首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The simple tubular heart of tunicates consists of a single layer of striated muscle cells which display distinct electrical properties at the luminal and extraluminal surfaces. We have investigated heart morphogenesis and cytodifferentiation in the ascidian, Botryllus schlosseri. Myocardium is formed by invagination from the wall of the heart primordium. Cell polarity is clearly apparent in the undifferentiated cells of the heart primordium and is maintained throughout the whole course of cardiac muscle differentiation. Myocardium cells are initially cubic in appearance, then undergo a progressive flattening with the formation of characteristic protrusions at the luminal surface. The first sign of muscle cell differentiation is the formation of close associations between sarcoplasmic reticulum cisterns and the plasma membrane at the luminal and junctional surface. Myofibrillogenesis also occurs near the luminal surface, whereas the cell portion facing the pericardial cavity maintains an undifferentiated structure. The findings support the hypothesis that membrane changes precede and influence myofibril formation in developing muscle cells.  相似文献   

2.
Cation sensitivities (K+, Na+, and Ca2+) of luminal and basolateral membrane surfaces of secretory acinar cells were compared using a luminally perfused and externally superfused salivary gland from the aquatic snail, Helisoma trivolvis. Tight junctions delimiting the two membrane surfaces were observed near the acinar lumen suggesting that the total membrane area exposed to the superfusion solution exceeded that in contact with the luminal perfusion solution. The resting membrane potential of acinar cells was found to be dependent upon the K+ concentration in both the external superfusion and the luminal perfusion solutions. Unilateral K+ elevation at either membrane surface produced a rapid and sustained depolarization of the acinar cell. For a given K+ concentration, the level of depolarization produced by K+ elevation at the basolateral surface was significantly higher than at the luminal surface. The highest level of membrane depolarization was observed following simultaneous K+ elevation at both membrane surfaces. The ability of acinar cells to generate overshooting action potentials in response to electrical field stimulation was dependent upon both Na+ and Ca2+. Complete blockade invariably occurred following bilateral removal of either cation. The effects of unilateral removal of either Na+ or Ca2+ proved to be somewhat variable. In general, unilateral removal of Na+ was more effective in reducing the regenerative response than Ca2+ while removal of either cation from the basolateral surface was more effective in reducing the regenerative response than its removal from the luminal surface. Electrically evoked action potentials in acinar cells could also be blocked with unilateral application of the Ca2+ antagonist, cadmium (Cd2+), at either membrane surface. However, higher Cd2+ concentrations were required to achieve complete blockade when applied to the luminal than to the basolateral gland surface. This result fails to support a hypothesis of voltage-sensitive Ca2+ channels being spatially restricted to the luminal cell surface in this preparation.  相似文献   

3.
Summary Electrophysiological experiments were performed onNecturus gallbladder to determine whether the main route of passive ion flow was via the cells or via a paracellular shunt path. In the first approach the following values were determined: the transepithelial resistance, the ratio of the voltage deflections across the luminal and basal cell membrane during transepithelial current flow, and the voltage spread within the epithelial cell layer during intracellular application of current pulses. From these data the luminal and basal cell membrane resistances were calculated to be 4,500 and 2,900 cm2, respectively, whereas the transepithelial resistance was only 310 cm2, indicating that approximately 96% of the transepithelial current bypassed the cells. This result was confirmed in a second approach, in which the intracellular voltage deflections were found to remain approximately constant, when the current pulses were passed from a cell into the interstitial compartment with the luminal compartment being empty or when they were passed from the cell into both external compartments simultaneously. In the third approach current was passed through the epithelium and a voltage-scanning microelectrode was moved across the surface of the epithelium to explore the induced electrical field. Significant distortions of the field were observed in the immediate vicinity of the cell borders. This result indicated that the paracellular shunt, which carries the main part of the transepithelial current, leads through the terminal bars and that the terminal bars or tight junctions arenot tight for transepithelial movement of small ions in gallbladder epithelium.  相似文献   

4.
Summary When amphotericin B is added to the medium bathing the luminal side of a rabbit gallbladder preparation, a serosa positive transmural p.d. (+2 to +8 mV) arises in a few minutes.Some authors have suggested [16] that the antibiotic would reduce tight-junction selectivity and the negative p.d. due to the backdiffusion of Na+ salts from the lateral spaces: then the opposite positive p.d., created by a hypothetical electrogenic Na+ pump, would be revealed. Against such an explanation, the experiments reported here show that, in parallel with the transepithelial p.d. changes, after the antibiotic addition, the luminal membrane potential is largely depolarized and the ratio between the mucosal and serosal cell resistance decreases. Moreover, the dependence on K+ of the luminal membrane potential is strongly reduced. Ten minutes after the antibiotic addition, modifications of cell water, of cell ion concentrations and contents and of net water transport begin to be observed. Conversely, during the first 10-min period of treatment, no alteration in tight-junction selectivity is detectable by imposing dilution potentials across the tissue; by tracer technique a significant decrease in tight-junction selectivity is observed only 30 min after treatment.Choline substitution for Na+ completely abolishes amphotericin B effects, whereas Cl replacement by SO 4 2– does not affect the polyene action. As a conclusion, the primary action of the antibiotic consists of an increase of Na+ conductance at the luminal cell barrier. Only a small fraction of the actual emf variation is measured across the whole epithelium because of the shunt in tight junctions.  相似文献   

5.
Early (E9.5-E11.5) embryonic heart cells beat spontaneously, even though the adult pacemaking mechanisms are not yet fully established. Here we show that in isolated murine early embryonic cardiomyocytes periodic oscillations of cytosolic Ca(2+) occur and that these induce contractions. The Ca(2+) oscillations originate from the sarcoplasmic reticulum and are dependent on the IP(3) and the ryanodine receptor. The Ca(2+) oscillations activate the Na(+)-Ca(2+) exchanger, giving rise to subthreshold depolarizations of the membrane potential and/or action potentials. Although early embryonic heart cells are voltage-independent Ca(2+) oscillators, the generation of action potentials provides synchronization of the electrical and mechanical signals. Thus, Ca(2+) oscillations pace early embryonic heart cells and the ensuing activation of the Na(+)-Ca(2+) exchanger evokes small membrane depolarizations or action potentials.  相似文献   

6.
Separated thyroid follicles can be maintained in suspension culture in Coon's modified F-12 medium in 0.5% calf serum. If the serum concentration is raised to 5%, the follicles undergo inversion in 3-5 d. During the process of inversion, epithelial cells can be observed in intermediate stages of polarity reversal. The earliest ultrastructural changes recognized are surface changes in which tight junctions and microvilli appear at the lateral margins of the cell near the medium. Later, changes in the distribution of intracellular organelles occur. The Golgi apparatus shifts towards the end of the cell facing the medium, and lysosomes shift toward the luminal end of the cell. The right junctions and microvilli at the luminal end of the cell disappear sometime after the cytoplasmic organelles rearrange. The luminal colloid disappears only after the surface changes (loss of tight junctions and microvilli) occur at the luminal end of the cell. There appears to be some regulation of the order in which changes occur during polarity reversal of the thyroid epithelial cell.  相似文献   

7.
Hinsch GW 《Tissue & cell》1992,24(3):379-385
The testis of the crayfish,Procambarus paeninsulanus, was prepared for light and electron microscopic study. It is composed of tubules containing germ-spermatogenic and somatic-Sertoli cells. In sections of tubules lacking sperm, the Sertoli cells rest on the basement membrane. A desmosome-like junction is found near the luminal surface between two adjacent Sertoli cells. It is closely associated with a long, septate junction. Between Sertoli cells which have surrounded numerous spermatids, the undulating membranes exhibit profiles of pleated septate junctions in tangential sections. The morphology of the pleated septate junctions between adjacent Sertoli cells suggests a possible role as a permeability barrier.  相似文献   

8.
Summary Pairs of spheroidal aggregates of embryonic chick heart cells, held in suction pipettes were brought into contact and allowed to synchronize their spontaneous action potentials. Contractions were suppressed with cytochalasin B. Both intracellular and extracellular electrodes were used to analyze the development of synchrony. Electric coupling occurred in three phases. During phase I electrical interactions were absent despite close physical contact. Phase II was characterized by partial synchrony. Action potentials in the faster aggregate (F) induced small depolarizations in the other member of the pair (S). These depolarizations sometimes triggered action potentials inS depending on when during the diastolic depolarization inS they occurred. In these cases both the latency between the action potentials (L) and the fluctuations in latency (V L) were large. At the end of phase II the aggregates often passed through a brief period when fluctuation in interbeat interval in both increased noticeably. In phase III, beginning about 8 min after initial contact, action potentials were completely entrained at a certainL. During the subsequent 20–40 minL fell along an approximately exponential time course from about 130 to <1 msec, whileV L declined in parallel. When well-coupled aggregates were pulled apart and immediately pressed back together, they re-established synchronization according to the usual three-phase time course. Synchronized aggregates could be partially decoupled by separating them just far enough to reduce the area of mutual contact. Pairs joined only by cellular strands maintained entrained action potentials with long latencies for many minutes. These results indicate that electronic junctions form between the paired heart cell aggregates causing the gradual development of action potential synchrony.  相似文献   

9.
1. A sucrose gap system was used to record action potentials and mechanical responses of flounder heart.2. Diltiazem eliminated mechanical responses and strongly inhibited the action potential plateau while nifedipine only slightly reduced cardiac contractions without significantly changing the action potential.3. Verapamil slightly hyperpolarized flounder heart but was without effect on either the action potential or mechanical activity except at very high concentrations.4. Lanthanum was ineffective at 2 mM on flounder heart, but manganese at 3 mM substantially inhibited electrical and mechanical responses accompanied by a small hyperpolarization. Substitution of manganese for calcium abolished all flounder cardiac activity.5. BAY K 8644 enhanced cardiac force and enhanced the action potential plateau while depolarizing the preparations. Calcium-free salines abolished heart contractions and the action potential plateau while the spike phase persisted.6. Low sodium salines enhanced while sodium-free salines abolished all heart activity as did tetrodotoxin above I μM. Tetrodotoxin abolished the action potential spike leaving only a small plateau phase.7. Substituting lithium for sodium hyperpolarized the heart, enhanced contractions and prolonged the action potential plateau. Ouabain enhanced cardiac activity and depolarized the heart but ferosemide was without effect on either electrical or mechanical activity.8. TEA at 6 mM had a modest positive inotropic effect and negative chronotropic effect on the heart while the action potential plateau phase was enhanced.9. These results indicate that extracellular sodium and calcium are crucial in flounder heart electrogenesis but such a major role for potassium could not be established.  相似文献   

10.
A STUDY OF THE INNERVATION OF THE TAENIA COLI   总被引:11,自引:2,他引:9       下载免费PDF全文
An electrophysiological and anatomical study of the guinea pig taenia coli is reported. Changing the membrane potential of single cells cannot modulate the rate of firing action potentials but does reveal electrical coupling between the cells during propagation. The amplitude of the junction potentials which occur during transmission from inhibitory nerves is unaffected in many cells during alteration of the membrane potential, indicating electrical coupling during transmission. The taenia coli is shown to consist of smooth muscle bundles which anastomose. There are tight junctions between the cells in the bundles, and these probably provide the pathway for the electrical coupling. The smooth muscle cells towards the serosal surface of the taenia coli are shown electrophysiologically to have an extensive intramural inhibitory innervation, but a sparse sympathetic inhibitory and cholinergic excitatory innervation. These results are in accordance with the distribution of these nerves as determined histochemically. As single axons are only rarely observed in the taenia coli, it is suggested that the only muscle cells which undergo permeability changes during transmission are those adjacent to varicosities in the nerve bundles. The remaining muscle cells then undergo potential changes during transmission because of electrical coupling through the tight junctions.  相似文献   

11.
Plants respond to various abiotic stimuli by activation and propagation of fast electrical signals, action potentials. To resolve the temporal increase in cytosolic Ca(2)(+) during the action potentials of higher plants, we regenerated transgenic potato plants that expressed the Ca(2)(+) photoprotein apoaequorin. These genetically engineered potato plants were used for simultaneous measurements of transient changes in the membrane potential and the Ca(2)(+) luminescence triggered by heat-induced action potentials. High temporal resolution for recording of the fast transient electrical and light signals was accomplished by a sampling rate of 1 kHz. Upon elicitation by heat the membrane potential depolarization preceded the rise of cytosolic Ca(2)(+) by 50-100 ms. Several Ca(2)(+) channel blockers were tested to inhibit the rise in cytosolic Ca(2)(+). Treatment of plants with Ruthenium Red blocked the elevation in cytosolic Ca(2)(+) that was associated with heat-stimulated action potentials. Furthermore, action potentials have been demonstrated to stimulate jasmonic acid biosynthesis and PINII gene expression. Therefore, we measured jasmonic acid and PINII gene expression levels subsequent to action potential initiation by a short heating pulse. As expected, jasmonic acid biosynthesis and PINII gene expression were induced by action potentials. Pretreatment of potato plants with Ruthenium Red inhibited induction of jasmonic acid biosynthesis and PINII gene expression that was generally triggered by heat-activated action potentials.  相似文献   

12.
Voltage-gated sodium (Nav) channels in cardiomyocytes are localized in specialized membrane domains that optimize their functions in propagating action potentials across cell junctions and in stimulating voltage-gated calcium channels located in T tubules. Mutation of the ankyrin-binding site of Nav1.5, the principal Nav channel in the heart, was previously known to cause cardiac arrhythmia and the retention of Nav1.5 in an intracellular compartment in cardiomyocytes. Conclusive evidence is now provided that direct interaction between Nav1.5 and ankyrin-G is necessary for the expression of Nav1.5 at the cardiomyocyte cell surface.  相似文献   

13.
Histological analysis revealed three types of mucous cells present in the tissues of Pteraster tesselatus Ives. They were all unicellular in structure and each was restricted to certain areas of the anatomy. Mucus produced by these gland cells was forced out onto the aboral surface of Pteraster by water pressure generated within the nidamental cavity (respiratory chamber).Water flow in and out of the respiratory chamber was powered both by muscle contractions and a complex network of overlapping ossicles. Ambient sea water was allowed into the respiratory chamber only through large pores lining the ambulacral groove. Expulsion of respiratory water out of the chamber was by either one of two different pathways. In defence, water and secreted mucus were forced out of the numerous spiracular openings that perforate the supradorsal membrane. When, on the other hand, the sea star was not in a defensive posture, water was simply passed out through the centrally located osculum.  相似文献   

14.
Effect of Black Widow Spider Venom on the Lobster Neuromuscular Junctions   总被引:2,自引:0,他引:2  
The effect of black widow spider venom (BWSV) on the junctions of the lobster nerve-muscle preparation was studied by intracellular recordings. After application of BWSV both excitatory and inhibitory postsynaptic potentials (epsp and ipsp) were augmented then suppressed. The frequency of miniature potentials was markedly increased by BWSV. Summated postsynaptic conductance changes appeared to be responsible for the membrane depolarization and the decrease in effective membrane resistance seen in the early stages of the venom action. In the later stages both excitatory and inhibitory "giant miniature potentials" were evoked. No discernible changes were found in the reversal potential of the epsp and ipsp and in the sensitivity of the postsynaptic membrane. The results indicate that BWSV has a presynaptic action at crustacean neuromuscular junctions.  相似文献   

15.
The course of development of the epithelial tight junctions of the Wolffian duct and the caput epididymal principal cells in the mouse were examined by freeze-fracture. The histogenesis of the epididymis is briefly described. In the 12-day embryo, tight junction meshworks surround the entire circumference of the columnar cells in the juxtaluminal position. During fetal life, the strands are more discontinuous than those of postnatal mice, and two or more strands frequently run together. Up to 10 days of age, the basal compartments of the tight junctions are much larger than the luminal ones. Marked increases in both the number of strands and the depth of the tight junctions appear by 20 days. Strands with a terminal loop are often observed up to 16 days, except for the newborn stage, suggesting that the formation of the terminal loop is related to the active elongation of the strands. The tight junctions increase greatly in number and depth near three-cell junctions. Up to 20 days, the strands anastomose frequently, with no particular orientation to the cell axis. After 20 to 37 days, the direction of the strands becomes parallel to the luminal surface, with a decreased number of anastomoses as the lumen widens. In the adult, the number of sealing strands is about 10 within the depth of the tight junctions. Free-ended strands are seen in all stages examined. The formation of the tight junction meshworks is discussed in the light of the findings during the development.  相似文献   

16.
A contraction of the rabbit ear artery can be induced by depolarizing the cells with a K-rich solution if Ca is present. 10(-9)-10(-6) M noradrenaline and 10(-8)-10(-7) M histamine cause a contraction of this tissue without modifying the membrane potential. If the histamine concentration exceeds 10(-7) M some depolarization of the membrane also occurs. Both noradrenaline and histamine also induce a contraction in Ca-free medium, even if La is present. None of these stimuli produces action potentials or fluctuations of the membrane potential. Besides these tonic contractions, the ear artery can also produce phasic contractions when 10 mM TEA is added to the medium. Such contractions are caused by the appearance of action potentials which are Ca dependent and which are similar to those appearing in visceral smooth muscle. A study of 45Ca fluxes has revealed that K depolarization and noradrenaline cause only a small increase in 45Ca uptake by the cells, while noradrenaline also releases cellular Ca, even in Ca-free medium. A comparison of tension development and 45Ca release induced by noradrenaline in Ca-free medium suggests that Ca extrusion could be very efficient in the rabbit ear artery and that it could play a direct role in its relaxation.  相似文献   

17.
The evidence that calcium (Ca) plays an important role in electrical activity and an essential role in excitation--contraction (E--C) coupling in crustacean muscles is reviewed. These muscles produce graded electrical and mechanical responses to applied depolarizations. Removal of Ca from the bath solution eliminates both responses. Addition of Ba2+ or Sr2+ to Ca-free saline restores membrane electrogenesis, and all-or-none action potentials can be induced. With Sr2+ vigorous contractions are produced, whereas Ba action potentials evoke minimal or no tension, showing that rapid depolarization of the membrane potential is not sufficient per se for E--C coupling in crab and barnacle muscle. Several inorganic (e.g., multivalent cations) and organic (e.g., aminoglycoside antibiotics) which block membrane Ca channels block electrogenesis and contraction. However, the "Ca antagonists" verapamil and D600 also block Ca uptake at intracellular storage sites, resulting in spontaneous contractions and the delayed relaxation of small contractions associated with residual Ca currents. The evidence that the Ca which enters the fibres needs to release Ca from intracellular storage sites to produce contractions is detailed and discussed. Finally, a model for E--C coupling is discussed. This model includes the sites and mechanisms of action for several chemicals which modify E--C coupling in crustacean muscle fibres.  相似文献   

18.
The rete mirabile of Hippopodius (Cl. Hydrozoa, O. Siphonophora) is a sheet of giant endoderm cells penetrated by branches of the ventral radial canal. The cells appear to be highly polyploid. The rough ER is very richly developed and expanded ER cisternae containing amorphous material (presumably synthesized protein) are observed near the outer cell surface. The cells are electrically coupled, and are connected by gap junctions. The rete is electrically excitable and cell to cell conduction of action potentials at 10 cm/s is observed. The action potentials are all-or-none, positive-going events, showing amplitudes of about 70 mV and arising from a 44 mV resting potential. Slowly developing and decaying secondary depolarizations, capable of summing to the 20 mV level, are also observed. After passage of a train of impulses, the rete cells swell and secretion drops appear at the surface, these changes becoming apparent within a few seconds. In 15 mM Mn2+ the response fails to occur, and secondary depolarizations ("secretion potentials") are not seen. Spike propagation is not affected. In Na+-free solutions the spikes are reduced and propagation eventually fails. It is suggested that the spikes are sodium-dependent events which trigger a calcium-dependent secretory process. The composition and biological activity of the secretion are uncertain, but indirect evidence suggests a possible defensive or repellant role for the response.  相似文献   

19.
Stem cell transplantation holds great promise for the treatment of myocardial infarction injury. We recently described the embryonic stem cell-derived cardiac progenitor cells (CPCs) capable of differentiating into cardiomyocytes, vascular endothelium, and smooth muscle. In this study, we hypothesized that transplanted CPCs will preserve function of the infarcted heart by participating in both muscle replacement and neovascularization. Differentiated CPCs formed functional electromechanical junctions with cardiomyocytes in vitro and conducted action potentials over cm-scale distances. When transplanted into infarcted mouse hearts, CPCs engrafted long-term in the infarct zone and surrounding myocardium without causing teratomas or arrhythmias. The grafted cells differentiated into cross-striated cardiomyocytes forming gap junctions with the host cells, while also contributing to neovascularization. Serial echocardiography and pressure-volume catheterization demonstrated attenuated ventricular dilatation and preserved left ventricular fractional shortening, systolic and diastolic function. Our results demonstrate that CPCs can engraft, differentiate, and preserve the functional output of the infarcted heart.  相似文献   

20.

The zooids in colonial tunicates do not appear to be directly interconnected by nerves, but this has not prevented the evolution of coordinated behaviour in several groups. In Botryllus and other colonial styelid asci‐dians the endothelium lining the blood vessels is excitable and transmits action potentials from cell to cell via gap junctions. These signals mediate protective contractions of the zooids and synchronize contractions of the vascular ampullae. In didemnid ascidians such as Diplosoma a network of myocytes in the tunic serves to transmit excitation and to cause contractions of the cloacal apertures. Individual zooids of Pyrosoma protect themselves by closing their siphons and arresting their branchial cilia when stimulated. At the same time a flash of light is emitted. Neighbouring zooids sense the flash with their photoreceptors and respond in turn with protective responses and light emission. Protective responses thus spread by photic signalling and propagate from zooid to zooid through the colony in a saltatory manner. In chains of Salpafusifortnis, changes in the direction and/or speed of swimming are transmitted from zooid to zooid via adhesion plaques. When a zooid is stimulated, its body‐wall epithelium conducts action potentials to the plaque connecting it to the next zooid, exciting receptor neurons in that zooid. These receptors have sensory processes that bridge the gap between the two zooids. The sensory neurons so excited in the second zooid conduct impulses to the brain where they alter the motor output pattern, and at the same time generate epithelial action potentials that travel to the next zooid in line, where the same thing happens.

It is not clear why these unconventional signalling methods have evolved but the tunic may be an inhospitable environment for nerves, making conventional nervous links impossible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号