首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Conditions were developed for the long-term stabilization of Ca2+-ATPase in detergent-solubilized sarcoplasmic reticulum, purified Ca2+-ATPase, and purified-delipidated Ca2+-ATPase preparations. The standard storage medium contains 0.1 M KCl, 10 mM K-3-(N-morpholino)propanesulfonate, pH 6.0, 3 mM MgCl2, 20 mM CaCl2, 20% glycerol, 3 mM NaN3, 5 mM dithiothreitol, 25 IU/ml Trasylol, 2 micrograms/ml 1,6-di-tert-butyl-p-cresol, 2 mg/ml protein, and 2-4 mg of detergent/mg of protein. Preparations stored under these conditions at 2 degrees C in a nitrogen atmosphere retain significant Ca2+-stimulated ATPase activity for periods of 5-6 months or longer when assayed in the presence of asolectin. The same conditions are also conducive for the formation of three-dimensional microcrystals of Ca2+-ATPase. Of the 49 detergents tested for solubilization, optimal crystallization of Ca2+-ATPase was obtained in sarcoplasmic reticulum solubilized with octaethylene glycol dodecyl ether at a detergent/protein weight ratio of 2, and with Brij 36T, Brij 56, and Brij 96 at a detergent/protein ratio of 4. Similar Ca2+-induced crystals of Ca2+-ATPase were obtained with purified or purified delipidated ATPase preparations at lower detergent/protein ratios. The stabilization of the ATPase activity in the presence of detergents is the combined effect of high Ca2+ (20 mM) and a relatively high glycerol concentration (20%). Ethylene glycol, glucose, sucrose, or myoinositol can substitute for glycerol with preservation of ATPase activity for several weeks in the presence of 20 mM Ca2+.Ca2+-induced association between ATPase molecules may be an essential requirement for preservation of enzymatic activity, both in intact sarcoplasmic reticulum and in solubilized preparations.  相似文献   

2.
The dependence of the (Ca2+ + Mg2+)-ATPase activity of sarcoplasmic reticulum vesicles upon the concentration of pentobarbital shows a biphasic pattern. Concentrations of pentobarbital ranging from 2 to 8 mM produce a slight stimulation, approximately 20-30%, of the ATPase activity of sarcoplasmic reticulum vesicles made leaky to Ca2+, whereas pentobarbital concentrations above 10 mM strongly inhibit the activity. The purified ATPase shows a higher sensitivity to pentobarbital, namely 3-4-fold shift towards lower values of the K0.5 value of inhibition by this drug. These effects of pentobarbital are observed over a wide range of ATP concentrations. In addition, this drug shifts the Ca2+ dependence of the (Ca2+ + Mg2+)-ATPase activity towards higher values of free Ca2+ concentrations and increases several-fold the passive permeability to Ca2+ of the sarcoplasmic reticulum membranes. At the concentrations of pentobarbital that inhibit this enzyme in the sarcoplasmic reticulum membrane, pentobarbital does not significantly alter the order parameter of these membranes as monitored with diphenylhexatriene, whereas the temperature of denaturation of the (Ca2+ + Mg2+)-ATPase is decreased by 4-5 C degrees, thus, indicating that the conformation of the ATPase is altered. The effects of pentobarbital on the intensity of the fluorescence of fluorescein-labeled (Ca2+ + Mg2+)-ATPase in sarcoplasmic reticulum also support the hypothesis of a conformational change in the enzyme induced by millimolar concentrations of this drug. It is concluded that the inhibition of the sarcoplasmic reticulum ATPase by pentobarbital is a consequence of its binding to hydrophobic binding sites in this enzyme.  相似文献   

3.
The mycotoxin, cyclopiazonic acid (CPA), inhibits the Ca2+-stimulated ATPase (EC 3.6.1.38) and Ca2+ transport activity of sarcoplasmic reticulum (Goeger, D. E., Riley, R. T., Dorner, J. W., and Cole, R. J. (1988) Biochem. Pharmacol. 37, 978-981). We found that at low ATP concentrations (0.5-2 microM) the inhibition of ATPase activity was essentially complete at a CPA concentration of 6-8 nmol/mg protein, indicating stoichiometric reaction of CPA with the Ca2+-ATPase. Cyclopiazonic acid caused similar inhibition of the Ca2+-stimulated ATP hydrolysis in intact sarcoplasmic reticulum and in a purified preparation of Ca2+-ATPase. Cyclopiazonic acid also inhibited the Ca2+-dependent acetylphosphate, p-nitrophenylphosphate and carbamylphosphate hydrolysis by sarcoplasmic reticulum. ATP protected the enzyme in a competitive manner against inhibition by CPA, while a 10(5)-fold change in free Ca2+ concentration had only moderate effect on the extent of inhibition. CPA did not influence the crystallization of Ca2+-ATPase by vanadate or the reaction of fluorescein-5'-isothiocyanate with the Ca2+-ATPase, but it completely blocked at concentrations as low as 1-2 mol of CPA/mol of ATPase the fluorescence changes induced by Ca2+ and [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) in FITC-labeled sarcoplasmic reticulum and inhibited the cleavage of Ca2+-ATPase by trypsin at the T2 cleavage site in the presence of EGTA. These observations suggest that CPA interferes with the ATP-induced conformational changes related to Ca2+ transport. The effect of CPA on the sarcoplasmic reticulum Ca2+-ATPase appears to be fairly specific, since the kidney and brain Na+,K+-ATPase (EC 3.6.1.37), the gastric H+,K+-ATPase (EC 3.6.1.36), the mitochondrial F1-ATPase (EC 3.6.1.34), the Ca2+-ATPase of erythrocytes, and the Mg2+-activated ATPase of T-tubules and surface membranes of rat skeletal muscle were not inhibited by CPA, even at concentrations as high as 1000 nmol/mg protein.  相似文献   

4.
The involvement of membrane protein in dystrophic chicken fragmented sarcoplasmic reticulum alterations has been examined. A purified preparation of the (Ca2+ + Mg2+)-ATPase protein from dystrophic fragmented sarcoplasmic reticulum was found to have a reduced calcium-sensitive ATPase activity and phosphoenzyme level, in agreement with alterations found in dystrophic chicken fragmented sarcoplasmic reticulum. An amino acid analysis of the ATPase preparations showed no difference in the normal and dystrophic (Ca2+ + Mg2+)-ATPase. The (Ca2+ + Mg2+)-ATPase was investigated further by isoelectric focusing and proteolytic digestion of the fragmented sarcoplasmic reticulum. Neither of these methods indicated any alteration in the composition of the dystrophic (Ca2+ + Mg2+)-ATPase. We have concluded that the alterations observed in dystrophic fragmented sarcoplasmic reticulum are not due to increased amounts of non-(Ca2+ + Mg2+)-ATPase protein, and that the normal and dystrophic (Ca2+ + Mg2+)-ATPase protein are not detectably different.  相似文献   

5.
The interaction between Ca2+-ATPase molecules in the native sarcoplasmic reticulum membrane and in detergent solutions was analyzed by chemical crosslinking, high performance liquid chromatography (HPLC), and by the polarization of fluorescence of fluorescein 5'-isothiocyanate (FITC) covalently attached to the Ca2+-ATPase. Reaction of sarcoplasmic reticulum vesicles with glutaraldehyde causes the crosslinking of Ca2+-ATPase molecules with the formation of dimers, tetramers and higher oligomers. At moderate concentrations of glutaraldehyde solubilization of sarcoplasmic reticulum by C12 E8 or Brij 36T (approximately equal to 4 mg/mg protein) decreased the formation of higher oligomers without significant interference with the appearance of crosslinked ATPase dimers. These observations are consistent with the existence of Ca2+-ATPase dimers in detergent-solubilized sarcoplasmic reticulum. Ca2+ (2-20 mM) and glycerol (10-20%) increased the degree of crosslinking at pH 6.0 both in vesicular and in solubilized sarcoplasmic reticulum, presumably by promoting interactions between ATPase molecules; at pH 7.5 the effect of Ca2+ was less pronounced. In agreement with these observations, high performance liquid chromatography of sarcoplasmic reticulum proteins solubilized by Brij 36T or C12 E10 revealed the presence of components with the expected elution characteristics of Ca2+-ATPase oligomers. The polarization of fluorescence of FITC covalently attached to the Ca2+-ATPase is low in the native sarcoplasmic reticulum due to energy transfer, consistent with the existence of ATPase oligomers (Highsmith, S. and Cohen, J.A. (1987) Biochemistry 26, 154-161); upon solubilization of the sarcoplasmic reticulum by detergents, the polarization of fluorescence increased due to dissociation of ATPase oligomers. Based on its effects on the fluorescence of FITC-ATPase, Ca2+ promoted the interaction between ATPase molecules, both in the native membrane and in detergent solutions.  相似文献   

6.
The electrogenicity and some molecular properties of the sarcoplasmic reticulum Ca2+ pump protein were studied by measuring steady-state Ca2+ pump currents. Ca2(+)-ATPase protein was solubilized from rabbit skeletal muscle sarcoplasmic reticulum membrane preparations and purified by liquid chromatography. The purified Ca(+)-ATPase molecules were reconstituted into proteoliposomes and then incorporated by fusion into a planar bilayer lipid membrane. Short circuit currents across the planar membrane were detected when the ATPase molecules were activated by addition of ATP under optimal ionic conditions. Thus, the electrogenicity of the Ca2+ pump molecules was directly demonstrated. The amplitude of the pump current was dependent on the ATP concentration, and the relation was described by a Michaelis-Menten-type equation. The Michaelis constant was calculated to be 0.69 +/- 0.16 mM, which agrees well with the dissociation constant for a low affinity ATP-binding site deduced previously from the kinetics of ATP hydrolysis and from ATP binding.  相似文献   

7.
Structural and functional properties of a Ca2+-ATPase from human platelets   总被引:3,自引:0,他引:3  
An antibody prepared against highly purified rabbit muscle Ca2+-ATPase from sarcoplasmic reticulum has been observed to cross-react with proteins in human platelet membrane vesicles. The antibody specifically precipitated Ca2+-ATPase activity from solubilized human platelet membranes and recognized two platelet polypeptides denatured in sodium dodecyl sulfate with Mr = 107,000 and 101,000. Ca2+-ATPase activity from Brij 78-solubilized platelet membranes was purified up to 10-fold. The purified preparation consisted mainly of two polypeptides with Mr approximately 100,000, and 40,000. The lower molecular weight protein appeared unrelated to Ca2+-ATPase activity. The Ca2+-ATPase in human platelet membrane vesicles exhibited "negative cooperativity" with respect to the kinetics of ATP hydrolysis. The apparent Km for Ca2+ activation of ATPase activity was 0.1 microM. Ca2+-dependent phosphorylation of platelet vesicles by [gamma-32P]ATP at 0 degrees C yielded a maximum of 0.2-0.4 nmol of PO4/mg of protein that was labile at pH 7.0 and 20 degrees C. This result suggests that only about 2-4% of the total protein in platelet membrane vesicles is the Ca2+-ATPase, which agrees with an estimate based on the specific activity of the Ca2+-ATPase in platelet membranes (20-50 nmol of ATP hydrolyzed/min/mg of protein at 30 degrees C). Calmodulin resulted in only a 1.6-fold stimulation of Ca2+-ATPase activity even after extensive washing of membranes with a calcium chelator or chlorpromazine. It is concluded that human platelets contain a Ca2+-ATPase immunochemically related to the Ca2+ pump from rabbit sarcoplasmic reticulum and that the enzymatic characteristics and molecular weight of the platelet ATPase are quite similar to those of the muscle ATPase.  相似文献   

8.
The temperature dependence of the Ca2+-dependent ATPase activity and of the conformational fluctuation of the ATPase molecule has been measured for four kinds of preparations: fragmented sarcoplasmic reticulum, MacLennan's enzyme (purified ATPase preparation), and DOL and egg PC-ATPase (purified ATPase preparations in which lipids are replaced with dioleoyllecithin and egg yolk lecithin, respectively). It has been found that Arrhenius plots of the Ca2+-dependent ATPase activity show a break at about 18 degrees C for all the preparations. Hydrogen--deuterium exchange kinetics of the peptide NH protons were used to measure the conformational fluctuation of the protein molecules. Van't Hoff plots of the conformational fluctuation amplitude of a region near the surface of the ATPase molecule also show a break at about 18 degrees C for all the preparations. It is concluded that the break at around 18 degrees C is not related to a gel-liquid crystalline transition of lipids but to a change in the conformation of the ATPase molecule existing in fluid lipids.  相似文献   

9.
1. From the intrinsic fluorescence spectral properties and fluorescence quenching experiments done with acrylamide and iodide, using native sarcoplasmic reticulum vesicles, purified ATPase and ATPase solubilized with 1% Triton X-100, it is deduced that practically all the fluorescent tryptophanyl residues of this protein belong to a single population showing similar hydrophobic microenvironments. 2. Both acrylamide and iodide seem to be able to penetrate through the sarcoplasmic reticulum membrane. 3. The intrinsic fluorescence of the Ca2+-ATPase due to tryptophan residues probably buried inside the membrane is used as a tool to follow thermotropic changes in membrane fluidity of reconstituted systems.  相似文献   

10.
The delipidated sarcoplasmic reticulum (SR) Ca(2+)-ATPase was reconstituted into proteoliposomes containing different phospholipids. The result demonstrated the necessity of phosphatidylcholine (PC) for optimal ATPase activity and phosphatidylethanolamine (PE) for the optimal calcium transport activity. Fluorescence intensity of Fluorescein 5-isothiocyanate (FITC)-labeled enzyme at Lys515 as well as the measurement of the distance between 5-((2-[(iodoacetyl) amino] ethyl) amino)naphthalene-1-sulphonic acid (IAEDANS) label sites (Cys674/670) and Pr3+ demonstrated a conformational change of cytoplasmic domain, consequently, leading to the variation of the enzyme function with the proteoliposomes composition. Both the intrinsic fluorescence of Trp and its dynamic quenching by HB decreased with increasing PE content, revealing the conformational change of transmembrane domain. Time-resolved fluorescence study characterized three classes of Trp residues, which showed distinctive variation with the change in phospholipid composition. The phospholipid headgroup size caused the conformational change of SR Ca(2+)-ATPase, subsequent the ATPase activity and Ca2+ uptake.  相似文献   

11.
It has been suggested that vesicles derived from the sarcoplasmic reticulum of skeletal muscle contain Ca2+ channels which can be opened by interaction with sulfhydryl reagents such as Ag+ or Hg2+. We show that, in reconstituted vesicles containing the (Ca2+-Mg2+)-ATPase purified from sarcoplasmic reticulum as the only protein, the ATPase can act as a pathway for Ca2+ efflux and that Ag+ induces a rapid release of Ca2+ from such reconstituted vesicles. We also show that Ag+ has a marked inhibitory effect on the ATPase activity of the purified ATPase. We suggest that the (Ca2+-Mg2+)-ATPase can act as a pathway for rapid Ca2+ release from sarcoplasmic reticulum.  相似文献   

12.
Cobalt ion inhibits the Ca2+ + Mg2(+)-ATPase activity of sealed sarcoplasmic reticulum vesicles, of solubilized membranes and of the purified enzyme. To use Co2+ appropriately as a spectroscopic ruler to map functional sites of the Ca2+ + Mg2(+)-ATPase, we have carried out studies to obtain the kinetic parameters needed to define the experimental conditions to conduct the fluorimetric studies. 1. The apparent K0.5 values of inhibition of this ATPase are 1.4 mM, 4.8 mM and 9.5 mM total Co2+ at pH 8.0, 7.0 and 6.0, respectively. The inhibition by Co2+ is likely to be due to free Co2+ binding to the enzyme. Millimolar Ca2+ can fully reverse this inhibition, and also reverses the quenching of the fluorescence of fluorescein-labeled sarcoplasmic reticulum membranes due to Co2+ binding to the Ca2+ + Mg2(+)-ATPase. Therefore, we conclude that Co2+ interacts with Ca2+ binding sites. 2. Co2+.ATP can be used as a substrate by this enzyme with Vmax of 2.4 +/- 0.2 mumol ATP hydrolyzed min-1 (mg protein)-1 at 20-22 degrees C and pH 8.0, and with a K0.5 of 0.4-0.5 mM. 3. Co2+ partially quenches, about 10 +/- 2%, the fluorescence of fluorescein-labeled sarcoplasmic reticulum Ca2+ + Mg2(+)-ATPase upon binding to this enzyme at pH 8.0. From the fluorescence data we have estimated an average distance between Co2+ and fluorescein in the ATPase of 1.1-1.8 nm or 1.3-2.1 nm for one or two equidistant Co2+ binding sites, respectively. 4. Co2+.ATP quenches about 20-25% of the fluorescence of fluorescein-labeled Ca2+ + Mg2(+)-ATPase, from which we obtain a distance of 1.1-1.9 nm between Co2+ and fluorescein located at neighbouring catalytic sites.  相似文献   

13.
The properties of sarcoplasmic reticulum Ca2+-ATPase have been studied after modification of the ATP high affinity binding site with fluorescein isothiocyanate, both in the membranous state and after solubilization with the nonionic detergent, octaethyleneglycol monododecyl ether. Total inactivation of both membrane-bound and solubilized Ca2+-ATPase requires covalent attachment of 1 mol of fluorescein/mol of enzyme (115,000 g of protein) or per binding site for ATP. Sedimentation velocity studies of soluble enzyme showed that both unlabeled and fluorescein-labeled Ca2+-ATPase were present in a predominantly monomeric form. The phosphorylation level of unlabeled Ca2+-ATPase was unchanged by solubilization. Dephosphorylation measurements at 0 degree C indicated that the phosphorylation is an intermediate in the ATPase reaction catalyzed by solubilized Ca2+-ATPase. Fluorescein labeling of half of the Ca2+-ATPase in the membrane did not influence the enzyme kinetics of the remaining unmodified Ca2+-ATPase. Measurements of both fluorescein and tryptophan fluorescence indicated that the soluble monomer of Ca2+-ATPase like the membrane-bound enzyme exists in a Ca2+-dependent equilibrium between two principal conformations (E and E). E (absence of Ca2+) is unstable in the soluble form, but the pCa dependence of the E - E equilibrium is identical with that of the membranous Ca2+-ATPase (pCa0.5 = 6.7 and Hill coefficient 2). These results suggest that the Ca2+-ATPase polypeptides function with a high degree of independence in the membrane.  相似文献   

14.
The Ca2+-dependent ATPase of sarcoplasmic reticulum after solubilization with deoxycholate and removal of lipid by gel chromatography exists as a mixture of monomer, dimer, and smaller amounts of higher molecular weight aggregates. The binding capcity of deoxycholate by monomeric and oligomeric forms of the ATPase is 0.3 g/g of protein at pH 8 and ionic strength 0.11. Examination in the analytical ultracentrifuge results in estimates of protein molecular weight of monomer of 115 000 +/- 7000 and of Stokes radius of 50-55 A. The results indicate an asymmetric shape of both delipidated monomer and dimer. Solubilization of ATPase vesicles by deoxycholate at high protein dilutions leads to almost instantaneous loss of ATPase activity. However, ATPase may be solubilized by deoxycholate in presence of phospholipid and sucrose in a temporarily active state. Inactivation appears to be accompanied by delipidation and conformational changes of the protein as evidenced by circular dichroism measurements. Sedimentation velocity examination of enzymatically active preparations of soluble ATPase in presence of phospholipid and sucrose strongly suggests that the major part of enzymatic activity is derived from a monomer with an asymmetric shape. The extent of formation of soluble oligomers by column chromatography was dependent on the exact conditions used for initial solubilization of ATPase. No evidence for differences among monomer and dimer fractions was obtained by isoelectric focusing and amino acid analysis. The results of these studies are compatible with electron-microscopic studies by other authors which suggest that the ATPase has an elongated shape with limited hydrophobic contact with the membrane lipid. A resemblance of delipidated oligomers with the form in which ATPase occurs in the membrane is conjectural at present.  相似文献   

15.
Sarcoplasmic reticulum Ca2+-ATPase solubilized in monomeric form by nonionic detergent was reacted with CrATP in the presence of 45Ca2+. A Ca2+-occluded complex formed, which was stable during high performance liquid chromatography in the presence of excess non-radioactive Ca2+. The elution position corresponded to monomeric Ca2+-ATPase. It is concluded that a single Ca2+-ATPase polypeptide chain provides the full structural basis for Ca2+ occlusion.  相似文献   

16.
Crystalline arrays of Ca2+-ATPase molecules develop in detergent-solubilized sarcoplasmic reticulum during incubation for several weeks at 2 degrees C under nitrogen in a medium of 0.1 M KCl, 10 mM K-3-(N-morpholino)propanesulfonate, pH 6.0, 3 mM MgCl2, 20 mM CaCl2, 20% glycerol, 3 mM NaN3, 5 mM dithiothreitol, 25 IU/ml Trasylol, 2 micrograms/ml 1,6-di-tert-butyl-p-cresol, 2 mg/ml protein, and 2-4 mg of detergent/mg of protein. Electron microscopy of sectioned, negatively stained, freeze-fractured, and frozen-hydrated Ca2+-ATPase crystals indicates that they consist of stacked lamellar arrays of Ca2+-ATPase molecules. Prominent periodicities of ATPase molecules within the lamellae arise from a centered rectangular lattice of dimensions 164 x 55.5 A. The association of lamellae into three-dimensional stacks is assumed to involve interactions between the exposed hydrophilic headgroups of ATPase molecules, that is promoted by glycerol and 20 mM Ca2+. Similar Ca2+-induced crystals were observed with purified or purified and delipidated Ca2+-ATPase preparations at lower detergent/protein ratios. Cross-linking of Ca2+-ATPase crystals with glutaraldehyde protects the structure against conditions such as low Ca2+, high pH, elevated temperature, SH group reagents, high concentration of detergents, and removal of phospholipids by extraction with organic solvents that disrupt unfixed preparations.  相似文献   

17.
Stabilization of detergent-solubilized Ca2+-ATPase by poly(ethylene glycol)   总被引:1,自引:0,他引:1  
The (Ca2+ + Mg2+)-ATPase from sarcoplasmic reticulum (SR) has been solubilized with 1-alkanoyl propanediol-3-phosphorylcholines with chainlengths ranging between 8 and 12 C atoms. A marked dependence of the ATPase activity upon the chainlength was found, indicating that alkyl chainlengths with 12 C atoms are necessary for retention of activity. Addition of poly(ethylene glycol) to the eluting buffers used for gel filtration of the ATPase-detergent micelles was found to increase the activity and the long-term stability significantly. In the presence of Ca2+, the elution volume indicated an ATPase dimer, whereas in the absence of Ca2+ the elution volume indicated a monomeric solution. The purity of the preparations after gel filtration was improved by subsequent chromatography with a hydroxyapatite column.  相似文献   

18.
Changes in Ca2+ binding after phosphorylation of membranous or detergent-solubilized preparations of sarcoplasmic reticulum Ca2+-ATPase with ATP were followed spectrophotometrically by the use of murexide. Distinct Ca2+ release from the two high-affinity translocation sites was observed, particularly at alkaline pH and at low Ca2+/Mg2+ concentration ratios. Phosphorylation also induced additional binding of Ca2+ at a third site in competition with Mg2+. Ca2+ release was increased after solubilization of Ca2+-ATPase in predominantly monomeric form with the nonionic detergent octaethyleneglycol monododecyl ether. At 0 degree C, chemical-quench studies with [32P]ATP indicated that release of Ca2+ is correlated with the level of ADP-insensitive phosphoenzyme (2 mol of Ca2+ released per mol of E2P formed), both for membranous and detergent solubilized Ca2+-ATPase. Ca2+ release was also found to be accompanied by changes in intrinsic fluorescence. Analysis of the data at 20 degrees C, pH 8.0, showed that binding of Ca2+ to transport sites on E2P occurs with a half-saturation constant of 0.7 mM and a Hill coefficient of 1.8. This is consistent with a drastic decrease in Ca2+ affinity following conversion of ADP-sensitive E1P to ADP-insensitive E2P. The similarity between membranous and detergent-solubilized Ca2+-ATPase supports the view that not more than a single Ca2+-ATPase polypeptide chain is required to complete the conformational transitions which are the basis for active transport of Ca2+.  相似文献   

19.
The tryptophan fluorescence emission of sarcoplasmic reticulum Ca2+-ATPase was studied both in purified ATPase vesicles and in ATPase solubilized with the nonionic detergent dodecyloctaethyleneglycolmonoether (C12E8). Fluorescence intensity changes in purified ATPase were titrated as a function of free Ca2+ in the medium. It exhibited a cooperative pattern, with a Hill number of 2.21 +/- 0.02 and K0.5 = 0.51 microM Ca2+. Upon solubilization of the ATPase, the cooperative pattern of fluorescence change was lost; the Hill number was 0.96 and K0.5 = 1.4 microM Ca2+. When solubilization was carried out in the presence of 0.5 or 1.0 mM CaCl2, followed by the titrations of fluorescence change in the micromolar Ca2+ range, the cooperative pattern was preserved under the same concentrations of C12E8 which would otherwise promote the loss in cooperativity. For the ATPase solubilized in millimolar Ca2+, the Hill number was 1.98 with a K0.5 = 1.5 microM Ca2+. The maximal amount of Ca2+ bound to the high affinity sites corresponded to approximately 1 mol of calcium/mol of polypeptide chains, both in purified ATPase vesicles and in the soluble ATPase. A model is suggested, which involves a minimum of 4 interacting Ca2+ sites (tetramers). Cooperativity is accounted for in the model by the predominance in the absence of Ca2+ of low affinity state (E') of the Ca2+ site (K'D = 5.7 x 10(-4) M), which would be congruent to 90 times more concentrated than (E), the high affinity state (KD = 1.9 x 10(-7) M). Simulations derived from this model fit the experimental data.  相似文献   

20.
Sarcoplasmic reticulum Ca2+-ATPase solubilized by the nonionic detergent octaethylene glycol monododecyl ether was studied by molecular sieve high-performance liquid chromatography (HPLC) and analytical ultracentrifugation. Significant irreversible aggregation of soluble Ca2+-ATPase occurred within a few hours in the presence of less than or equal to 50 microM Ca2+. The aggregates were inactive and were primarily held together by hydrophobic forces. In the absence of reducing agent, secondary formation of disulfide bonds occurred. The stability of the inactive dimer upon dilution permitted unambiguous assignment of its elution position and sedimentation coefficient. At high Ca2+ concentration (500 microM), monomeric Ca2+-ATPase was stable for several hours. Reversible self-association induced by variation in protein, detergent, and lipid concentrations was studied by large-zone HPLC. The association constant for dimerization of active Ca2+-ATPase was found to be 10(5)-10(6) M-1 depending on the detergent concentration. More detergent was bound to monomeric than to dimeric Ca2+-ATPase, even above the critical micellar concentration of the detergent. Binding of Ca2+ and vanadate as well as ATP-dependent phosphorylation was studied in monomeric and in reversibly associated dimeric preparations. In both forms, two high-affinity Ca2+ binding sites per phosphorylation site existed. The delipidated monomer purified by HPLC was able to form ADP-insensitive phosphoenzyme and to bind ATP and vanadate simultaneously. These results suggest that formation of Ca2+-ATPase oligomers in the membrane is governed by nonspecific forces (low affinity) and that each polypeptide chain constitutes a functional unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号