首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Loading of Ca2+-sensitive fluorescent probes into plant cells is an essential step to measure activities of free Ca2+ ions in cytoplasm with a fluorescent imaging technique. Fluo-3 is one of the most suitable Ca2+ indicators for CLSM. We loaded pollen with fluo-3/AM at three different temperatures. Fluo-3/AM was successfully loaded into pollen at both low (4°C) and high (37°C) temperatures. However, high loading temperature was best suited for pollen, because germination rate of pollen and growth of pollen tubes were relatively little impaired and loading time was shortened. Moreover, Ca2+ distribution increased in the three apertures of pollen after hydration and showed a Ca2+ gradient, similar to the tip of growing pollen tubes. The same protocol can be used with the AM-forms of other fluorescent dyes for effective labeling. When loading BCECF-AM into pollen at high temperature, the pollen did not show a pH gradient after hydration. Ca2+ activities and fluxes had the same periodicity as pollen germination, but pH did not show the same phase and mostly lagged behind. However, the clear zone was alkaline when pollen tube growth was slowed or stopped and turned acidic when growth recovered. It is likely that apical pHi regulated pollen tube growth.  相似文献   

2.
Loading of Ca2+-sensitive fluorescent probes into plant cells is an essential step to measuring activities of cytoplasmic free Ca2+ ions with a fluorescent imaging technique. A major barrier to the loading of the fluorescent probes into plant cells using the acetoxymethyl (AM) esters of the Ca2+-sensitive dyes is the presence of cell-wall associated esterases. These esterases hydrolyse the esterified form of the fluorescent probes, rendering the probes membrane-impermeable. A novel non-invasive loading protocol was described in this paper to load the Ca2+-sensitive fluorescent probe Fluo-3/AM ester into apical cells of intact wheat roots by incubating the roots in Fluo-3/AM ester solution at 4°C for 2 h followed by 2-h incubation in the dye-free solution at 20°C. The incubation at low temperature inhibited extracellular hydrolysis of Fluo-3/AM ester but had less effect on diffusion of membrane-permeable Fluo-3/AM ester across the plasma membrane, because hydrolysis of Fluo-3/AM ester by extracellular esterases is a chemical process (high Q10), while diffusion of Fluo-3/AM across the plasma membrane is a physical process (low Q10). The Fluo-3/AM ester, accumulated in the root cells during the low temperature incubation, was then cleaved by intracellular esterases during the incubation at 20°C, releasing the membrane-impermeable Ca2+-sensitive Fluo-3 in the cytoplasm. The root cells loaded with Fluo-3 showed strong intracellular fluorescence under confocal microscopy. The fluorescence from the root cells was sensitive to the Ca2+ ionophore and hydrogen peroxide, indicating that the intracellular fluorescence was due to intracellular Ca2+ ions.  相似文献   

3.
Fluorescence microscopy of cells loaded with fluorescent, Ca2+-sensitive dyes is used for measurement of spatial and temporal aspects of Ca2+ signaling in live cells. Here we describe the method used in our laboratories for loading suspensions of human sperm with Ca2+-reporting dyes and measuring the fluorescence signal during physiological stimulation. Motile cells are isolated by direct swim-up and incubated under capacitating conditions for 0-24 h, depending upon the experiment. The cell-permeant AM (acetoxy methyl ester) ester form of the Ca2+-reporting dye is then added to a cell aliquot and a period of 1 h is allowed for loading of the dye into the cytoplasm. We use visible wavelength dyes to minimize photo-damage to the cells, but this means that ratiometric recording is not possible. Advantages and disadvantages of this approach are discussed. During the loading period cells are introduced into an imaging chamber and allowed to adhere to a poly-D-lysine coated coverslip. At the end of the loading period excess dye and loose cells are removed by connection of the chamber to the perfusion apparatus. The chamber is perfused continuously, stimuli and modified salines are then added to the perfusion header. Experiments are recorded by time-lapse acquisition of fluorescence images and analyzed in detail offline, by manually drawing regions of interest. Data are normalized to pre-stimulus levels such that, for each cell (or part of a cell), a graph showing the Ca2+ response as % change in fluorescence is obtained.  相似文献   

4.
Visualization of calcium dynamics is important to understand the role of calcium in cell physiology. To examine calcium dynamics, synthetic fluorescent Ca2+ indictors have become popular. Here we demonstrate TED (= targeted-esterase induced dye loading), a method to improve the release of Ca2+ indicator dyes in the ER lumen of different cell types. To date, TED was used in cell lines, glial cells, and neurons in vitro. TED bases on efficient, recombinant targeting of a high carboxylesterase activity to the ER lumen using vector-constructs that express Carboxylesterases (CES). The latest TED vectors contain a core element of CES2 fused to a red fluorescent protein, thus enabling simultaneous two-color imaging. The dynamics of free calcium in the ER are imaged in one color, while the corresponding ER structure appears in red. At the beginning of the procedure, cells are transduced with a lentivirus. Subsequently, the infected cells are seeded on coverslips to finally enable live cell imaging. Then, living cells are incubated with the acetoxymethyl ester (AM-ester) form of low-affinity Ca2+ indicators, for instance Fluo5N-AM, Mag-Fluo4-AM, or Mag-Fura2-AM. The esterase activity in the ER cleaves off hydrophobic side chains from the AM form of the Ca2+ indicator and a hydrophilic fluorescent dye/Ca2+ complex is formed and trapped in the ER lumen. After dye loading, the cells are analyzed at an inverted confocal laser scanning microscope. Cells are continuously perfused with Ringer-like solutions and the ER calcium dynamics are directly visualized by time-lapse imaging. Calcium release from the ER is identified by a decrease in fluorescence intensity in regions of interest, whereas the refilling of the ER calcium store produces an increase in fluorescence intensity. Finally, the change in fluorescent intensity over time is determined by calculation of ΔF/F0.  相似文献   

5.
A method to simultaneously assess the changes in intracellular calcium concentration and cell volume in single cells was developed using the Ca2+-sensitive fluorescent probe Fura-2 and a three-dimensional image-surface reconstruction technique, respectively. Studies with this method showed that Fura-2 loading had no significant effect on the kinetics of A549 human epithelial cell swelling in a hypotonic solution, as well as the volume restoration kinetics. Significant changes in intracellular Ca2+ concentration were not observed in the examined volume modulation range. The results suggest that Ca2+-mediated signaling pathways are not involved in the autoregulation of the cell volume in A549 cells exposed to hypotonic conditions.  相似文献   

6.
Upon the B cell antigen receptor (BCR) ligation Ca2+ mobilization is induced, which is essential for activation of downstream signaling molecules such as MAP kinase. Although synthetic fluorescent chelators such as Fluo-4 and Indo-1 are widely used for Ca2+ measurement upon BCR ligation, they are leaked or unfavorably localized into some organelles with time post loading. To solve these problems, we introduce a genetically encoded fluorescent indicator cameleon which is a fluorescence resonance energy transfer (FRET)-based indicator comprising two fluorescent proteins (CFP and YFP) and two Ca2+-responsive elements (a variant of calmodulin (CaM) and a CaM-binding peptide). Here, we demonstrate that cameleon as well as a conventional synthetic Ca2+ indicator enables Ca2+ measurement by flow cytometry clearly upon BCR ligation. In addition, confocal microscopy analysis allows us to detect cameleon-based Ca2+ mobilization in a single cell upon BCR ligation.  相似文献   

7.
8.
Wu J  Qu H  Jin C  Shang Z  Wu J  Xu G  Gao Y  Zhang S 《Plant cell reports》2011,30(7):1193-1200
Many signal-transduction processes in plant cells have been suggested to be triggered by signal-induced opening of calcium ion (Ca2+) channels in the plasma membrane. Cyclic nucleotides have been proposed to lead to an increase in cytosolic free Ca2+ in pollen. However, direct recordings of cyclic-nucleotide-induced Ca2+ currents in pollen have not yet been obtained. Here, we report that cyclic AMP (cAMP) activated a hyperpolarization-activated Ca2+ channel in the Pyrus pyrifolia pollen tube using the patch-clamp technique, which resulted in a significant increase in pollen tube protoplast cytosolic-Ca2+ concentration. Outside-out single channel configuration identified that cAMP directly increased the Ca2+ channel open-probability without affecting channel conductance. cAMP-induced currents were composed of both Ca2+ and K+. However, cGMP failed to mimic the cAMP effect. Higher cytosolic free-Ca2+ concentration significantly decreased the cAMP-induced currents. These results provide direct evidence for cAMP activation of hyperpolarization-activated Ca2+ channels in the plasma membrane of pollen tubes, which, in turn, modulate cellular responses in regulation of pollen tube growth.  相似文献   

9.
in vitro using these myosins and of localization studies using antiserum raised against each heavy chain, we suggested that both myosins are molecular motors for generating the motive force for cytoplasmic streaming in higher plant cells. The 170-kDa myosin is expressed not only in somatic cells but also in germinating pollen. In contrast, the 175-kDa myosin is distributed only in somatic cells. In the tip region of growing pollen tubes, it has been demonstrated that a tip-focused Ca2+ gradient is indispensable for growth and tube orientation. Cytoplasmic streaming in this region has been shown to be inactivated by high concentrations of Ca2+. The motile activity in vitro of 170-kDa myosin is suppressed by low (μM) levels of Ca2+ through its CaM light chain, suggesting that this suppression is one of the mechanisms for inactivating cytoplasmic streaming near the tip region of pollen tubes. The motile activity in vitro of 175-kDa myosin is also inhibited by Ca2+ at concentrations higher than 10−6M. It has been revealed that the elevation of cytosolic Ca2+ concentrations causes the cessation of cytoplasmic streaming even in somatic cells. Therefore, Ca2+-sensitivity of the motile activity of myosin appears to be a general molecular basis for Ca2+-induced cessation of cytoplasmic streaming. Received 6 September 2000/ Accepted in revised form 7 October 2000  相似文献   

10.
Calcium (Ca2+) plays crucial roles in regulation of pollen tube growth. The influx of Ca2+ into the pollen tube is mediated by ion channels, and the density and activity of Ca2+ channels in pollen plasma membranes critically determines their electrical properties. In this report, using whole-cell and single-channel patch-clamping techniques, we investigated developmental changes of hyperpolarization-activated Ca2+ channel activity in pear (Pyrus pyrifolia) pollen and its relationship with pollen viability. For both pollen and pollen tubes, hyperpolarization-activated Ca2+ channels had the same conductance and cAMP sensitivity, indicating that they were the same channels. However, the Ca2+ current density in pollen tube protoplasts was greater than that in pollen protoplasts. Compared with day-3 flowers’ pollen, hyperpolarization-activated Ca2+ current density was significantly lower in day 0 and day 3 flowers’ pollen, which was consistent with the pollen germination and pollen tube growth, indicating that pollen protoplasts’ increased Ca2+ current density may have enhanced the pollen viability. During pollen tube elongation, pollen tube plasma membrane Ca2+ current density increased with increased length pollen tubes up to 300 μm. All of these results indicated that hyperpolarization-activated Ca2+ channel activity was associated with in pear pollen development and may have a causal link between Ca2+ channel activity and pollen viability.  相似文献   

11.
A novel staining and quantification method to investigate changes in intracellular calcium levels [Ca2+]i and morphology in filamentous fungus is presented. Using a simple protocol, two fluorescent dyes, Fluo-4-AM and Cell trace calcein red-orange-AM were loaded into the filamentous fungus Penicillium chrysogenum. The present study investigates the applicability of using Ca2+-sensitive dye to quantify and image [Ca2+]i in P. chrysogenum cultures chosen for its potential as an experimental system to study Ca2+ signalling in elicited cultures. The dye loading was optimised and investigated at different pH loading conditions. It was observed that the fluorophore was taken up throughout the hyphae, retaining cell membrane integrity and no dye compartmentalisation within organelles was observed. From the fluorescent plate-reader studies a significant rise (p < 0.001) in the relative fluorescence levels corresponding to [Ca2+]i levels in the hyphae was observed when challenged with an elicitor (mannan oligosaccharide, 150 mg L?1) which was dependent upon extracellular calcium. Concurrently a novel application of dye-loaded hyphae for morphological analysis was also examined using the imaging software Filament Tracer (Bitplane). Essential quantitative mycelial information including the length and diameter of the segments and number of branch points was obtained using this application based on the three-dimensional data.  相似文献   

12.
Mitochondria have a well-established capacity to detect cytoplasmic Ca2+ signals resulting from the discharge of ER Ca2+ stores. Conversely, both the buffering of released Ca2+ and ATP production by mitochondria are predicted to influence ER Ca2+ handling, but this complex exchange has been difficult to assess in situ using conventional measurement techniques. Here we have examined this interaction in single intact BHK-21 cells by monitoring intraluminal ER [Ca2+] directly using trapped fluorescent low-affinity Ca2+ indicators. Treatment with mitochondrial inhibitors (FCCP, antimycin A, oligomycin, and rotenone) dramatically prolonged the refilling of stores after release with bradykinin. This effect was largely due to inhibition of Ca2+ entry pathways at the plasma membrane, but a significant component appears to arise from reduction of SERCA-mediated Ca2+ uptake, possibly as a consequence of ATP depletions in a localized subcellular domain. The rate of bradykinin-induced Ca2+ release was reduced to 51% of control by FCCP. This effect was largely overcome by loading cells with BAPTA-AM, highlighting the importance of mitochondrial Ca2+ buffering in shaping the release kinetics. However, mitochondria-specific ATP production was also a significant determinant of the release dynamic. Our data emphasize the localized nature of the interaction between these organelles, and show that competent mitochondria are essential for generating explosive Ca2+ signals.  相似文献   

13.
Summary A steep, oscillating tip-focused gradient in cytosolic free calcium ([Ca2+]c) has been implicated in pollen tube growth. Further understanding of the biological causes and consequences of these processes relies on the precise imaging of [Ca2+]c during the different growth phases. In this work, the minimum technical requirements for confocal [Ca2+]c imaging ofAgapanthus umbellatus pollen tubes were examined. A range of dyes, dye forms, and loading methods were compared. Non-ratio and ratio imaging were critically analysed, in terms of the detection of the [Ca2+]c gradient and its fluctuations over time. Both ratiometric and nonratiornetric methods detected relative changes in [Ca2+]c. However, visualisation of the [Ca2+]c gradient, with an accurate spatial definition, was only possible with ratiometric methods. The gradient observed in this study ranged from 1.8 M (tip) to 180–220 nM (basal level), within the first 4–10 m. Apical [Ca2+]c fluctuations with an amplitude between 415 nM and 1.8 M showed a period of 40 to 75 s. All protocols for dye-loading proved to have strengths and weaknesses. Thus, the choice of a dye and its loading procedure should consider the required imaging period, extent of sequestration, effect on cell performance and viability, ease of loading procedure, and aim of the study. The present study constitutes an examination of the [Ca2+]c gradient in pollen tubes by these criteria.Abbreviations CLSM confocal laser scanning microscope - [Ca2+]c cytosolic free calcium - PT pollen tube Dedicated to Professor Walter Gustav Url on the occasion of his 70th birthday  相似文献   

14.
A key role of boron in plants is to cross-link the cell wall pectic polysaccharide rhamnogalacturonan-II (RG-II) through borate diester linkages. Phenylboronic acid (PBA) can form the same reversible ester bonds but cannot cross-link two molecules, so can be used as an antagonist to study the function of boron. This study aimed to evaluate the effect of PBA on apple (Malus domestica) pollen tube growth and the underlying regulatory mechanism. We observed that PBA caused an inhibition of pollen germination, tube growth and led to pollen tube morphological abnormalities. Fluorescent labeling, coupled with a scanning ion-selective electrode technique, revealed that PBA induced an increase in extracellular Ca2+ influx, thereby elevating the cytosolic Ca2+ concentration [Ca2+]c and disrupting the [Ca2+]c gradient, which is critical for pollen tube growth. Moreover the organization of actin filaments was severely perturbed by the PBA treatment. Immunolocalization studies and fluorescent labeling, together with Fourier-transform infrared analysis (FTIR) suggested that PBA caused an increase in the abundance of callose, de-esterified pectins and arabinogalactan proteins (AGPs) at the tip. However, it had no effect on the deposition of the wall polymers cellulose. These effects are similar to those of boron deficiency in roots and other organs, indicating that PBA can induce boron deficiency symptoms. The results provide new insights into the roles of boron in pollen tube development, which likely include regulating [Ca2+]c and the formation of the actin cytoskeleton, in addition to the synthesis and assembly of cell wall components.  相似文献   

15.
The presence of both calcium (Ca2+) and proton (H+) apical gradients is necessary for polarized cell elongation to occur in pollen tubes. So far, most of these studies have been carried out in lily pollen tubes, using chemical probes. Yet, lily is a refractory model for molecular genetics, with no easy protocol available for the construction of stable transgenic lines. Tobacco, however, is well suited for both transformation and cell biology, with sexual organs that are accessible, easy to handle and visualize. Pollen tubes are in an ideal size range for sub-cellular imaging analyses using modern microscopy techniques. Ion homeostasis in tobacco pollen tubes has not been precisely characterized so far. Here, we characterize the H+ and Ca2+ spatial and temporal patterns in tobacco pollen tubes by the use of two fluorescent genetic probes, pHluorin and the YC3.1 yellow CaMeleon, and direct measurement of extracellular flux by ion-sensitive vibrating probes. A distinct 0.4 pH unit acidic gradient was found to stretch from the tip up to 40 μm into the tube shank. This gradient intensity displayed 1–4 min period oscillations and is reduced in the non-growing phase of an oscillatory cycle. Furthermore, sub-membrane and sub-apical alkaline domains were detected. Extracellular H+ fluxes oscillated between 10 and 40 pmol cm−2 s−1. Fourier and continuous wavelet analyses showed tubes with one or two major oscillatory components in both extra and intracellular H+ oscillations. Cytosolic Ca2+ was imaged by confocal microscopy, showing a V-shaped 40 μm gradient extending from the tip, from 0.2 to 1.0 μM, which oscillates with a 1–4 min period, but with only one major oscillatory component. Extracellular Ca2+ fluxes oscillate in most pollen tubes, between 2 and 50 pmol cm−2 min−1 and, like in H+, with one or two major oscillatory peaks. A combination of confocal and widefield microscopy showed that H+ and Ca2+ displayed different patterns and shapes inside the cell, sometimes suggesting a structurally complementary role for these 2 second messengers in the growth process. These data suggest that fluxes at the apex of the pollen tube are directly responsible for establishment and maintenance of the gradient. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Bush DS  Jones RL 《Plant physiology》1990,93(3):841-845
Recent advances in the development of methods for measuring cytoplasmic Ca2+ levels in higher plant cells are discussed. Emphasis is placed on the new generation of Ca2+-sensitive fluorescent dyes particularly fura-2 and indo-1. These dyes offer many advantages for the measurement of cytosolic Ca2+ levels. They can be introduced into cells in a nonintrusive manner, their Kd for Ca2+ matches plant cell cytoplasmic Ca2+ levels, and shifts in their emission (indo-1) or excitation (fura-2) spectra following Ca2+ binding permit accurate quantitation of Ca2+ activities. Examples of cytoplasmic Ca2+ levels measured in plants with fura-2 and indo-1 are presented, and the prospects for applying more advanced technologies to fluorescent dye measurement are discussed.  相似文献   

17.
Assessment of the regulation of plant metabolism by the calcium ion requires a knowledge of its intracellular levels and dynamics. Technical problems have prevented direct measurement of the concentration of intracellular Ca2+ in plant cells in all but a few cases. In this study we show that electropermeabilized protoplasts of Daucus carota and Hordeum vulgare took up the Ca2+ indicating fluorescent dye methoxyquinoline(O-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (Quin-2) and the Ca2+ indicating photoprotein, aequorin. These protoplasts subsequently recovered their plasma membrane integrity. However, up to 10% of intracellularly trapped Quin-2 was associated with a protoplast vacuolar fraction. Also, Quin-2 loading reduced total ATP levels by approximately 60% and inhibited subsequent protoplast division whereas aequorin loading reduced ATP content by only 20% and did not prevent division. Therefore, the basal cytoplasmic Ca2+ level measured with aequorin (less than 200 nanomolar) may more reliably reflect that found in vivo in the unperturbed protoplast than that measured with Quin-2 (120-360 nanomolar). However, measurements made with aequorin were found to be inaccurate at Ca2+ levels below 200 nanomolar, Quin-2 proving complementary in indicating these low Ca2+ concentrations. Cytosolic Ca2+ was observed to increase on treatment with azide and silver ions.  相似文献   

18.
Reperfusion of isolated mammalian hearts with a Ca2+-containing solution after a short Ca2+-free period at 37°:C results in massive influx of Ca2+ into the cells and irreversible cell damage: the Ca2+paradox. Information about the free intracellular, cytosolic [Ca2+] ([Ca2+]i) during Ca2+ depletion is essential to assess the possibility of Ca2+ influx through reversed Na+/Ca2+ exchange upon Ca2+ repletion. Furthermore, the increase in end-diastolic pressure often seen during Ca2+-free perfusion of intact hearts may be similar to that seen during ischemia and caused by liberation of Ca2+ from intracellular stores. Therefore, in this study, we measured [Ca2+]i during Ca2+- free perfusion of isolated rat hearts. To this end, the fluorescent indicator Indo-1 was loaded into isolated Langendorff-perfused hearts and Ca2+-transients were recorded. Ca2+-transients disappeared within 1 min of Ca2+ depletion. Systolic [Ca2+]i during control perfusion was 268±54 nM. Diastolic [Ca2+]i during control perfusion was 114±34 nM and decreased to 53±19 nM after 10 min of Ca2+ depletion. Left ventricular end-diastolic pressure (LVEDP) significantly increased from 13±4 mmHg during control perfusion after Indo-1 AM loading to 31±5 mmHg after 10 min Ca2+ depletion. Left ventricular developed pressure did not recover during Ca2+ repletion, indicating a full Ca2+ paradox. These results show that LVEDP increased during Ca2+ depletion despite a decrease in [Ca2+]i, and is therefore not comparable to the contracture seen during ischemia. Furthermore, calculation of the driving force for the Na+/Ca2+ exchanger showed that reversed Na+/Ca2+ exchange during Ca2+ repletion is not able to increase [Ca2+]i to cytotoxic levels.  相似文献   

19.
Bra r 1 encodes a novel Ca2+-binding protein specifically expressed in pollen and is localized in cytoplasm of pollen and pollen tubes. In this study, we demonstrated the expression of green fluorescent protein (GFP) with a nuclear localization signal under the control of Bra r 1 promoter in tobacco pollen. A fluorescent signal was detected in the vegetative nucleus (VN) but not in generative and sperm cell nuclei, indicating pollen vegetative cell-specific expression of Bra r 1. The fluorescent signal in elongating pollen tubes was stronger than that in mature pollen, indicating that the expression of Bra r 1 was more activated during pollen tube growth. This result suggests that Bra r 1 protein might be necessary for pollen tube growth. The pattern of green fluorescence in the VN revealed that VN chromatin is dispersed during the mid-bicellular pollen stage and condensed at the mature stage. This suggests that the level of chromatin condensation might be linked with gene expression in pollen vegetative cells. We also found that the expression of GFP and its targeting of the VN have no detrimental effect on pollen maturation and pollen tube growth. Expression of GFP in pollen thus makes rapid non-destructive monitoring of transgenic pollen and pollen tubes possible. The GFP which moved into the VN was found to be a convenient tool for observation of the VN and could be useful as a selectable marker of transgenic pollen for the analysis of pollen-specific genes. Received: 6 December 2000 / Revision accepted: 20 March 2001  相似文献   

20.
W. Herth 《Protoplasma》1978,96(3-4):275-282
Summary The effects of the cationophore A 23187 on growing pollen tubes ofLilium longiflorum and on pollen germination were testedin vitro, and measured light microscopically. The ionophore is a very potent inhibitor of pollen tube growth: ionophore contentrations down to 10–7 M stop tip growth. Cytoplasmic streaming is less sensitive: Only with added external Ca2+ and higher concentrations of the ionophore the cytoplasmic streaming is stopped. Pollen germination is less sensitive to ionophore than pollen tube growth at later stages. The ionophore inhibition is partially reversible in a medium containing no added external Ca2+, but is not reversible in a Ca2+-enriched medium. EDTA addition to the medium prevents pollen germination and growth totally. It is hypothesized that the pollen ofLilium longiflorum needs Ca2+ to sustain oriented exocytosis at the pollen tube tip. The ionophore A 23187 seems to interfere with the electrical pulse/Ca2+-orientation mechanism of exocytosis by equilibration of the Ca2+-gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号