首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 315 毫秒
1.
A novel alanine dehydrogenase (AlaDH) showing no significant amino acid sequence homology with previously known bacterial AlaDHs was purified to homogeneity from the soluble fraction of the hyperthermophilic archaeon Archaeoglobus fulgidus. AlaDH catalyzed the reversible, NAD+-dependent deamination of L-alanine to pyruvate and NH4+. NADP(H) did not serve as a coenzyme. The enzyme is a homodimer of 35 kDa per subunit. The Km values for L-alanine, NAD+, pyruvate, NADH, and NH4+ were estimated at 0.71, 0.60, 0.16, 0.02, and 17.3 mM, respectively. The A. fulgidus enzyme exhibited its highest activity at about 82 degrees C (203 U/mg for reductive amination of pyruvate) yet still retained 30% of its maximum activity at 25 degrees C. The thermostability of A. fulgidus AlaDH was increased by more than 10-fold by 1.5 M KCl to a half-life of 55 h at 90 degrees C. At 25 degrees C in the presence of this salt solution, the enzyme was approximately 100% stable for more than 3 months. Closely related A. fulgidus AlaDH homologues were found in other archaea. On the basis of its amino acid sequence, A. fulgidus AlaDH is a member of the ornithine cyclodeaminase-mu-crystallin family of enzymes. Similar to the mu-crystallins, A. fulgidus AlaDH did not exhibit any ornithine cyclodeaminase activity. The recombinant human mu-crystallin was assayed for AlaDH activity, but no activity was detected. The novel A. fulgidus gene encoding AlaDH, AF1665, is designated ala.  相似文献   

2.
NADP-Dependent shikimate dehydrogenae (SKDH, EC 1.1.1.25) was purified from Gluconobacter oxydans IFO 3244. SKDH showed a single protein band on native-PAGE accompanying enzyme activity. It required NADP exclusively and catalyzed only the shuttle reaction between shikimate and 3-dehydroshikimate. The optimum pH for shikimate oxidation and 3-dehydroshikimate reduction was found at pH 10 and 7 respectively. SKDH proved to be a useful catalyst for shikimate production from 3-dehydroshikimate.  相似文献   

3.
NADP-Dependent shikimate dehydrogenae (SKDH, EC 1.1.1.25) was purified from Gluconobacter oxydans IFO 3244. SKDH showed a single protein band on native-PAGE accompanying enzyme activity. It required NADP exclusively and catalyzed only the shuttle reaction between shikimate and 3-dehydroshikimate. The optimum pH for shikimate oxidation and 3-dehydroshikimate reduction was found at pH 10 and 7 respectively. SKDH proved to be a useful catalyst for shikimate production from 3-dehydroshikimate.  相似文献   

4.
Glutamate dehydrogenase (L-glutamate:NAD(P)+ oxidoreductase, deaminating, EC 1.4.1.3) from the hyperthermophilic Archeon Pyrococcus furiosus was purified to homogeneity by chromatography on anion-exchange, molecular-exclusion and hydrophobic-interaction media. The purified native enzyme had an M(r) of 270,000 +/- 15,000 and was shown to be a hexamer with identical subunits of M(r) 46,000. The enzyme was exceptionally thermostable, having a half-life of 3.5 to more than 10 h at 100 degrees C, depending on the concentration of enzyme. The Km of the enzyme for ammonia was high (9.5 mM), indicating that the enzyme is probably active in the deaminating, catabolic direction. The coenzyme utilization of the enzyme resembled the equivalent enzymes from eukaryotes rather than eubacteria, since both NADH and NADPH were recognized with high affinity. The enzyme displayed a preference for NADP+ over NAD+ that was more pronounced at low assay temperatures (50-70 degrees C) compared with the optimal temperature for enzyme activity, 95 degrees C.  相似文献   

5.
Thermoproteus tenax possesses two different glyceraldehyde-3-phosphate dehydrogenases, one specific for NADP+ and the other for NAD+. NADP(H) inhibits the NAD+-specific enzyme competetively with respect to NAD+ whereas NAD(H) virtually does not interact with the NADP+-specific enzyme. Both enzymes represent homomeric tetramers with subunit molecular masses of 39 kDa (NADP+-specific enzyme) and 49 kDa (NAD+-specific enzyme), respectively. The NADP+-specific enzyme shows significant homology to the known glyceraldehyde-3-phosphate dehydrogenases from eubacteria and eukaryotes as indicated by partial sequencing. The enzymes are thermostable, the NADP+-specific enzyme with a half-life of 35 min at 100 degrees C, the NAD+-specific enzyme with a half-line of greater than or equal to 20 min at 100 degrees C, depending on the protein concentration. Both enzymes show conformational and functional changes at 60-70 degrees C.  相似文献   

6.
Glutamate dehydrogenase from Pyrococcus horikoshii (Pho-GDH) was cloned and overexpressed in Escherichia coli. The cloned enzyme with His-tag was purified to homogeneity by affinity chromatography and shown to be a hexamer enzyme of 290+/-8 kDa (subunit mass 48 kDa). Its optimal pH and temperature were 7.6 and 90 degrees C, respectively. The purified enzyme has outstanding thermostability (the half-life for thermal inactivation at 100 degrees C was 4 h). The enzyme shows strict specificity for 2-oxoglutarate and L-glutamate and requires NAD(P)H and NADP as cofactors but it does not reveal activity on NAD as cofactor. K(m) values of the recombinant enzyme are comparable for both substrates: 0.2 mM for L-glutamate and 0.53 mM for 2-oxoglutarate. The enzyme was activated by heating at 80 degrees C for 1 h, which was accompanied by the formation of its active conformation. Circular dichroism and fluorescence spectra show that the active conformation is heat-inducible and time-dependent.  相似文献   

7.
The crystal structure of Methanococcus jannaschii shikimate 5-dehydrogenase (MjSDH) bound to the cofactor nicotinamide adenine dinucleotide phosphate (NADP) has been determined at 2.35 A resolution. Shikimate 5-dehydrogenase (SDH) is responsible for NADP-dependent catalysis of the fourth step in shikimate biosynthesis, which is essential for aromatic amino acid metabolism in bacteria, microbial eukaryotes, and plants. The structure of MjSDH is a compact alpha/beta sandwich with two distinct domains, responsible for binding substrate and the NADP cofactor, respectively. A phylogenetically conserved deep cleft on the protein surface corresponds to the enzyme active site. The structure reveals a topologically new domain fold within the N-terminal segment of the polypeptide chain, which binds substrate and supports dimerization. Insights gained from homology modeling and sequence/structure comparisons suggest that the SDHs represent a unique class of dehydrogenases. The structure provides a framework for further investigation to discover and develop novel inhibitors targeting this essential enzyme.  相似文献   

8.
A gene encoding an L-aspartate dehydrogenase (EC 1.4.1.21) homologue was identified in the anaerobic hyperthermophilic archaeon Archaeoglobus fulgidus. After expression in Escherichia coli, the gene product was purified to homogeneity, yielding a homodimeric protein with a molecular mass of about 48 kDa. Characterization revealed the enzyme to be a highly thermostable L-aspartate dehydrogenase, showing little loss of activity following incubation for 1 h at up to 80 degrees C. The optimum temperature for L-aspartate dehydrogenation was about 80 degrees C. The enzyme specifically utilized L-aspartate as the electron donor, while either NAD or NADP could serve as the electron acceptor. The Km values for L-aspartate were 0.19 and 4.3 mM when NAD or NADP, respectively, served as the electron acceptor. The Km values for NAD and NADP were 0.11 and 0.32 mM, respectively. For reductive amination, the Km values for oxaloacetate, NADH and ammonia were 1.2, 0.014 and 167 mM, respectively. The enzyme showed pro-R (A-type) stereospecificity for hydrogen transfer from the C4 position of the nicotinamide moiety of NADH. This is the first report of an archaeal L-aspartate dehydrogenase. Within the archaeal domain, homologues of this enzyme occurred in many Methanogenic species, but not in Thermococcales or Sulfolobales species.  相似文献   

9.
A putative long-chain mannitol-1-phosphate 5-dehydrogenase from Aspergillus fumigatus (AfM1PDH) was overexpressed in Escherichia coli to a level of about 50% of total intracellular protein. The purified recombinant protein was a approximately 40-kDa monomer in solution and displayed the predicted enzymatic function, catalyzing NAD(H)-dependent interconversion of d-mannitol 1-phosphate and d-fructose 6-phosphate with a specific reductase activity of 170 U/mg at pH 7.1 and 25 degrees C. NADP(H) showed a marginal activity. Hydrogen transfer from formate to d-fructose 6-phosphate, mediated by NAD(H) and catalyzed by a coupled enzyme system of purified Candida boidinii formate dehydrogenase and AfM1PDH, was used for the preparative synthesis of d-mannitol 1-phosphate or, by applying an analogous procedure using deuterio formate, the 5-[2H] derivative thereof. Following the precipitation of d-mannitol 1-phosphate as barium salt, pure product (>95% by HPLC and NMR) was obtained in isolated yields of about 90%, based on 200 mM of d-fructose 6-phosphate employed in the reaction. In situ proton NMR studies of enzymatic oxidation of d-5-[2H]-mannitol 1-phosphate demonstrated that AfM1PDH was stereospecific for transferring the deuterium to NAD+, producing (4S)-[2H]-NADH. Comparison of maximum initial rates for NAD+-dependent oxidation of protio and deuterio forms of D-mannitol 1-phosphate at pH 7.1 and 25 degrees C revealed a primary kinetic isotope effect of 2.9+/-0.2, suggesting that the hydride transfer was strongly rate-determining for the overall enzymatic reaction under these conditions.  相似文献   

10.
Shikimate dehydrogenase (SKDH, EC 1.1.1.25) was extracted from seedlings of pepper ( Capsicum annuum L.) and purified 347-fold. The purification procedure included precipitation with ammonium sulphate and chromatography in columns of Reactive Red-agarose, Q-Sepharose and Sephadex G-100. Pepper SKDH isozymes are separable only using PAGE. The purified enzyme has a relative molecular mass of 67 000 as estimated by gel filtration. The optimum pH of enzyme activity is 10.5 and the optimum temperature is 50°C, but the enzyme is quickly inactivated at temperatures higher than 40°C. The purified enzyme exhibited typical Michaelis-Menten kinetics and Km values are 0.087 m M for shikimic acid and 0.017 m M for NADP. The mechanism of reaction is sequential considering NADP as a cosubstrate. Ions such as Ca2+, Mg2+ and Mn2+ activate the enzyme, but Zn2+ and Cu2+ are strong inhibitors. Some phenolic compounds such as guaiacol, protocatechuic acid and 2,4-D are competitive inhibitors of pepper SKDH, showing Ki values of 0.38 m M , 0.27 m M and 0.16 m M , respectively.  相似文献   

11.
L-Lysine dehydrogenase, which catalyzes the oxidative deamination of L-lysine in the presence of NAD, was found in the thermophilic bacterium Geobacillus stearothermophilus UTB 1103 and then purified about 3,040-fold from a crude extract of the organism by using four successive column chromatography steps. This is the first report showing the presence of a thermophilic NAD-dependent lysine dehydrogenase. The product of the enzyme catalytic activity was determined to be Delta1-piperideine-6-carboxylate, indicating that the enzyme is L-lysine 6-dehydrogenase (LysDH) (EC 1.4.1.18). The molecular mass of the purified protein was about 260 kDa, and the molecule was determined to be a homohexamer with subunit molecular mass of about 43 kDa. The optimum pH and temperature for the catalytic activity of the enzyme were about 10.1 and 70 degrees C, respectively. No activity was lost at temperatures up to 65 degrees C in the presence of 5 mM L-lysine. The enzyme was relatively selective for L-lysine as the electron donor, and either NAD or NADP could serve as the electron acceptor (NADP exhibited about 22% of the activity of NAD). The Km values for L-lysine, NAD, and NADP at 50 degrees C and pH 10.0 were 0.73, 0.088, and 0.48 mM, respectively. When the gene encoding this LysDH was cloned and overexpressed in Escherichia coli, a crude extract of the recombinant cells had about 800-fold-higher enzyme activity than the extract of G. stearothermophilus. The nucleotide sequence of the LysDH gene encoded a peptide containing 385 amino acids with a calculated molecular mass of 42,239 Da.  相似文献   

12.
An NADP-preferring malic enzyme ((S)-malate:NADP oxidoreductase (oxalacetate-decarboxylating) EC 1.1.1.40) with a specific activity of 36.6 units per mg of protein at 60 degrees C and an isoelectric point of 5.1 was purified to homogeneity from the thermoacidophilic archaebacterium Sulfolobus solfataricus, strain MT-4. The purification procedure employed ion exchange chromatography, ammonium sulfate fractionation, affinity chromatography, and gel filtration. Molecular weight determinations demonstrated that the enzyme was a dimer of Mr 105,000 +/- 2,000 with apparently identical Mr 49,000 +/- 1,500 subunits. Amino acid composition of S. solfataricus enzyme was determined and found to be significantly higher in tryptophan content than the malic enzyme from Escherichia coli. In addition to the NAD(P)-dependent oxidative decarboxylation of L-malate, S. solfataricus malic enzyme was able to catalyze the decarboxylation of oxalacetate. The enzyme absolutely required divalent metal cations and it displayed maximal activity at 85 degrees C and pH 8.0 with a turnover number of 376 s-1. The enzyme showed classical saturation kinetics and no sigmoidicity was detected at different pH values and temperatures. At 60 degrees C and in the presence of 0.1 mM MnCl2, the Michaelis constants for malate, NADP, and NAD were 18, 3, and 250 microM, respectively. The S. solfataricus malic enzyme was shown to be very thermostable.  相似文献   

13.
Chen L  Zhou C  Yang H  Roberts MF 《Biochemistry》2000,39(40):12415-12423
A gene putatively identified as the Archaeoglobus fulgidus inositol-1-phosphate synthase (IPS) gene was overexpressed to high level (about 30-40% of total soluble cellular proteins) in Escherichia coli. The recombinant protein was purified to homogeneity by heat treatment followed by two column chromatographic steps. The native enzyme was a tetramer of 168 +/- 4 kDa (subunit molecular mass of 44 kDa). At 90 degrees C the K(m) values for glucose-6-phosphate and NAD(+) were estimated as 0.12 +/- 0.04 mM and 5.1 +/- 0.9 microM, respectively. Use of (D)-[5-(13)C]glucose-6-phosphate as a substrate confirmed that the stereochemistry of the product of the IPS reaction was L-myo-inositol-1-phosphate. This archaeal enzyme, with the highest activity at its optimum growth temperature among all IPS reported (k(cat) = 9.6 +/- 0.4 s(-1) with an estimated activation energy of 69 kJ/mol), was extremely heat stable. However, the most unique feature of A. fulgidus IPS was that it absolutely required divalent metal ions for activity. Zn(2+) and Mn(2+) were the best activators with K(D) approximately 1 microM, while NH(4)(+) (a critical activator for all the other characterized IPS enzymes) had no effect on the enzyme. These properties suggested that this archaeal IPS was a class II aldolase. In support of this, stoichiometric reduction of NAD(+) to NADH could be followed spectrophotometrically when EDTA was present along with glucose-6-phosphate.  相似文献   

14.
The concentration of cytochrome c in the skeletal muscle of the green sunfish (Lepomis cyanellus) increases with decreasing temperature of acclimation: 1.51 +/- 0.09, 1.17 +/- 0.03, and 0.98 +/- 0.07 nanomoles per gram wet weight from muscle of animals acclimated to 5 degrees, 15 degrees, and 25 degrees C, respectively. The roles of synthesis and degradation of cytochrome c during thermal acclimation were investigated by measurement of loss of specific radioactivity from cytochrome c and from total mitochondrial heme protein, and by analysis of the rate of change in concentration of cytochrome c. The radioisotope used was 14C-delta-aminolevulinic acid, a non-reutilizable heme precursor. At 25 degrees C, the half-life of cytochrome c was 7.1 days based on radioactivity measurements and 5.6 days based on change in concentration. Statistical analysis showed no significant difference in half-lives obtained by the two methods. The half-life of total mitochondrial heme protein was determined to be 5.7 days on the basis of radioactivity data, under the same conditions. No significant difference was found between the rate of turnover of the heme protein pool from mitochondria and either measurement for cytochrome c at 25 degrees C. At an acclimation temperature of 5 degrees C, the half-life of cytochrome c from skeletal muscle was 13.7 days based upon changes in concentration. At low acclimation temperature, radioactive label was retained in acid-soluble form by fish for many days, precluding measurement of half-life by this technique. Transfer of fish from 25 degrees to 5 degrees C resulted in a rapid decrease of approximately 40% in rates in synthesis of skeletal muscle cytochrome c, and a concomitant decrease in the degradation rate constant for this molecule of approximately 60%. The disproportionality in temperature-sensitivities of these two processes leads to an approximately 50% net increase in the concentration of cytochrome c during acclimation. In transfer from 5 degrees to 25 degrees C, the converse, rapid readjustments in synthetic and degradative parameters occur, resulting in the observed decrease in cytochrome c content.  相似文献   

15.
A Ginsburg  M Zolkiewski 《Biochemistry》1991,30(39):9421-9429
Partial unfolding of dodecameric glutamine synthetase (GS) from Escherichia coli has been studied by differential scanning calorimetry (DSC). A single endotherm (tm = 51.6 +/- 0.1 degrees C and delta Hcal = 211 +/- 4 kcal/mol of enzyme) was observed in DSC experiments with Mn.GS in the presence of 1.0 mM free Mn2+ and 100 mM KCl at pH 7. The dodecameric structure of Mn.GS was retained throughout heating cycles, and thermal transitions were reversible as shown by rescans [with 6-18 mg of GS (Mr 622,000) from 15 to 68 degrees C at 20-60 degrees C/h] and by greater than 93% recovery of activity. A cooperative ratio delta Hcal/delta HvH of 1.6 +/- 0.1 and deconvolution analysis show two cooperative units (two-state transitions): t1 = 50.4 and t2 = 51.7 degrees C; the ratio of the relative sizes of thermally labile domains is approximately 1:2 as judged by delta H2/delta H1 approximately equal to 2. However, the thermally induced overall enthalpy change (0.34 cal/g) for GS dodecamer is only 5-10% of that for thermal unfolding of small globular proteins at 50 degrees C. The t1 and t2 values from deconvolutions of DSC data agree with t0.5 values previously calculated from spectral measurements of temperature-induced exposures of approximately 0.7 of 2 Trp and approximately 2 of 17 Tyr per subunit, respectively [Shrake et al. (1989) Biochemistry 28, 6281-6294], over a 14 degrees C temperature range using both stabilizing and destabilizing conditions for Mn.GS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
A one-step procedure of immobilizing soluble and aggregated preparations of D-amino acid oxidase from Trigonopsis variabilis (TvDAO) is reported where carrier-free enzyme was entrapped in semipermeable microcapsules produced from the polycation poly(methylene-co-guanidine) in combination with CaCl2 and the polyanions alginate and cellulose sulfate. The yield of immobilization, expressed as the fraction of original activity present in microcapsules, was approximately 52 +/- 5%. The effectiveness of the entrapped oxidase for O2-dependent conversion of D-methionine at 25 degrees C was 85 +/- 10% of the free enzyme preparation. Because continuous spectrophotometric assays are generally not well compatible with insoluble enzymes, we employed a dynamic method for the rapid in situ estimation of activity and relatedly, stability of free and encapsulated oxidases using on-line measurements of the concentration of dissolved O2. Integral and differential modes of data acquisition were utilized to examine cases of fast and slow inactivation of the enzyme, respectively. With a half-life of 60 h, encapsulated TvDAO was approximately 720-fold more stable than the free enzyme under conditions of bubble aeration at 25 degrees C. The soluble oxidase was stabilized by added FAD only at temperatures of 35 degrees C or greater.  相似文献   

18.
A beta-glucosidase from Phoma sp. KCTC11825BP isolated from rotten mandarin peel was purified 8.5-fold with a specific activity of 84.5 U/mg protein. The purified enzyme had a molecular mass of 440 kDa with a subunit of 110 kDa. The partial amino acid sequence of the purified beta-glucosidase evidenced high homology with the fungal beta- glucosidases belonging to glycosyl hydrolase family 3. Its optimal activity was detected at pH 4.5 and 60 degrees C, and the enzyme had a half-life of 53 h at 60 degrees C. The Km values for p-nitrophenyl-beta-D-glucopyranoside and cellobiose were 0.3 mM and 3.2 mM, respectively. The enzyme was competitively inhibited by both glucose (Ki=1.7 mM) and glucono-delta-lactone (Ki=0.1 mM) when pNPG was used as the substrate. Its activity was inhibited by 41% by 10 mM Cu2+ and stimulated by 20% by 10 mM Mg2+.  相似文献   

19.
Enzymatic gas-phase reactions are usually performed in continuous reactors, and thus very stable and active catalysts are required to perform such transformations on cost-effective levels. The present work is concerned with the reduction of gaseous acetophenone to enantiomerically pure (R)-1-phenylethanol catalyzed by solid alcohol dehydrogenase from Lactobacillus brevis (LBADH), immobilized onto glass beads. Initially, the catalyst preparation displayed a half-life of 1 day under reaction conditions at 40 degrees C and at a water activity of 0.5. It was shown that the observed decrease in activity is due to a degradation of the enzyme itself (LBADH) and not of the co-immobilized cofactor NADP. By the addition of sucrose to the cell extract before immobilization of the enzyme, the half-life of the catalyst preparation (at 40 degrees C) was increased 40 times. The stabilized catalyst preparation was employed in a continuous gas-phase reactor at different temperatures (25-60 degrees C). At 50 degrees C, a space-time yield of 107 g/L/d was achieved within the first 80 h of continuous reaction.  相似文献   

20.
Tyrosine hydroxylase was purified from bovine corpus striatum. The native enzyme had a half-life of 15 +/- 3 min at 50 degrees C. Phosphorylation of tyrosine hydroxylase with protein kinase purified from both corpus striatum and heart activated the enzyme, but activity was rapidly lost with additional preincubation of the enzyme at 30 degrees C. Thermal denaturation studies indicated that phosphorylated tyrosine hydroxylase had a half-life of 5 +/- 2 min at 50 degrees C  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号