首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 803 毫秒
1.
Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disorder that occurs due to inactivating mutations in DMD gene, leading to muscular dystrophy. Prediction of pathological complications of DMD and the identification of female carriers are important research points that aim to reduce disease burden. Herein, we describe a case of a late DMD patient and his immediate female family members, who all carry same DMD mutation and exhibited varied degrees of symptoms. In our study, we sequenced the whole miRNome in leukocytes and plasma of the family members and results were validated using real-time PCR. Our results highlighted the role of miR-409-3p, miR-424-5p, miR-144-3p as microRNAs that show correlation with the extent of severity of muscular weakness and can be used for detection of asymptomatic carriers. Cellular and circulating levels of miR-494-3p had shown significant increase in symptomatic carriers, which may indicate significant roles played by this miRNA in the onset of muscular weakness. Interestingly, circulating levels of miR-206 and miR-410-3p were significantly increased only in the severely symptomatic carrier. In conclusion, our study highlighted several miRNA species, which could be used in predicting the onset of muscle and/or neurological complications in DMD carriers.  相似文献   

2.
Limb-girdle muscular dystrophy type 2D (LGMD2D) is caused by autosomal recessive mutations in the alpha-sarcoglycan gene. The clinical, biochemical, histological, imunohistochemical and molecular genetic data in 2 Albanian siblings with LGMD2D (adhalinopathy or alpha-sarcoglycanopathy) are presented and the resemblance with Duchenne muscular dystrophy (DMD) is discussed. Both siblings had very high level of CK and a negative molecular test for DMD deletions and duplications. The muscle biopsy showed dystrophic features as well as deficiency in two different proteins, the Gamma sarcoglycan protein (-SG) and the Alpha -SG protein (-SG). DNA analysis demonstrated homozygosity for a pathogenic point mutation (574C>T) in the alpha-sarcoglycan gene, confirming the diagnosis of limb-girdle muscular dystrophy type 2D. We believe it is the first confirmed case of primary alpha-sarcoglycanopathy identified in Albania which support the assumption of a wide geographic prevalence of severe childhood onset of autosomal recessive muscular dystrophy, We show that muscle biopsy and DNA diagnosis remains the most sensitive and specific method for differential diagnosis.  相似文献   

3.
4.
Biomarkers are critically important for disease diagnosis and monitoring. In particular, close monitoring of disease evolution is eminently required for the evaluation of therapeutic treatments. Classical monitoring methods in muscular dystrophies are largely based on histological and molecular analyses of muscle biopsies. Such biopsies are invasive and therefore difficult to obtain. The serum protein creatine kinase is a useful biomarker, which is however not specific for a given pathology and correlates poorly with the severity or course of the muscular pathology. The aim of the present study was the systematic evaluation of serum microRNAs (miRNAs) as biomarkers in striated muscle pathologies. Mouse models for five striated muscle pathologies were investigated: Duchenne muscular dystrophy (DMD), limb-girdle muscular dystrophy type 2D (LGMD2D), limb-girdle muscular dystrophy type 2C (LGMD2C), Emery-Dreifuss muscular dystrophy (EDMD) and hypertrophic cardiomyopathy (HCM). Two-step RT-qPCR methodology was elaborated, using two different RT-qPCR miRNA quantification technologies. We identified miRNA modulation in the serum of all the five mouse models. The most highly dysregulated serum miRNAs were found to be commonly upregulated in DMD, LGMD2D and LGMD2C mouse models, which all exhibit massive destruction of striated muscle tissues. Some of these miRNAs were down rather than upregulated in the EDMD mice, a model without massive myofiber destruction. The dysregulated miRNAs identified in the HCM model were different, with the exception of one dysregulated miRNA common to all pathologies. Importantly, a specific and distinctive circulating miRNA profile was identified for each studied pathological mouse model. The differential expression of a few dysregulated miRNAs in the DMD mice was further evaluated in DMD patients, providing new candidates of circulating miRNA biomarkers for DMD.  相似文献   

5.
Duchenne and Becker muscular dystrophy (DMD, BMD) have both been clinically recognized for over 100 years, yet throughout much of that time nothing beyond clinical evaluation and supportive care during the disease course was available to patients. The identification of the molecular basis of DMD/BMD in 1986 paved the way for extensive progress toward the understanding, diagnosis and treatment of this disease.  相似文献   

6.
Antibodies directed against the amino- and carboxy-terminal regions of dystrophin have been used to characterize 25 Duchenne muscular dystrophy (DMD), two intermediate, and two Becker muscular dystrophy (BMD) patients. Western blot analysis revealed an altered-size (truncated) immunoreactive dystrophin band in 11 of the 25 DMD patients, in one of the two intermediate patients, and in both BMD patients, when immunostained with antiserum raised against the amino terminus of dystrophin. None of the DMD or intermediate patients demonstrated an immunoreactive dystrophin band when immunostained with an antiserum specific for the carboxy terminus of the protein. In contrast, dystrophin was detected in both BMD patients by the antiserum specific for the carboxy terminus. Quantitative studies indicated that the relative abundance of dystrophin in patients with a severe (DMD), intermediate, or mild (BMD) phenotype may overlap, therefore suggesting that differential diagnosis of disease severity based entirely on dystrophin quantitation may be unsatisfactory. Our results suggest that a differential diagnosis between DMD and BMD would benefit from examination of both the N terminus and C terminus of the protein, in addition to measurements of the relative abundance of the protein.  相似文献   

7.
In this report we describe the use of dystrophin analysis both in the diagnosis of Duchenne muscular dystrophy (DMD) in an aborted fetus and in genetic counseling. Our consultand's initial carrier risk, as based on family history and creatine kinase determinations, was calculated as 0.6%. DNA analysis of her family (and fetus) modified this risk to 8.5%. Skeletal muscle of the 23-wk male abortus was found to be histologically indistinguishable from that of age-matched controls. However, immunoblot testing for dystrophin indicated that the fetus had indeed inherited dystrophin deficiency. The carrier risk of the consultand was thus elevated to 100%. Dystrophin assays should be employed whenever the diagnosis of fetal DMD is equivocal (e.g., cases in which a gene deletion cannot be identified). Assay results are crucial for genetic counseling for subsequent pregnancies and for studies of the early pathogenesis of muscular dystrophy.  相似文献   

8.
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are X-linked recessive genetic disorders resulting from mutations in the dystrophin gene. About two-thirds of the affected patients have large deletions or duplications, which occur in the 5' and central region of the gene. The remaining DMD/BMD cases show no deletions, so they cannot be easily identified by current strategies. In these DMD/BMD families, a linkage analysis that involves DNA markers of the flanking and intragenic dystrophin gene are necessary for carrier and prenatal diagnosis. We analyzed eighteen deletion-prone exons of the gene by a polymerase chain reaction (PCR) in order to characterize the molecular defects of the dystrophin gene in Korean DMD/BMD families. We also performed a linkage analysis to assess the usefulness and application of six short tandem repeat markers for molecular diagnosis in the families. We observed a deletion that eliminated the exon 50. Also, a linkage analysis in the families with six short tandem repeat (STR) markers showed heterozygosity at most of the STR markers. The haplotype analysis was useful for detecting the carrier status. This study will be helpful for a molecular diagnosis of DMD/BMD families in the Korean population.  相似文献   

9.
Most known mutations in the gene region responsible for Duchenne or Becker muscular dystrophy are deletions of varying extent. Here we describe a 220-kb insertion within the DMD/BMD gene that cosegregates with a somewhat atypical course of muscular dystrophy in a pedigree. The insertion is demonstrated by field-inversion gel electrophoresis as an enlarged SfiI fragment hybridizing to probe J-Bir, while neighboring SfiI fragments (detected by probes PERT 87 and J-66) are unchanged. Hybridization with DMD c-DNA probes did not reveal alterations in coding sequences. In this pedigree, the altered SfiI fragments provide convenient markers for carrier identification.  相似文献   

10.
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are caused in the majority of cases by deletions of the DMD gene and are readily detectable in affected males by multiplex polymerase chain reaction (PCR). However, different approaches must be used for the identification of female carriers, in which deletions are not detectable by PCR, because of the presence of a normal X chromosome. In this study, we used the multiple ligation probe amplification (MLPA) tool for the identification of female carriers of DMD deletions or duplications in 12 families with a single affected male, 10 of which were previously diagnosed as carriers of a DMD rearrangement, and the remaining two as having an unknown disease-causing mutation. In all the investigated affected males, MLPA analysis confirmed the presence of a DMD rearrangement, and in six of them allowed the refinement of the breakpoints. In 12 female relatives of the affected patients, MLPA analysis showed a DMD deletion or duplication, confirming their carrier status. Two of these were the mother and the sister of a patient whose disease-causing mutation was not known. MLPA analysis thus proved to be an useful tool for the analysis of both affected males and females carriers of DMD rearrangements in cases in which the disease-causing mutation in the affected male was not known, providing useful information for the genetic counselling of the family.Valentina Gatta and Oronzo Scarciolla contributed equally to this work.  相似文献   

11.
本文应用从人类X柒色体Xp~(21)区不同部位分离得到的9种DNA探针,分析了100名正常中国人,38名DMD患者及其母亲X柒色体Xp~(21)区的14个限制性位点多态性(RSP;又称限制性片段长度多态性,RFLP)。发现正常的X染色体与携带DMD基因的X染色体Xp~(21)区的RFLP频率没有明显差别;在38例DMD患者中有7例的X染色体有DNA片段缺失;在本文分析的24例患者母杀中有17例是DMD基因携带者,她们在Xp~(21)区的RFLP均存在杂合的多态性,因此可以应用RFLP连锁分析对这些家系进行DMD的产前诊断。  相似文献   

12.
Summary Mutations causing Duchenne muscular dystrophy (DMD) have a short survival. Therefore, birth and population prevalence are maintained by new mutations. The present inventory was made to estimate the birth and population prevalence rates of DMD in the Netherlands. Seven methods of case identification were used. Data on 496 definite, probable or possible DMD patients born since 1961, or alive on January 1, 1983, were obtained. Several methods gave an estimated ascertainment of more than 95%. The prevalence rate at birth of DMD was estimated at 23.7×10–5 (14215) male live births (MLB) yearly. The prevalence rate in the male population on January 1, 1983 was 5.4×10–5 (118496). About 1% of the males in this study may have autosomal recessive Duchenne-like muscular dystrophy. Until now there has been no convincing evidence for geographic differences in DMD prevalence at birth. A list of frequency studies of Duchenne muscular dystrophy is included. The DMD mutation rate calculated by the indirect method is 7.9×10–5 genes per generation. However, this may well be an over-estimate, as this method does not account for germline mosaicism. Using a modified sex ratio method the proportion of sporadic DMD among all cases was estimated to be 0.106 (range 0–0.332). High frequency of germline mosaicism in DMD is a likely cause for the apparent lack of sporadic cases as found in previous studies, if mutation rates in male and female gametes are equal. Therefore, methods for estimating the proportion of new mutants in DMD should take germline mosaicism into account. The modified sex ratio method allows incorporation of data on germline mosaicism if available.  相似文献   

13.
Duplications and deletions are known to cause a number of genetic disorders, yet technical difficulties and financial considerations mean that screening for these mutations, especially duplications, is often not performed. We have adapted multiplex amplifiable probe hybridization (MAPH) for the screening of the DMD gene, mutations in which cause Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy. MAPH involves the quantitative recovery of specifically designed probes following hybridization to immobilized genomic DNA. We have engineered probes for each of the 79 exons of the DMD gene, and we analyzed them by using a 96-capillary sequencer. We screened 24 control individuals, 102 patients, and 23 potential carriers and detected a large number of novel rearrangements, especially small, one- and two-exon duplications. A duplication of exon 2 alone was the most frequently occurring mutation identified. Our analysis indicates that duplications occur in 6% of patients with DMD. The MAPH technique as modified here is simple, quick, and accurate; furthermore, it is based on existing technology (i.e., hybridization, PCR, and electrophoresis) and should not require new equipment. Together, these features should allow easy implementation in routine diagnostic laboratories. Furthermore, the methodology should be applicable to any genetic disease, it should be easily expandable to cover >200 probes, and its characteristics should facilitate high-throughput screening.  相似文献   

14.
Duchenne muscular dystrophy (DMD) is the commonest and best-known of the muscular dystrophies. Being an X-linked disorder, it affects mainly boys. The disease gene was identified in 1987, with the majority of mutations demonstrated to be large-scale deletions. Current best practice molecular diagnosis includes multiplex ligation-dependent probe amplification (MLPA) followed by direct sequencing of all exons at the genomic level, or from cDNA, in order to detect point and other small mutations. The difference between DMD and the allelic Becker muscular dystrophy (BMD) is whether the precise mutation in the gene is a null mutation or results in a modified still partially functional protein. Over the last few years, significant progress has been made in moving experimental therapies into clinical trials, with one of the most promising possible therapies being anti-sense oligonucleotide induced exon-skipping, which converts DMD to BMD. In order to maximise the benefit from future therapies, it will be necessary to start administering the therapies as early as possible in the life of the affected boys, before significant muscle loss occurs. This will require early diagnosis, which evidence suggests is best achieved through population screening. Population screening also allows the avoidance of multiple affected boys in families with no previous family history.  相似文献   

15.
The deletion spectrum and distribution of deletion breakpoints (DBs) in 36 patients with Duchenne muscular dystrophy (DMD) from 33 families and in three patients with Becker muscular dystrophy (BMD) from one family from Bashkortostan were studied by amplifying 20 exons of the dystrophin gene by multiplex polymerase chain reaction (mPCR). Eight out of 34 unrelated DMD (BMD) patients (23.2%) were shown to carry a deletion varying in size from one to seven exons. Most DBs (15 out of 16, 93.7%) were in the distal region of the gene, commonly between exons 44-45, 45-47, and 50-52. Thus, high-polymorphic intergenic markers located in introns 44 (STR 44), 45 (STR 45), 49 (STR 49), and 50 (STR 50) can be used for indirect or direct carrier detection among women closely related to DMD patients that carry a deletion with DB located between exons 44-45, 45-47, and 50-52. Prenatal diagnosis of DMD is also possible in these families.  相似文献   

16.
Summary A DNA deletion in a patient with Becker muscular dystrophy (BMD) has been delineated by restriction endonuclease mapping. The deletion is unusually small, removing six kilobases (kb) of DNA distal to pERT 87-1 (DXS164). This region has previously been shown to contain an exon of a candidate gene which, when defective, causes Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy. Removal of this exon and surrounding DNA is apparently sufficient, in this case, to cause a BMD phenotype. The occurrence of this deletion in DXS164 would appear to confirm that this region is part of the BMD locus. Many DMD patients have deletions in and around this region, adding further evidence for the allelic nature of the two disorders. This fortuitous deletion may identify a functionally important domain of the protein product in terms of the severity of phenotype manifested.  相似文献   

17.
运用聚合酶链式反应(polymerasechainreaction,PCR)技术对3个Duchenne型肌营养不良症(DMD)家系中的患者进行dystrophin基因内9个外显子缺失检测,在2个家系中检测到外显子45、48、51缺失,同时运用PCR技术扩增位于dystrophin基因内内含子短串联重复序列,对非缺失型DMD家系进行了产前诊断,胎儿为正常女性.dystrophin基因外显子缺失检测方法快速、敏感、准确,可在临床推广中应用;短串联重复序列(STR)多态性分析方法可用于DMD家系的产前基因诊断和携带者检出.  相似文献   

18.
Duchenne muscular dystrophy (DMD) and other types of muscular dystrophies are caused by the loss or alteration of different members of the dystrophin protein complex. Understanding the molecular mechanisms by which dystrophin-associated protein abnormalities contribute to the onset of muscular dystrophy may identify new therapeutic approaches to these human disorders. By examining gene expression alterations in mouse skeletal muscle lacking α-dystrobrevin (Dtna−/−), we identified a highly significant reduction of the cholesterol trafficking protein, Niemann-Pick C1 (NPC1). Mutations in NPC1 cause a progressive neurodegenerative, lysosomal storage disorder. Transgenic expression of NPC1 in skeletal muscle ameliorates muscular dystrophy in the Dtna−/− mouse (which has a relatively mild dystrophic phenotype) and in the mdx mouse, a model for DMD. These results identify a new compensatory gene for muscular dystrophy and reveal a potential new therapeutic target for DMD.  相似文献   

19.
Duchenne muscular dystrophy (DMD) is a fatal and incurable muscle degenerative disorder. We identify a function of the protease urokinase plasminogen activator (uPA) in mdx mice, a mouse model of DMD. The expression of uPA is induced in mdx dystrophic muscle, and the genetic loss of uPA in mdx mice exacerbated muscle dystrophy and reduced muscular function. Bone marrow (BM) transplantation experiments revealed a critical function for BM-derived uPA in mdx muscle repair via three mechanisms: (1) by promoting the infiltration of BM-derived inflammatory cells; (2) by preventing the excessive deposition of fibrin; and (3) by promoting myoblast migration. Interestingly, genetic loss of the uPA receptor in mdx mice did not exacerbate muscular dystrophy in mdx mice, suggesting that uPA exerts its effects independently of its receptor. These findings underscore the importance of uPA in muscular dystrophy.  相似文献   

20.
Deletions/duplications in the Duchenne muscular dystrophy (DMD) gene account for 60 to 70% of all alterations. A new technique, multiplex ligation-dependent probe amplification (MLPA), has been described that allows the detection of large genetic rearrangements by simultaneous amplification of up to 45 target sequences. The present article is based on the diagnosis of the first Argentine affected families by the application of MLPA. DNA samples from patients with and without a previous diagnosis were included. MLPA assays were performed according to manufacturer recommendations. Polymerase chain reaction and direct sequencing were performed when a single-exon deletion was detected. Results were analyzed using the Gene Marker v1.6 and Sequencing Analysis v5.2 software. In the samples with a previous diagnosis (as identified by short tandem repeat-polymerase chain reaction analysis), MLPA confirmed in some samples the same deletion and detected in others a larger deleted fragment. This enabled the prediction of the expected male phenotype. One deletion and one duplication were detected in patients without previous diagnosis. In this study, we investigated the applicability of MLPA in our country. Our results showed a 100% confirmation of the deleted fragments detected by short tandem repeat segregation analysis. Moreover, in some cases, the MLPA assay was able to refine the breakpoints involved. In addition, MLPA identified deletions/duplications in samples without previous diagnosis. In comparison to the available diagnosis strategies in Argentina, MLPA is less time-consuming, and spans the complete coding region of DMD. The application of MLPA will improve the genetic diagnosis of DMD/Becker muscular dystrophy in our country.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号