首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Carbohydrate research》1987,166(2):263-269
An arabinoxylan isolated from the bark of Cinnamomum zeylanicum was composed of l-arabinose and d-xylose in the molar ratio 1.6:1.0. Partial hydrolysis furnished oligosaccharides which were characterised as α-d-Xylp-(1→3)-d-Ara, β-dXylp-(1→4)-d-Xyl, β-d-Xylp-(1→4)-β-d-Xylp-(1→4)-d-Xyl, β-d-Xylp-(1→4)-β-d-Xylp-(1→4)-β-d-Xylp-Xylp-(1→4)-d-Xyl, xylopentaose, and xylohexaose. Mild acid hydrolysis of the arabinoxylan gave a degraded polysaccharide consisting of l-arabinose (8%) and d-xyolse (92%). Methylation analysis indicated the degraded polysaccharide to be a linear (1→4)-linked d-xlan in which some xylopyranosyl residues were substituted at O-2 or O-3 with l-arabinofuranosyl groups. These data together with the results of methylation analysis and periodate oxidation of the arabinoxylan suggested that it contained a (1→4)-linked β-d-xylan backbone in which each xylopyranosyl residue was substituted both at O-2 and O-3 with l-arabinofuranosyl, 3-O-α-d-xylopyranosyl-l-arabinofuranosyl, and 3-O-l-arabinofuranosyl-l-arabinofuranosyl groups.  相似文献   

2.
The plant gum isolated from sap of the lac tree, Rhus vernicifera (China), was separated into two fractions having mol. wt. 84,000 and 27,700 by aqueous-phase gel-permeation chromatography. The fractions contain d-galactose (65 mol%), 4-O-methyl-d-glucuronic acid (24 mol%), d-glucuronic acid (3 mol%), l-arabinose (4 mol%), and l-rhamnose (3 mol%). Smith degradation of the carboxyl-reduced polysaccharides gives products of halved molecular weight, and these consist of a β-(1→3)-linked galactopyranan main chain and side chains made up of galactopyranose residues. Peripheral groups, such as α-d-Galp-, α-d-Galp-(1→6)-β-d-Galp-, 4-O-methyl-β-d-GlcpA-, and 4-O-methyl-β-d-GlcpA-(1→6)-β-d-Galp-, are attached to this interior core through β-(1→3)- or β-(1→6)-linkages.  相似文献   

3.
A water-soluble polysaccharide DNP-W2 composed of glucose, mannose, and galactose in the molar ratio of 6.1:2.9:2.0 had been isolated from the stems of Dendrobium nobile. Its molecular weight was 1.8 × 104 Da determined by HPGPC. Structural features of DNP-W2 were investigated by a combination of chemical and instrumental analysis, including FTIR, GC, GC-MS, periodate oxidation-Smith degradation, methylation analysis, partial acid hydrolysis, and NMR spectroscopy. The results showed that DNP-W2 is a 2-O-acetylgalactomannoglucan and has a backbone consisting of (1→4)-linked β-d-Glcp, (1→6)-linked β-d-Glcp, and (1→4)-linked β-d-Manp, with branches at O-6 of (1→4)-linked β-d-Glcp and β-d-Manp. The branches are composed of α-d-Galp. The acetyl groups are substituted at O-2 of (1→4)-linked Manp. Preliminary tests in vitro reveals that DNP-W2 can stimulate ConA- and LPS-induced T and B lymphocyte proliferation.  相似文献   

4.
Partial hydrolysis with acid, methylation analysis (including uronic acid degradation), Smith degradation, and p.m.r. spectroscopy have been used to determine the primary structure of the capsular polysaccharide of Klebsiella serotype k64. The hexasaccharide repeating-unit, which also contains one O-acetyl substituent, comprises a 4)-α-d-GlcpA-(1 → 3)-α-d-Manp-(1 → 3)-β-d-Glcp-(1 → 4)-α-d-Manp-(1 → chain with a 4,6-O-(l-carboxyethylidene)-β-d-glucopyranosyl and an l-rhamnosyl group attached to the 4-linked d-mannosyl residue at O-2 and O-3, respectively.  相似文献   

5.
《Carbohydrate research》1987,162(1):95-109
Kojitriose [α-d-Glcp-(1→2)-α-d-Glcp-(1→2)-d-Glcp], kojitetraose, and koji-pentaose have been synthesised by silver perchlorate-promoted Koenigs-Knorr type condensations, using 3,4,6-tri-O-acetyl-2-O-allyl-β-d-glucopyranosyl chloride and hepta-O-acetyl-β-kojibiosyl chloride as the key intermediates. The synthesis of α-β-Glcp-(1→2)-α-d-Glcp-(1→3)-d-Glcp is also described.  相似文献   

6.
The polysaccharide of the mucin secreted by the leaves of Drosera capensis is composed of l-arabinose, d-xylose, d-galactose, d-mannose, and d-glucuronic acid in the molar ratio of 3.6:1.0:4.9:8.4:8.2. For structural elucidation, methylation analysis using g.l.c. and g.l.c.-m.s. was performed on the native, the carboxyl-reduced, and the degraded polysaccharides. Partial hydrolysis, periodate oxidation, chromium trioxide oxidation, and uronic acid degradation were also performed on the native and carboxyl-reduced polysaccharides. Partial hydrolysis of the native and carboxyl-reduced polysaccharides gave various oligosaccharides that were characterized and suggest a structure containing a d-glucurono-d-mannan backbone having a repeating unit → 4)-β-d-GlcpA-(1 → 2)-α-d-Manp-(1 →. l-Arabinose and d-xylose are present as nonreducing furanosyl and pyranosyl end-groups, respectively, both attached to O-3 of d-glucuronic acid residues of the backbone. d-Galactose is present as non-reducing pyranosyl end-group linked to O-3 of d-mannose residues.  相似文献   

7.
Mixed-linkage (1→3),(1→4)-β-d-glucan (MLG) is a biologically and technologically important hemicellulose, known to occur in three widely separated lineages: the Poales (including grasses and cereals), Equisetum (fern-allies), and some lichens e.g. Iceland moss (Cetraria islandica). Lichenase (E.C. 3.2.1.73) is widely assumed to hydrolyse all (1→4) bonds that immediately follow (1→3) bonds in MLG, generating predominantly the tetrasaccharide β-d-Glcp-(1→4)-β-d-Glcp-(1→4)-β-d-Glcp-(1→3)-d-Glc (G4G4G3G; MLG4), the corresponding trisaccharide (G4G3G; MLG3), and sometimes also laminaribiose (G3G; MLG2). The ratio of the oligosaccharides produced characterises each polysaccharide. We report here that digestion of MLG from barley (Hordeum vulgare), Equisetum arvense and C. islandica by Bacillus subtilis lichenase also yields the unexpectedly stable hexasaccharide, β-d-Glcp-(1→3)-β-d-Glcp-(1→4)-β-d-Glcp-(1→4)-β-d-Glcp-(1→4)-β-d-Glcp-(1→3)-d-Glc (G3G4G4G4G3G, i.e. MLG2–MLG4), identified by thin-layer chromatography, gel-permeation chromatography, HPLC (HPAEC), β-glucosidase digestion, 1H/13C-NMR spectroscopy and mass spectrometry. On HPLC, G3G4G4G4G3G is the major constituent of a peak previously ascribed solely to the nonasaccharide G4G4G4G4G4G4G4G3G. Because it was widely presumed that lichenase would cleave G3G4G4G4G3G to MLG2 + MLG4, our data both redefine the substrate specificity of Bacillus lichenase and show previous attempts to characterise MLGs by HPLC of lichenase-digests to be flawed. MLG2 subunits are particularly underestimated; often reported as negligible, they are here shown to be an appreciable constituent of MLGs from all three lineages. We also show that there is no appreciable yield of water-soluble lichenase products with DP > 9; potential identities of products previously labelled DP > 9 are suggested. Finally, this discovery also provides a opportunity to investigate the spatial distribution of subunits along the MLG chain. We show that MLG2 subunits in barley and Cetraria MLG are not randomly distributed, but predominantly found at the non-reducing end of MLG4 subunits.  相似文献   

8.
Two l-arabino-d-galactan-containing glycoproteins having a potent inhibitory activity against eel anti-H agglutinin were isolated from the hot saline extracts of mature radish leaves and characterized to have a similar monosaccharide composition that consists of l-arabinose, d-galactose, l-fucose, 4-O-methyl-d-glucuronic acid, and d-glucuronic acid residues. The chemical structure features of the carbohydrate components were investigated by carboxyl group reduction, methylation, periodate oxidation, partial acid hydrolysis, and digestion with exo- and endo-glycosidases, which indicated a backbone chain of (1→3)-linked β-d-galactosyl residues, to which side chains consisting of α-(1→6)-linked d-galactosyl residues were attached. The α-l-arabinofuranosyl residues were attached as single nonreducing groups and as O-2- or O-3-linked residues to O-3 of the β-d-galactosyl residues of the side chains. Single α-l-fucopyranosyl end groups were linked to O-2 of the l-arabinofuranosyl residues, and the 4-O-methyl-β-d-glucopyranosyluronic acid end groups were linked to d-galactosyl residues. The O-α-l-fucopyranosyl-(1→2)-α-l-arabinofuranosyl end-groups were shown to be responsible for the serological, H-like activity of the l-arabino-d-galactan glycoproteins. Reductive alkaline degradation of the glycoconjugates showed that a large proportion of the polysaccharide chains is conjugated with the polypeptide backbone through a 3-O-d-galactosylserine linkage.  相似文献   

9.
2-O-Benzoyl-3,4,6-tri-O-benzyl-1-O-tosyl-d-mannopyranose and 2,3,4-tri-O- benzyl-6-O-(N-phenylcarbamoyl)-1-O-tosyl-d-glucopyranose were allowed to react with partially blocked 2-[4-(p-toluenesulfonamido)phenyl]ethyl α-d-manno- and -gluco-pyranosides. Disaccharides having α-d-Manp-(1→2)-α-D-Manp, α-d-manp-(1→6)-α-d-Manp, α-d-Manp-(1→6)-α-d-Manp, and α-d-Glcp-(1→6)-α-d-Manp structures, and a branched trisaccharide having the structure α-d-Manp-(1→2)-[α-d-Manp-(1→6)]-α-d-Manp were synthesized. The oligosaccharides were deblocked with sodium in liquid ammonia to give glycopyranosides having a free primary aromatic amine which were converted into isothiocyanate derivatives with thiophosgene. The functionalized oligosaccharides were then coupled to bovine serum albumin to give protein conjugates.  相似文献   

10.
《Carbohydrate research》1998,311(4):219-229
A polyclonal antibody (anti-bupleuran 2IIc/PG-1-IgG) against the “ramified” region (PG-1) of an anti-ulcer pectic polysaccharide was prepared and its antigenic epitopes were analyzed by using several carbohydrases. Enzymatic removal of arabinosyl residues from PG-1 by endo-(1→5)-α-l-arabinanase (from Aspergillus niger) did not reduce the binding ability of anti-bupleuran 2IIc/PG-1-IgG to PG-1. When the endo-(1→5)-α-l-arabinanase-resistant fraction (EA-1) was digested with rhamnogalacturonase A (rRGase A from A. aculeatus), a high-molecular-mass fragment fraction (RA-1) and an oligosaccharide fraction (RA-3) were obtained. RA-3 contained at least four kinds of oligosaccharides liberated from the rhamnogalacturonan core. This partial removal of the rhamnogalacturonan core in EA-1 also did not reduce the binding of the antibody to the polysaccharide. Further digestion of RA-1 with exo-(1→3)-β-d-galactanase (from Irpex lacteus), gave a high-molecular-mass fragment (EXG-1) and a trace of oligosaccharides (EXG-3). Methylation and FABMS analyses indicated that EXG-3 contained mono- and di-galactosyl oligosaccharides possessing terminal GlcA or GlcA4Me. Removal of the EXG-3 fraction from RA-1 by exo-(1→3)-β-d-galactanase significantly reduced the ability of the binding of the antibody to the polysaccharide. When PG-1 was digested with endo-(1→6)-β-d-galactanase (from Trichoderma viride) or β-d-glucuronidase (from A. niger), the reactivities of both enzyme-resistant fractions to the antibody were decreased in comparison with that of PG-1. Both radish arabinogalactan (containing GlcA4Me) and β-d-GlcpA-(1→6)-β-d-Galp-(1→6)-d-Galp were shown to inhibit the reactivity of PG-1 to the antibody by competitive ELISA. These results suggest that 6-linked galactosyl chains containing terminal GlcA or GlcA4Me attached to (1→3)-β-d-galactosyl chains, are important sugar residues in the antigenic epitopes of the “ramified” region of bupleuran 2IIc.  相似文献   

11.
The lipopolysaccharide (LPS) of Hafnia alvei strain PCM 1195 was obtained by the hot phenol/water method. The O-specific polysaccharide was released by mild acidic hydrolysis and isolated by gel filtration. The structure of the O-specific polysaccharide was investigated by 1H, 13C, and 31P NMR spectroscopy, MALDI-TOF MS, and GC-MS, accompanied by monosaccharide and methylation analysis. It was concluded that the O-specific polysaccharide is composed of a hexasaccharide repeating units interlinked with a phosphate group: {→4-α-d-Glcp-(1→3)-α-l-FucpNAc-(1→3)-[α-d-Glcp-(1→4)]-α-d-GlcpNAc-(1→3)-α-l-FucpNAc-(1→4)-α-d-Glcp-(1→P}n.  相似文献   

12.
The major immunostimulatory principle in the hot aqueous extract of Chlorella pyrenoidosa has been isolated by a sequence of ethanol precipitation, precipitation with a cationic surfactant (CTAB), size exclusion chromatography, and anion exchange chromatography. A series of phosphorylated polysaccharides were obtained having different molecular masses but with similar structures. The higher molecular mass fractions showed considerable activity in the stimulation of mouse peritoneal macrophages to synthesize nitric oxide. The structure of the major polysaccharide was established by sugar analysis, configurational analysis, and 1D and 2D NMR experiments at 500 and 800 MHz on the parent polysaccharide, the de-O-acetylated polysaccharide, and on the components obtained after hydrolysis of the phosphate diesters. It had a β-d-Galp-(1→3)-β-d-Galp-(1→3)-backbone with half of the Galp units substituted at O-6 by terminal β-d-Glcp units. The remaining Galp units were substituted on O-6 by about equal amounts of α-d-Manp-1-phosphate and 3-O-Me-α-Manp-1-phosphate diesters. The substituents were not located in a regularly alternating fashion on the backbone. The O-acetyl groups were largely located on O-2 and O-4 of Galp and 35% of the Galp residues were O-acetylated. This is the second observation of a phosphorylated polysaccharide in an alga and the first where it is present to a significant extent.  相似文献   

13.
2,3,4,6 Tetra-O-acetyl-1-N-[N-(tert-butyloxycarbonyl)-l-aspart-4-oyl]-d-glucopyranosylamine and 2-acetamido-3,4,6-tri-O-acetyl-1-N-[N-(tert-butyloxycarbonyl)-l-aspart-4-oyl]-2-deoxy-d-glucopyranosylamine were introduced, respectively, by the solid-phase procedure in the amino acid sequence 5 to 9 of somatostatin. The two resulting glycopeptides β-d-Glcp-(1→4)- and β-d-GlcpNAc-(1→4)-Asn-Phe-Phe-Trp-Lys-OH were homogeneous on examination by t.l.c. and l.c., and their structures were confirmed by m.s. of the N-acetyl, permethyl derivatives.  相似文献   

14.
The acidic polysaccharide of Serratia piscatorum consists of L-rhamnopyranosyl, D-galactopyranosyl, and D-galactopyranosyluronic acid residues in the molar ratio of 2:1:1. Some of the D-galactopyranosyluronic acid residues are acetylated at O-2 or O-3, or both. Smith degradation and methylation analysis indicated that the L-rhamnopyranosyl, D-galactopyranosyl, and D-galactopyranosyluronic acid residues are substituted with glycosidic linkages at O-3, O-3, and O-4, respectively. Partial acid hydrolysis of the native polysaccharide gave four acidic oligosaccharides, each of which was isolated and characterized, suggesting the following tetrasaccharide repeating unit: →3)-L-Rhap-(1→4)-D-GalAp-(1→3)-L-Rhap-(1→3)-D-Galp-(1→.  相似文献   

15.
The structure of the capsular polysaccharide elaborated by Haemophilus influenzae type d has been investigated, methylation analysis and n.m.r. spectrometry being the principal methods used. It is concluded that the polysaccharide is composed of repeating units having the structure: →4)-β-d-GlcpNAc-(1→3)-β-d-ManpNAcA-(1→. In addition, single residues of l-alanine, l-serine, or l-threonine, in the proportions 2:2:1, are linked, through their amino groups, to C-6 of the 2-acetamido-2-deoxy-β-d-mannopyranosyluronic acid residues. The degree of substitution (75-85%) varies for different preparations.  相似文献   

16.
Thiodisaccharides having β-d-Galf or α-l-Araf units as non-reducing end have been synthesized by the SnCl4- or MoO2Cl2-promoted thioglycosylation of per-O-benzoyl-d-galactofuranose (1), its 1-O-acetyl analogue 4, or per-O-acetyl-α-l-arabinofuranose (16) with 6-thioglucose or 6-thiogalactose derivatives. After convenient removal of the protecting groups, the free thiodisaccharides having the basic structure β-d-Galf(1→6)-6-thio-α-d-Glcp-OMe (5) or β-d-Galf(1→6)-6-thio-α-d-Galp-OMe (15) were obtained. The respective α-l-Araf analogues 18 and 20 were prepared similarly from 16. Alternatively, β-d-Galf(1→4)-4-thio-3-deoxy-α-l-Xylp-OiPr was synthesized by Michael addition to a sugar enone of 1-thio-β-d-Galf derivative, generated in situ from the glycosyl isothiourea derivative of 1. The free S-linked disaccharides were evaluated as inhibitors of the β-galactofuranosidase from Penicillium fellutanum, being 15 and 20 the more active inhibitors against this enzyme.  相似文献   

17.
A water-soluble glucan, [α]2D +217° (water), and an alkali-soluble glucan,
+152° (sodium hydroxide), have been isolated from the oak lichen Evernia prunastri (L.) Ach. On the basis of methylation analysis, periodate oxidation, and partial acid hydrolysis, the water-soluble polysaccharide has been shown to be a neutral, slightly branched glucan with a main chain composed of (1→3)- and (1→4)- linked glucopyranose residues in the ratio 1?:1. Branching occurs most probably at position 2 of (1→4)-linked glucopyranose residues. On the basis of optical rotation and i.r. spectral data, and enzymic hydrolysis, the α-D configuration has been assigned to the glycosidic linkages. Likewise, the alkali-soluble polysaccharide was shown to be a neutral, branched glucan with a main chain composed of (1→3)- and (1→4)-linked α-D-glucopyranose residues in the ratio 6:1. Each of the (1→4)-linked units was a branch point involving position 6. The presence of some β-D linkages is not excluded since hydrolysis with β-D-glucosidase occurred to a small extent.  相似文献   

18.
The oligosaccharide β-d-Man-(1 → 4)-α-l-Rha (1 → 3)-d-Gal-(6 ← 1)-α-d-Glc, which is the repeating unit of the O-specific polysaccharide chain of the lipopolysaccharide from Salmonella senftenberg, was obtained by glycosylation of benzyl 2,4-di-O-benzyl-6-O-(2,3,4-tri-O-benzyl-6-O-p-nitrobenzoyl-α-d-glucopyranosyl)-β-d-galactopyranoside or benzyl 2-O-acetyl-6-O-(2,3,4-tri-O-benzyl-6-O-p-nitrobenzoyl-α-d-glucopyranosyl)-β-d-galactopyranoside with 3-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl-β-d-mannopyranosyl)-β-l-rhamnopyranose 1,2-(methyl orthoacetate) followed by removal of protecting groups.  相似文献   

19.
Periodate oxidation of LPG-1 established that N-acetylneuraminic acid residues are linked preponderantly α-(2→3) to D-galactose residues. The resistance of 2-acetamido-2-deoxyD-galactose residues to periodate oxidation suggests that they are linked at either O-3 or O-4 to D-galactose residues. After treatment of LPG-I with alkaline sulfite, ≈80% of 2-acetamido-2-deoxygalactose was recovered as the sulfonic acid derivative. The Gal→GalNAc disaccharide released from sialic-acid-free LPG-I by digestion with endo-2-acetamido-2-deoxy-α-D-galactosidase (which suggests an α-D-GalNAc→-L-Ser or -L-Thr linkage) gave a high color-yield in the Morgan—Elson reaction, indicating that 2-acetamido-2-deoxy-D-galactose residues are linked at C-3 to D-galactose residues. The migration of the released Gal-GalNAc disaccharide was the same as that of a standard sample of O-β-D-galactosyl-(1→3)-2-acetamido-2-deoxy-D-galactose. Treatment of sialic acid-free LPG-I with Streptococcus pneumoniae β-D-galactosidase, which hydrolyzes only galactosides linked β-D-(1→4) gave no free D-galactose, whereas treatment of LPG-I with bovine testes β-D-galactosidase released > 90% of D-galactose. These results provide evidence for β-D-Galp-(1→3)-α-D-GalNAcp-(1→3)-L-Ser or -L-Thr and α-NeuAc-(2→3)-β-D-Galp-(1→3)-α-D- GalNAcp-(1→3)-L-Ser or -L-Thr structures. The sensitivity of the methods used and the recovery of constituents following treatment of LPG-I do not rule out the occurrence of small amounts of other tri- or tetra-saccharide chains.  相似文献   

20.
Methylation analysis of and partial hydrolysis studies on the Klebsiella K7 capsular polysaccharide and its carboxyl-reduced derivative indicated the recurrence of D-glucopyranuronic acid, D-mannopyranose, and D-glucopyranose residues, linearly linked in a specific manner, in the molecular structure. D-Galactopyranose and pyruvic acid residues are linked to the main chain on the D-mannose residues (at O-3) and the D-glucose residues (at O-4 and O-6), respectively; the simplest interpretation of this evidence is that nine sugar residues and pyruvic acid constitute a repeating unit. The sequence →3)-β-D-GlcAp-(1→2)-α-D-Manp-(1→2)-α-D-Manp-(1→3)-D-Glcp→ was demonstrated by the isolation from the polysaccharide of an aldotetraouronic acid of this structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号