首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 117 毫秒
1.
A gene encoding an L-aspartate dehydrogenase (EC 1.4.1.21) homologue was identified in the anaerobic hyperthermophilic archaeon Archaeoglobus fulgidus. After expression in Escherichia coli, the gene product was purified to homogeneity, yielding a homodimeric protein with a molecular mass of about 48 kDa. Characterization revealed the enzyme to be a highly thermostable L-aspartate dehydrogenase, showing little loss of activity following incubation for 1 h at up to 80 degrees C. The optimum temperature for L-aspartate dehydrogenation was about 80 degrees C. The enzyme specifically utilized L-aspartate as the electron donor, while either NAD or NADP could serve as the electron acceptor. The Km values for L-aspartate were 0.19 and 4.3 mM when NAD or NADP, respectively, served as the electron acceptor. The Km values for NAD and NADP were 0.11 and 0.32 mM, respectively. For reductive amination, the Km values for oxaloacetate, NADH and ammonia were 1.2, 0.014 and 167 mM, respectively. The enzyme showed pro-R (A-type) stereospecificity for hydrogen transfer from the C4 position of the nicotinamide moiety of NADH. This is the first report of an archaeal L-aspartate dehydrogenase. Within the archaeal domain, homologues of this enzyme occurred in many Methanogenic species, but not in Thermococcales or Sulfolobales species.  相似文献   

2.
The D-glyceraldehyde-3-phosphate dehydrogenase from the extremely thermophilic archaebacterium Methanothermus fervidus was purified and crystallized. The enzyme is a homomeric tetramer (molecular mass of subunits 45 kDa). Partial sequence analysis shows homology to the enzymes from eubacteria and from the cytoplasm of eukaryotes. Unlike these enzymes, the D-glyceraldehyde-3-phosphate dehydrogenase from Methanothermus fervidus reacts with both NAD+ and NADP+ and is not inhibited by pentalenolactone. The enzyme is intrinsically stable up to 75 degrees C. It is stabilized by the coenzyme NADP+ and at high ionic strength up to about 90 degrees C. Breaks in the Arrhenius and Van't Hoff plots indicate conformational changes of the enzyme at around 52 degrees C.  相似文献   

3.
2-Oxoglutarate:ferredoxin oxidoreductase from a thermophilic, obligately autotrophic, hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus TK-6, was purified to homogeneity by precipitation with ammonium sulfate and by fractionation by DEAE-Sepharose CL-6B, polyacrylate-quaternary amine, hydroxyapatite, and Superdex-200 chromatography. The purified enzyme had a molecular mass of about 105 kDa and comprised two subunits (70 kDa and 35 kDa). The activity of the 2-oxoglutarate:ferredoxin oxidoreductase was detected by the use of 2-oxoglutarate, coenzyme A, and one of several electron acceptors in substrate amounts (ferredoxin isolated from H. thermophilus, flavin adenine dinucleotide, flavin mononucleotide, or methyl viologen). NAD, NADP, and ferredoxins from Chlorella spp. and Clostridium pasteurianum were ineffective. The enzyme was extremely thermostable; the temperature optimum for 2-oxoglutarate oxidation was above 80 degrees C, and the time for a 50% loss of activity at 70 degrees C under anaerobic conditions was 22 h. The optimum pH for a 2-oxoglutarate oxidation reaction was 7.6 to 7.8. The apparent Km values for 2-oxoglutarate and coenzyme A at 70 degrees C were 1.42 mM and 80 microM, respectively.  相似文献   

4.
Bacillus stearothermophilus H-804 isolated from a hot spring in Beppu, Japan, produced an ammonia-specific NAD synthetase (EC 6.3.1.5). The enzyme specifically used NH3 as an amide donor for the synthesis of NAD as it formed AMP and pyrophosphate from deamide-NAD and ATP. None of the l-amino acids tested, such as l-asparagine or l-glutamine, or other amino compounds such as urea, uric acid, or creatinine was used instead of NH3. Mg2+ was needed for the activity, and the maximum enzyme activity was obtained with 3 mM MgCl2. The molecular mass of the native enzyme was 50 kDa by gel filtration, and SDS-PAGE showed a single protein band at the molecular mass of 25 kDa. The optimum pH and temperature for the activity were from 9.0 to 10.0 and 60 degrees C, respectively. The enzyme was stable at a pH range of 7.5 to 9.0 and up to 60 degrees C. The Km for NH3, ATP, and deamide-NAD were 0.91, 0.052, and 0.028 mM, respectively. The gene encoding the enzyme consisted of an open reading frame of 738 bp and encoded a protein of 246 amino acid residues. The deduced amino acid sequence of the gene had about 32% homology to those of Escherichia coli and Bacillus subtilis NAD synthetases. We caused the NAD synthetase gene to be expressed in E. coli at a high level; the enzyme activity (per liter of medium) produced by the recombinant E. coli was 180-fold that of B. stearothermophilus H-804. The specific assay of ammonia and ATP (up to 25 microM) with this stable NAD synthetase was possible.  相似文献   

5.
Ferredoxin-NAD(P)(+) reductase [EC 1.18.1.3, 1.18.1.2] was isolated from the green sulfur bacterium Chlorobium tepidum and purified to homogeneity. The molecular mass of the subunit is 42 kDa, as deduced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular mass of the native enzyme is approximately 90 kDa, estimated by gel-permeation chromatography, and is thus a homodimer. The enzyme contains one FAD per subunit and has absorption maxima at about 272, 385, and 466 nm. In the presence of ferredoxin (Fd) and reaction center (RC) complex from C. tepidum, it efficiently catalyzes photoreduction of both NADP(+) and NAD(+). When concentrations of NADP(+) exceeded 10 microM, NADP(+) photoreduction rates decreased with increased concentration. The inhibition by high concentrations of substrate was not observed with NAD(+). It also reduces 2,6-dichlorophenol-indophenol (DPIP) and molecular oxygen with either NADPH or NADH as efficient electron donors. It showed NADPH diaphorase activity about two times higher than NADH diaphorase activity in DPIP reduction assays at NAD(P)H concentrations less than 0.1 mM. At 0.5 mM NAD(P)H, the two activities were about the same, and at 1 mM, the former activity was slightly lower than the latter.  相似文献   

6.
Alanine dehydrogenase (L-alanine: NAD+ oxidoreductase, deaminating) was simply purified to homogeneity from a thermophile, Bacillus sphaericus DSM 462, by ammonium sulfate fractionation, red-Sepharose 4B chromatography and preparative slab gel electrophoresis. The enzyme had a molecular mass of about 230 kDa and consisted of six subunits with an identical molecular mass of 38 kDa. The enzyme was much more thermostable than that from a mesophile, B. sphaericus, and retained its full activity upon heating at 75 degrees C for at least 60 min and with incubation in pH 5.5-9.5 at 75 degrees C for 10 min. The enzyme can be stored without loss of its activity in a frozen state (-20 degrees C, at pH 7.2) for over 5 months. The optimum pH for the L-alanine deamination and pyruvate amination were around 10.5 and 8.2, respectively. The enzyme exclusively catalyzed the oxidative deamination of L-alanine in the presence of NAD+, but showed low amino acceptor specificity; hydroxypyruvate, oxaloacetate, 2-oxobutyrate and 3-fluoropyruvate are also aminated as well as pyruvate in the presence of NADH and ammonia. Initial velocity and product inhibition studies showed that the reductive amination proceeded through a sequential mechanism containing partially random binding. NADH binds first to the enzyme, and then pyruvate and ammonia bind in a random fashion. The products are sequentially released from the enzyme in the order L-alanine then NAD+. A dead-end inhibition by the formation of an abortive ternary complex which consists of the enzyme, NAD+ and pyruvate was included in the reaction. A possible role of the dead-end inhibition is to prevent the enzyme from functioning in the L-alanine synthesis. The Michaelis constants for the substrates were as follows: NADH, 0.10 mM; pyruvate, 0.50 mM; ammonia, 38.0 mM; L-alanine, 10.5 mM and NAD+, 0.26 mM.  相似文献   

7.
Crude soluble extracts of Methylococcus capsulatus strain Bath, grown on methane, were found to contain NAD(P)+-linked formaldehyde dehydrogenase activity. Activity in the extract was lost on dialysis against phosphate buffer, but could be restored by supplementing with inactive, heat-treated extract (70 degrees C for 12 min). The non-dialysable, heat-sensitive component was isolated and purified, and has a molecular weight of about 115000. Sodium dodecyl sulphate gel electrophoresis of the protein suggested there were two equal subunits with molecular weights of 57000. The heat-stable fraction, which was necessary for activity of the heat-sensitive protein, was trypsin-sensitive and presumed to be a low molecular weight protein or peptide. A number of thiol compounds and other common cofactors could not replace the component present in the heat-treated soluble extract. The purified formaldehyde dehydrogenase oxidized three other aldehydes with the following Km values: 0.68 mM (formaldehyde); 0.075 mM (glyoxal); 7.0 mM (glycolaldehyde); and 2.0 mM (DL-glyceraldehyde). NAD+ or NADP+ was required for activity, with Km values of 0.063 and 0.155 mM respectively, and could not be replaced by any of the artificial electron acceptors tested. The enzyme was heat-stable at 45 degrees C for at least 10 min and had temperature and pH optima of 45 degrees C and pH 7.2 respectively. A number of metal-binding agents and substrate analogues were not inhibitory. Thiol reagents gave varying degrees of inhibition, the most potent being p-hydroxymercuribenzoate which at 1 mM gave 100% inhibition. The importance of possessing an NAD(P)+-linked formaldehyde dehydrogenase, with respect to M. capsulatus, is discussed.  相似文献   

8.
Glutamate dehydrogenase from axenic bacterial cultures of a new microorganism, called GWE1, isolated from the interior of a sterilization drying oven, was purified by anion-exchange and molecular-exclusion liquid chromatography. The apparent molecular mass of the native enzyme was 250.5 kDa and was shown to be an hexamer with similar subunits of molecular mass 40.5 kDa. For glutamate oxidation, the enzyme showed an optimal pH and temperature of 8.0 and 70 degrees C, respectively. In contrast to other glutamate dehydrogenases isolated from bacteria, the enzyme isolated in this study can use both NAD(+) and NADP(+) as electron acceptors, displaying more affinity for NADP(+) than for NAD(+). No activity was detected with NADH or NADPH, 2-oxoglutarate and ammonia. The enzyme was exceptionally thermostable, maintaining more than 70% of activity after incubating at 100(o)C for more than five hours suggesting being one of the most thermoestable enzymes reported in the family of dehydrogenases.  相似文献   

9.
L-Malate dehydrogenase from the extremely thermophilic mathanogen Methanothermus fervidus was isolated and its phenotypic properties were characterized. The primary structure of the protein was deducted from the coding gene. The enzyme is a homomeric dimer with a molecular mass of 70 kDa, possesses low specificity for NAD+ or NADP+ and catalyzes preferentially the reduction of oxalacetate. The temperature dependence of the activity as depicted in the Arrhenius and van't Hoff plots shows discontinuities near 52 degrees C, as was found for glyceraldehyde-3-phosphate dehydrogenase from the same organism. With respect to the primary structure, the archaebacterial L-malate dehydrogenase deviates strikingly from the eubacterial and eukaryotic enzymes. The sequence similarity is even lower than that between the L-malate dehydrogenases and L-lactate dehydrogenases of eubacteria and eukaryotes. The phylogenetic meaning of this relationship is discussed.  相似文献   

10.
NADP(+)-dependent D-threonine dehydrogenase (EC 1.1.1.-), which catalyzes the oxidation of the 3-hydroxyl group of D-threonine, was purified to homogeneity from a crude extract of Pseudomonas cruciviae IFO 12047. The enzyme had a molecular mass of about 60,000 Da and consisted of two identical subunits. In addition to D-threonine, D-threo-3-phenylserine, D-threo-3-thienylserine, and D-threo-3-hydroxynorvaline were also substrates. However, the other isomers of threonine and 3-phenylserine were inert. The enzyme showed maximal activity at pH 10.5 for the oxidation of D-threonine. The enzyme required NADP+. NAD+ showed only slight activity. The enzyme was not inhibited by EDTA, o-phenanthroline, alpha,alpha'-dipyridyl, HgCl2, or p-chloromercuribenzoate but was inhibited by tartronate, malonate, pyruvate, and DL-2-hydroxybutyrate. The inhibition by these organic acids was competitive against D-threonine. Initial-velocity and product inhibition studies suggested that the oxidation proceeded through a sequential ordered Bi Bi mechanism. The Michaelis constants for D-threonine and NADP+ were 13 and 0.12 mM, respectively.  相似文献   

11.
The distribution of dye-linked L-amino acid dehydrogenases was investigated in several hyperthermophiles, and the activity of dye-linked L-proline dehydrogenase (dye-L-proDH, L-proline:acceptor oxidoreductase) was found in the crude extract of some Thermococcales strains. The enzyme was purified to homogeneity from a hyperthermophilic archaeon, Thermococcus profundus DSM 9503, which exhibited the highest specific activity in the crude extract. The molecular mass of the enzyme was about 160 kDa, and the enzyme consisted of heterotetrameric subunits (alpha(2) beta(2)) with two different molecular masses of about 50 and 40 kDa. The N-terminal amino acid sequences of the alpha-subunit (50-kDa subunit) and the beta-subunit (40-kDa subunit) were MRLTEHPILDFSERRGRKVTIHF and XRSEAKTVIIGGGIIGLSIAYNLAK, respectively. Dye-L-proDH was extraordinarily stable among the dye-linked dehydrogenases under various conditions: the enzyme retained its full activity upon incubation at 70 degrees C for 10 min, and ca. 40% of the activity still remained after heating at 80 degrees C for 120 min. The enzyme did not lose the activity upon incubation over a wide range of pHs from 4.0 to 10.0 at 50 degrees C for 10 min. The enzyme exclusively catalyzed L-proline dehydrogenation using 2,6-dichloroindophenol (Cl2Ind) as an electron acceptor. The Michaelis constants for L-proline and Cl2Ind were determined to be 2.05 and 0.073 mM, respectively. The reaction product was identified as Delta(1)-pyrroline-5-carboxylate by thin-layer chromatography. The prosthetic group of the enzyme was identified as flavin adenine dinucleotide by high-pressure liquid chromatography. In addition, the simple and specific determination of L-proline at concentrations from 0.10 to 2.5 mM using the stable dye-L-proDH was achieved.  相似文献   

12.
Glutamate dehydrogenase from Pyrococcus horikoshii (Pho-GDH) was cloned and overexpressed in Escherichia coli. The cloned enzyme with His-tag was purified to homogeneity by affinity chromatography and shown to be a hexamer enzyme of 290+/-8 kDa (subunit mass 48 kDa). Its optimal pH and temperature were 7.6 and 90 degrees C, respectively. The purified enzyme has outstanding thermostability (the half-life for thermal inactivation at 100 degrees C was 4 h). The enzyme shows strict specificity for 2-oxoglutarate and L-glutamate and requires NAD(P)H and NADP as cofactors but it does not reveal activity on NAD as cofactor. K(m) values of the recombinant enzyme are comparable for both substrates: 0.2 mM for L-glutamate and 0.53 mM for 2-oxoglutarate. The enzyme was activated by heating at 80 degrees C for 1 h, which was accompanied by the formation of its active conformation. Circular dichroism and fluorescence spectra show that the active conformation is heat-inducible and time-dependent.  相似文献   

13.
The glycine-utilizing bacterium Clostridium litoralis contained two enzyme systems for oxidizing dihydrolipoamide. The first one was found to be a genuine dihydrolipoamide dehydrogenase, present only in low amounts. This enzyme had the typical dimeric structure with a subunit molecular mass of about 53 kDa; however, it reacted with both NADP (Km 0.11 mM) and NAD (Km 0.5 mM). The reduction of pyridine nucleotides by dihydrolipoamide was the strongly preferred reaction. A second dihydrolipoamide-oxidizing enzyme system consisted of the interaction of two proteins, the previously described NADP(H)-dependent electron-transferring flavoprotein (D. Dietrichs, M. Meyer, B. Schmidt, and J. R. Andreesen, J. Bacteriol. 172:2088-2095, 1990) and a thioredoxin. This enzyme system was responsible for most of the dihydrolipoamide dehydrogenase activity in cell extracts. The thioredoxin did not bind to DEAE, was heat stable, and had a molecular mass of about 15 kDa. N-terminal amino acid analysis of the first 38 amino acid residues resulted in 38% homology to Escherichia coli thioredoxin and about 76% homology to a corresponding protein isolated from the physiologically close related Eubacterium acidaminophilum. The protein of the latter organism had a molecular mass of about 14 kDa and stimulated the low dihydrolipoamide dehydrogenase activity of the corresponding flavoprotein. By this interaction with NADPH-dependent flavoproteins, a new assay system for thioredoxin was established. A function of thioredoxin in glycine metabolism of some anaerobic bacteria is proposed.  相似文献   

14.
The 5,10-methylenetetrahydrofolate dehydrogenase of heterotrophically grown Peptostreptococcus productus Marburg was purified to apparent homogeneity. The purified enzyme catalyzed the reversible oxidation of methylenetetrahydrofolate with NADP+ as the electron acceptor at a specific activity of 627 U/mg of protein. The Km values for methylenetetrahydrofolate and for NADP+ were 27 and 113 microM, respectively. The enzyme, which lacked 5,10-methenyltetrahydrofolate cyclohydrolase activity, was insensitive to oxygen and was thermolabile at temperatures above 40 degrees C. The apparent molecular mass of the enzyme was estimated by gel filtration to be 66 kDa. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of a single subunit of 34 kDa, accounting for a dimeric alpha 2 structure of the enzyme. Kinetic studies on the initial reaction velocities with different concentrations of both substrates in the absence and presence of NADPH as the reaction product were interpreted to indicate that the enzyme followed a sequential reaction mechanism. After gentle ultracentrifugation of crude extracts, the enzyme was recovered to greater than 95% in the soluble (supernatant) fraction. Sodium (10 microM to 10 mM) had no effect on enzymatic activity. The data were taken to indicate that the enzyme was similar to the methylenetetrahydrofolate dehydrogenases of other homoacetogenic bacteria and that the enzyme is not involved in energy conservation of P. productus.  相似文献   

15.
Valine dehydrogenase was purified to homogeneity from the crude extracts of Streptomyces aureofaciens. The molecular weight of the native enzyme was 116,000 by equilibrium ultracentrifugation and 118,000 by size exclusion high-performance liquid chromatography. The enzyme was composed of four subunits with molecular weights of 29,000. The isoelectric point was 5.1. The enzyme required NAD+ as a cofactor, which could not be replaced by NADP+. Sulfhydryl reagents inhibited the enzyme activity. The pH optimum was 10.7 for oxidative deamination of L-valine and 9.0 for reductive amination of alpha-ketoisovalerate. The Michaelis constants were 2.5 mM for L-valine and 0.10 mM for NAD+. For reductive amination the Km values were 1.25 mM for alpha-ketoisovalerate, 0.023 mM for NADH, and 18.2 mM for NH4Cl.  相似文献   

16.
The yeast Candida albicans is able to utilize L-lysine as the sole nitrogen and carbon source accompanied by intracellular accumulation of alpha-aminoadipate-delta-semialdehyde. A novel yeast amino acid dehydrogenase catalysing the oxidative deamination of the epsilon-group of L-lysine was found in this yeast. The enzyme, L-lysine epsilon-dehydrogenase, is strongly induced in cells grown on L-lysine as the sole nitrogen source. The enzyme is specific for both L-lysine and NADP+. The Km values were determined to be 0.87 mM for L-lysine and 0.071 mM for NADP+. An apparent Mr of 87,000 was estimated by gel filtration. The enzyme has maximum activity at pH 9.5 and a temperature optimum of 32 degrees C under our assay conditions.  相似文献   

17.
Myrosinase (beta-thioglucoside glucohydrolase; EC 3.2.3.147) from horseradish (Armoracia rusticana) roots was purified to homogeneity by ammonium sulfate fractionation, Q-sepharose, and concanavalin A sepharose affinity chromatography. The purified protein migrated as a single band with a mass of about 65 kDa on SDS-polyacrylamide gel electrophoresis. Using LC-MS/MS, this band was identified as myrosinase. Western blot analysis, using the anti-myrosinase monoclonal antibody 3D7, showed a single band of about 65 kDa for horseradish crude extract and for the purified myrosinase. The native molecular mass of the purified myrosinase was estimated, using gel filtration, to be about 130 kDa. Based on these data, it appeared that myrosinase from horseradish root consists of two subunits of similar molecular mass of about 65 kDa. The enzyme exhibited high activity at broad pH (pH 5.0-8.0) and temperature (37 and 45 degrees C). The purified enzyme remained stable at 4 degrees C for more than 1 year. Using sinigrin as a substrate, the Km and Vmax values for the purified enzyme were estimated to be 0.128 mM and 0.624 micromol min(-1), respectively. The enzyme was strongly activated by 0.5 mM ascorbic acid and was able to breakdown intact glucosinolates in a crude extract of broccoli.  相似文献   

18.
NAD-dependent l-glutamate dehydrogenase (NAD-GDH) activity was detected in cell extract from the psychrophile Janthinobacterium lividum UTB1302, which was isolated from cold soil and purified to homogeneity. The native enzyme (1,065 kDa, determined by gel filtration) is a homohexamer composed of 170-kDa subunits (determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis). Consistent with these findings, gene cloning and sequencing enabled deduction of the amino acid sequence of the subunit, which proved to be comprised of 1,575 amino acids with a combined molecular mass of 169,360 Da. The enzyme from this psychrophile thus appears to belong to the GDH family characterized by very large subunits, like those expressed by Streptomyces clavuligerus and Pseudomonas aeruginosa (about 180 kDa). The entire amino acid sequence of the J. lividum enzyme showed about 40% identity with the sequences from S. clavuligerus and P. aeruginosa enzymes, but the central domains showed higher homology (about 65%). Within the central domain, the residues related to substrate and NAD binding were highly conserved, suggesting that this is the enzyme's catalytic domain. In the presence of NAD, but not in the presence of NADP, this GDH exclusively catalyzed the oxidative deamination of l-glutamate. The stereospecificity of the hydride transfer to NAD was pro-S, which is the same as that of the other known GDHs. Surprisingly, NAD-GDH activity was markedly enhanced by the addition of various amino acids, such as l-aspartate (1,735%) and l-arginine (936%), which strongly suggests that the N- and/or C-terminal domains play regulatory roles and are involved in the activation of the enzyme by these amino acids.  相似文献   

19.
NAD激酶能催化NAD生成NADP。本研究采用PCR技术从嗜热脂肪地芽孢杆菌基因组中获得NAD激酶基因,以pET30a(+)为表达载体、E.coliBL21(DE3)为宿主菌,实现其在大肠杆菌中异源表达,并进行酶学性质研究。结果显示,嗜热脂肪地芽孢杆菌中NAD激酶编码基因大小为816bp,酶分子量大约为35kD。酶学性质分析表明,来源于嗜热脂肪地芽孢杆菌的NAD激酶最适反应温度和pH分别为35℃、pH7.5,在35qC中保温2h后仍能保持80%左右的活性。Mn2+、Ca2+对该酶有较强的激活作用,在最适反应条件下该酶的比活力为4.43U/mg。动力学性质分析结果显示NAD激酶对底物NAD催化的k和圪。,分别为1.46mmol/L和0.25tzmol/(L·min)。NAD激酶在大肠杆菌的异源表达为以NAD为底物生物合成NADP提供了更多生物资源。  相似文献   

20.
Purification and characterization of mitochondrial malate dehydrogenase [EC 1.1.1.37] from unfertilized eggs of the sea urchin, Anthocidaris crassispina, are described. The purification method consisted of dextran sulfate fractionation, Blue Dextran Sepharose chromatography, Phenyl-Sepharose hydrophobic chromatography and DEAE-cellulose chromatography. The enzyme was purified 771-fold with a 7% yield from the crude extract. The purified enzyme appeared homogeneous on polyacrylamide gel electrophoresis under both native and denatured conditions. After incubation at 45 degrees C for 50 min, the enzyme lost about 90% of its activity. In the presence of NADH, however, the enzyme was protected against the heat denaturation. The native enzyme had a molecular weight of about 65,000 and probably consisted of two identical subunits. In the reduction of oxaloacetate with NADH, a broad optimum pH ranging from 8.2 to 9.4 was found with 50 mM Tris-HCl and glycine-NaOH buffers. Sodium phosphate buffer apparently activated the enzyme. The apparent Km values for oxaloacetate and NADH were 19 microM and 30 microM, respectively. The optimum pH for malate oxidation with NAD+ was 10.2 in 50 mM NaHCO3-Na2CO3 buffer. The apparent Km values for malate and NAD+ were 7.0 mM and 0.6 mM, respectively. Zinc ion, sulfite ion, p-chloromercuriphenylsulfonate and adenine nucleotides strongly inhibited the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号