we have developed a cell-free assay to monitor delivery of the processing protease Kex2p from the TGN to PVC compartments containing a Kex2p substrate. Transport is time-, temperature-, and ATP-dependent and requires the t-SNARE Pep12p. Moreover, cell-free delivery of Kex2p to the PVC results in the co-integration of Kex2p into PVC membranes containing the Kex2p substrate as determined by co-immunoisolation of Kex2p and the substrate using antibody against the Kex2p cytosolic tail. This work represents the first cell-free reconstitution and biochemical analysis of the essential vacuolar/lysosomal sorting step TGN to late endosome transport.  相似文献   

16.
In hepatocytes, the Wilson disease protein ATP7B resides on the trans-Golgi network (TGN) and traffics to peripheral lysosomes to export excess intracellular copper through lysosomal exocytosis. We found that in basal copper or even upon copper chelation, a significant amount of ATP7B persists in the endolysosomal compartment of hepatocytes but not in non-hepatic cells. These ATP7B-harbouring lysosomes lie in close proximity of ~10 nm to the TGN. ATP7B constitutively distributes itself between the sub-domain of the TGN with a lower pH and the TGN-proximal lysosomal compartments. The presence of ATP7B on TGN-lysosome colocalising sites upon Golgi disruption suggested a possible exchange of ATP7B directly between the TGN and its proximal lysosomes. Manipulating lysosomal positioning significantly alters the localisation of ATP7B in the cell. Contrary to previous understanding, we found that upon copper chelation in a copper-replete hepatocyte, ATP7B is not retrieved back to TGN from peripheral lysosomes; rather, ATP7B recycles to these TGN-proximal lysosomes to initiate the next cycle of copper transport. We report a hitherto unknown copper-independent lysosomal localisation of ATP7B and the importance of TGN-proximal lysosomes but not TGN as the terminal acceptor organelle of ATP7B in its retrograde pathway.  相似文献   

17.
The late endosome and vacuole of yeast Saccharomyces cerevisiae are functionally equivalent to the mammalian late endosome and lysosome. The late endosome is the convergence point of the biosynthetic and endocytic trafficking to the vacuole. Here, we describe a novel immunodetection screen to isolate mutants defective in trafficking the soluble hydrolase carboxypeptidase Y (CPY) at the late endosome to vacuole interface (env mutants). Mutants exhibit vacuolar morphology and endocytosis defects as assayed by electron, fluorescent, and nomarski microscopy. In biochemical assays, they internally accumulate p2CPY in a dense membrane compartment lacking vacuolar properties yet display normal secretion phenotypes. The results suggest vacuolar morphology and function defects that are exclusively at the late endosome/vacuole interface. env mutants define five complementation groups. The first gene of the collection to be cloned, ENV1 is allelic to VPS35 whose established function is in retrograde trafficking from late endosome to trans-Golgi network (TGN). Microscopic, biochemical, and growth analyses establish that env1 is distinct from other alleles of VPS35 in vacuolar morphology, growth characteristics, and internal accumulation of p2CPY. Our results indicate that ENV genes may define new gene functions at the late endosome to vacuole interface.  相似文献   

18.
Shiga toxin‐producing Escherichia coli (STEC) produce two types of Shiga toxin (STx): STx1 and STx2. The toxin A‐subunits block protein synthesis, while the B‐subunits mediate retrograde trafficking. STEC infections do not have definitive treatments, and there is growing interest in generating toxin transport inhibitors for therapy. However, a comprehensive understanding of the mechanisms of toxin trafficking is essential for drug development. While STx2 is more toxic in vivo, prior studies focused on STx1 B‐subunit (STx1B) trafficking. Here, we show that, compared with STx1B, trafficking of the B‐subunit of STx2 (STx2B) to the Golgi occurs with slower kinetics. Despite this difference, similar to STx1B, endosome‐to‐Golgi transport of STx2B does not involve transit through degradative late endosomes and is dependent on dynamin II, epsinR, retromer and syntaxin5. Importantly, additional experiments show that a surface‐exposed loop in STx2B (β4–β5 loop) is required for its endosome‐to‐Golgi trafficking. We previously demonstrated that residues in the corresponding β4–β5 loop of STx1B are required for interaction with GPP130, the STx1B‐specific endosomal receptor, and for endosome‐to‐Golgi transport. Overall, STx1B and STx2B share a common pathway and use a similar structural motif to traffic to the Golgi, suggesting that the underlying mechanisms of endosomal sorting may be evolutionarily conserved.   相似文献   

19.
TMEM106B is a major risk factor for frontotemporal lobar degeneration with TDP‐43 pathology. TMEM106B localizes to lysosomes, but its function remains unclear. We show that TMEM106B knockdown in primary neurons affects lysosomal trafficking and blunts dendritic arborization. We identify microtubule‐associated protein 6 (MAP6) as novel interacting protein for TMEM106B. MAP6 over‐expression inhibits dendritic branching similar to TMEM106B knockdown. MAP6 knockdown fully rescues the dendritic phenotype of TMEM106B knockdown, supporting a functional interaction between TMEM106B and MAP6. Live imaging reveals that TMEM106B knockdown and MAP6 overexpression strongly increase retrograde transport of lysosomes in dendrites. Downregulation of MAP6 in TMEM106B knockdown neurons restores the balance of anterograde and retrograde lysosomal transport and thereby prevents loss of dendrites. To strengthen the link, we enhanced anterograde lysosomal transport by expressing dominant‐negative Rab7‐interacting lysosomal protein (RILP), which also rescues the dendrite loss in TMEM106B knockdown neurons. Thus, TMEM106B/MAP6 interaction is crucial for controlling dendritic trafficking of lysosomes, presumably by acting as a molecular brake for retrograde transport. Lysosomal misrouting may promote neurodegeneration in patients with TMEM106B risk variants.  相似文献   

20.
Remodeling of host cellular membrane transport pathways is a common pathogenic trait of many intracellular microbes that is essential to their intravacuolar life cycle and proliferation. The bacterium Brucella abortus generates a host endoplasmic reticulum‐derived vacuole (rBCV) that supports its intracellular growth, via VirB Type IV secretion system‐mediated delivery of effector proteins, whose functions and mode of action are mostly unknown. Here, we show that the effector BspF specifically promotes Brucella replication within rBCVs by interfering with vesicular transport between the trans‐Golgi network (TGN) and recycling endocytic compartment. BspF targeted the recycling endosome, inhibited retrograde traffic to the TGN, and interacted with the Arf6 GTPase‐activating Protein (GAP) ACAP1 to dysregulate Arf6‐/Rab8a‐dependent transport within the recycling endosome, which resulted in accretion of TGN‐associated vesicles by rBCVs and enhanced bacterial growth. Altogether, these findings provide mechanistic insight into bacterial modulation of membrane transport used to promote their own proliferation within intracellular vacuoles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号