首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
UV RESISTANCE LOCUS8 (UVR8) is a photoreceptor for ultraviolet‐B (UV‐B) light that initiates photomorphogenic responses in plants. UV‐B photoreception causes rapid dissociation of dimeric UVR8 into monomers that interact with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) to initiate signal transduction. Experiments with purified UVR8 show that the dimer is maintained by salt‐bridge interactions between specific charged amino acids across the dimer interface. However, little is known about the importance of these charged amino acids in determining dimer/monomer status and UVR8 function in plants. Here we evaluate the use of different methods to examine dimer/monomer status of UVR8 and show that mutations of several salt‐bridge amino acids affect dimer/monomer status, interaction with COP1 and photoreceptor function of UVR8 in vivo. In particular, the salt‐bridges formed between arginine 286 and aspartates 96 and 107 are key to dimer formation. Mutation of arginine 286 to alanine impairs dimer formation, interaction with COP1 and function in vivo, whereas mutation to lysine gives a weakened dimer that is functional in vivo, indicating the importance of the positive charge of the arginine/lysine residue for dimer formation. Notably, a UVR8 mutant in which aspartates 96 and 107 are conservatively mutated to asparagine is strongly impaired in dimer formation but mediates UV‐B responses in vivo with a similar dose–response relationship to wild‐type. The UV‐B responsiveness of this mutant does not correlate with dimer formation and monomerisation, indicating that monomeric UVR8 has the potential for UV‐B photoreception, initiating signal transduction and responses in plants.  相似文献   

12.
13.
Plant UV-B responses are mediated by the photoreceptor UV RESISTANCE LOCUS 8(UVR8). In response to UV-B irradiation, UVR8 homodimers dissociate into monomers that bind to the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC1(COP1). The interaction of the C27 domain in the C-terminal tail of UVR8 with the WD40 domain of COP1 is critical for UV-B signaling. However, the function of the last 17 amino acids(C17) of the C-terminus of UVR8, which are adjacent to C27, is unknown, although they are largely conserved in land plants. In this study, we established that Arabidopsis thaliana UVR8 C17 binds to full-length UVR8, but not to COP1, and reduces COP1 binding to the remaining portion of UVR8, including C27. We hypothesized that overexpression of C17 in a wild-type background would have a dominant negative effect on UVR8 activity;however, C17 overexpression caused strong silencing of endogenous UVR8, precluding a detailed analysis. We therefore generated YFP-UVR8~(N423) transgenic lines, in which C17 was deleted, to examine C17 function indirectly. YFP-UVR8~(N423) was more active than YFP-UVR8,suggesting that C17 inhibits UV-B signaling by attenuating binding between C27 and COP1. Our study reveals an inhibitory role for UVR8 C17 in fine-tuning UVR8–COP1 interactions during UV-B signaling.  相似文献   

14.
15.
16.
17.
18.
The ultraviolet‐B (UV‐B) portion of the solar radiation functions as an environmental signal for which plants have evolved specific and sensitive UV‐B perception systems. The UV‐B‐specific UV RESPONSE LOCUS 8 (UVR8) and the multifunctional E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) are key regulators of the UV‐B response. We show here that uvr8‐null mutants are deficient in UV‐B‐induced photomorphogenesis and hypersensitive to UV‐B stress, whereas overexpression of UVR8 results in enhanced UV‐B photomorphogenesis, acclimation and tolerance to UV‐B stress. By using sun simulators, we provide evidence at the physiological level that UV‐B acclimation mediated by the UV‐B‐specific photoregulatory pathway is indeed required for survival in sunlight. At the molecular level, we demonstrate that the wild type but not the mutant UVR8 and COP1 proteins directly interact in a UV‐B‐dependent, rapid manner in planta. These data collectively suggest that UV‐B‐specific interaction of COP1 and UVR8 in the nucleus is a very early step in signalling and responsible for the plant's coordinated response to UV‐B ensuring UV‐B acclimation and protection in the natural environment.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号