首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the screening of suppressor T cell (Ts) hybridomas for antigen-nonspecific suppressive activity, we isolated a strain of Mycoplasma arginini which inhibits B cell antibody production in vitro. The addition of mycoplasma-containing Ts hybridoma culture supernatant to splenic B cells responding to sheep red blood cells (SRBC) and T cell-replacing factor or to trinitrophenyl-lipopolysaccharide (TNP-LPS) suppressed the production of anti-SRBC and anti-TNP plaque-forming cells in a dose-dependent and antigen-nonspecific manner. Inhibition occurred due to the noncytotoxic mycoplasmal infection of B cells in culture and required the physical presence of microorganisms. Cell cycle analysis of acridine orange-stained B cells indicated that mycoplasmal infection did not block cell cycle entry and progression of antigen-activated cells. In addition to a suppressive activity, this strain of mycoplasma was selectively mitogenic for B cells. Furthermore, the mycoplasma failed to stimulate or inhibit T cell proliferation. The suppressive and mitogenic activities were selectively absorbed by mitogen-activated B cells but not T cells. These results indicate that this strain of M. arginini mimics the suppressive activity of an antigen-nonspecific Ts factor selective for B cell antibody production.  相似文献   

2.
Paeoniflorin (PF) exhibits tumor suppressive functions in a variety of human cancers. However, the function of PF and molecular mechanism in colorectal cancer are elusive. In the present study, we investigated whether PF could exert its antiproliferative activity, anti-migration, and anti-invasive function in colorectal cancer cells. We found that PF inhibited cell growth and induced apoptosis and blocked cell cycle progression in the G0/G1 phase in colorectal cancer cells. Moreover, we found that PF suppressed cell migration and invasion in colorectal cancer cells. FoxM1 has been reported to play an important oncogenic role in human cancers. We also determine whether PF inhibited the expression of FoxM1, leading to its anti-cancer activity. We found that PF treatment in colorectal cancer cells resulted in down-regulation of FoxM1. The rescue experiments showed that overexpression of FoxM1 abrogated the tumor suppressive function induced by PF treatment. Notably, depletion of FoxM1 promoted the anti-tumor activity of PF in colorectal cancer cells. Therefore, inhibition of FoxM1 could participate in the anti-tumor activity of PF in colorectal cancer cells.  相似文献   

3.
ING2 (Inhibitor of Growth 2) is a candidate tumor suppressive protein frequently lost in human tumors. Recently, we have reported that ING2 downregulation impairs DNA replication forks progression and leads to genome instability. To better understand the tumor suppressive functions of ING2 and its role in the cell cycle, we downregulated its expression in cells and studied the consequences of this downregulation on the G1/S transition. We observed that the inhibition of ING2 expression accelerated the progression of cells from G1 to S phase, and was accompanied by a decrease of p21 expression. Moreover, we show that the regulation of p21 by ING2 is independent, of the tumor suppressive protein p53. Interestingly, this function seems to be unique for ING2 since its closest homologue ING1 does not regulate the G1/S transition. It has been suggested previously that ING2 may modulate the trimethylation of H3K4 at the promoter of p21. Accordingly, our results suggest that there may be a link between the regulation of the G1/S transition by ING2 and the level of H3K4Me3. All together, these results bring new information concerning the role of ING2 in the regulation of the cell cycle and suggest that it may play important roles in controlling several S phase checkpoints.  相似文献   

4.
张静  王瑛  赵华栋  张婧  董旭才  王超  高军  张惠中 《生物磁学》2011,(23):4434-4436
目的:探讨夏枯草对人甲状腺癌细胞系SW579细胞生长的抑制作用及其对细胞增殖周期和凋亡的影响。方法:采用甲基噻唑(MTT)比色法和生长曲线测定不同浓度夏枯草在不同作用时间内对在体外培养SW579细胞增殖的影响,同时应用流式细胞术检测细胞增殖周期及凋亡率的变化。结果:夏枯草可在G0/G1期阻滞人甲状腺癌细胞系SW579的增殖,使s期细胞比率降低;在一定范围内,夏枯草的浓度越高、作用时间越长,对肿瘤细胞生长的抑制作用越强,凋亡率也越高。结论:夏枯草能抑制人甲状腺癌细胞系SW579细胞生长,并诱导细胞凋亡而阻止细胞周期。  相似文献   

5.
Cell cycle-dependent regulation of the DNA-dependent protein kinase   总被引:1,自引:0,他引:1  
  相似文献   

6.
The implication of histone H1 kinase activity for the G2/M transition during the cell cycle was investigated usingDictyostelium discoideum Ax-2. Histone H1 kinase with its activity was purified from cell extracts by the use of p13suc1 affinity gel. In the vegetative cell cycle, the activity of histone H1 kinase including Cdc2 kinase was found using synchronized Ax-2 cells to be highest just before the entry into mitosis. The activity also was markedly enhanced just prior to the M phase from which developing cells (possibly prespore cells) reinitiate their cell cycle at the mound-tipped aggregate stage. These results strongly suggest the importance of Cdc2 kinase activity in the G2 to M phase transition during the cell cycle, as the case for other eukaryotic cells.  相似文献   

7.
We have used C3H 10T1/2 cells to examine the regulation of topoisomerase activities during cell proliferation and the cell cycle. The specific activity of topoisomerase I was about 4-fold greater in proliferating (log phase) cells than in non-proliferating (confluent) cells. In synchronized cells, the bulk of the increased activity occurred during or just prior to S phase, depending upon the method of synchronization. A smaller increase in activity also occurred during G1 phase. The increase in activity during S phase was not altered by a hydroxyurea block at the G1/S phase boundary indicating that it is not directly coupled to DNA synthesis and is not the result of topoisomerase I gene dosage. The increase was inhibited by blocking cells at mid-G1 phase using isoleucine deprivation. Thus, the increase in activity during S phase is dependent on events occurring during mid- to late G1 phase. In contrast to the changes in topoisomerase I levels, the specific activity of topoisomerase II showed no detectable difference in proliferating vs non-proliferating cells. In addition, no detectable difference in topoisomerase II specific activity was seen in G1, S and M phases of the cell cycle. The differences in the activity profiles of the topoisomerases I and II during the cell cycle suggest that the two activities are regulated independently and may be required for different functions.  相似文献   

8.
The protein kinase inhibitor staurosporine (SSP) was employed to study the involvement of kinases in human cell cycle progression. Thirty to 100 ng/ml SSP blocks entry into S phase and M phase. Lack of entry into S phase is due to impaired activity of the retinoblastoma protein kinase. The requirement for any of the SSP-sensitive kinases for cell cycle progression can be abrogated in tumour cells. Therefore, these kinases act in a checkpoint network negatively controlling the initiation of S phase, M phase and cytokinesis, rather than being inherent parts of a substrate-product chain required for the initiation of the cell cycle phases. As a consequence of the lack of certain checkpoint effectors, tumour cells may endoreduplicate or binucleate in the presence of SSP. The latter processes, as well as meiosis, are naturally occurring in specialized cell types, leading to the idea that this checkpoint network controls the order of the cell cycle phases in normal cells. A model is presented where the cell cycle is envisioned as two independently running cycles, the S and the M cycle, which are controlled by intra and intercycle-dependent checkpoints in human somatic cells. The model accounts for the dependency of S and M phase initiation on the successful completion of the previous M and S phase, respectively, as well as entry into a resting state.  相似文献   

9.
The control of cell cycle progression has been studied in asynchronous cultures using image analysis and time lapse techniques. This approach allows determination of the cycle phase and signaling properties of individual cells, and avoids the need for synchronization. In past studies this approach demonstrated that continuous cell cycle progression requires the induction of cyclin D1 levels by Ras, and that this induction takes place during G2 phase. These studies were designed to understand how Ras could induce cyclin D1 levels only during G2 phase. First, in studies with a Ras-specific promoter and cellular migration we find that endogenous Ras is active in all cell cycle phases of actively cycling NIH3T3 cells. This suggests that cyclin D1 induction during G2 phase is not the result of Ras activation specifically during this cell cycle period. To confirm this suggestion oncogenic Ras, which is expected to be active in all cell cycle phases, was microinjected into asynchronous cells. The injected protein induced cyclin D1 levels rapidly, but only in G2 phase cells. We conclude that in the continuously cycling cell the targets of Ras activity are controlled by cell cycle phase, and that this phenomenon is vital to cell cycle progression.  相似文献   

10.
Groisman I  Jung MY  Sarkissian M  Cao Q  Richter JD 《Cell》2002,109(4):473-483
The synthesis and destruction of cyclin B drives mitosis in eukaryotic cells. Cell cycle progression is also regulated at the level of cyclin B translation. In cycling extracts from Xenopus embryos, progression into M phase requires the polyadenylation-induced translation of cyclin B1 mRNA. Polyadenylation is mediated by the phosphorylation of CPEB by Aurora, a kinase whose activity oscillates with the cell cycle. Exit from M phase seems to require deadenylation and subsequent translational silencing of cyclin B1 mRNA by Maskin, a CPEB and eIF4E binding factor, whose expression is cell cycle regulated. These observations suggest that regulated cyclin B1 mRNA translation is essential for the embryonic cell cycle. Mammalian cells also display a cell cycle-dependent cytoplasmic polyadenylation, suggesting that translational control by polyadenylation might be a general feature of mitosis in animal cells.  相似文献   

11.
Runx2 regulates osteogenic differentiation and bone formation, but also suppresses pre‐osteoblast proliferation by affecting cell cycle progression in the G1 phase. The growth suppressive potential of Runx2 is normally inactivated in part by protein destabilization, which permits cell cycle progression beyond the G1/S phase transition, and Runx2 is again up‐regulated after mitosis. Runx2 expression also correlates with metastasis and poor chemotherapy response in osteosarcoma. Here we show that six human osteosarcoma cell lines (SaOS, MG63, U2OS, HOS, G292, and 143B) have different growth rates, which is consistent with differences in the lengths of the cell cycle. Runx2 protein levels are cell cycle‐regulated with respect to the G1/S phase transition in U2OS, HOS, G292, and 143B cells. In contrast, Runx2 protein levels are constitutively expressed during the cell cycle in SaOS and MG63 cells. Forced expression of Runx2 suppresses growth in all cell lines indicating that accumulation of Runx2 in excess of its pre‐established levels in a given cell type triggers one or more anti‐proliferative pathways in osteosarcoma cells. Thus, regulatory mechanisms controlling Runx2 expression in osteosarcoma cells must balance Runx2 protein levels to promote its putative oncogenic functions, while avoiding suppression of bone tumor growth. J. Cell. Physiol. 228: 714–723, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
SYNOPSIS Chalones,inhibitors of cell dmsion have been isolatedand studied from a number of mammalian tissues, most notably,the epidermis The epidermal rhalone is a glycoprotein It exhibitsconsiderable, but not complete specificity The epidermal chalone decreases mitotic activity by inhibitingcells in the G 2 phase of the cell cycle from entering mitosis,and probably also by inhibiting ceils in the G 1 phase of thecell cycle from entering mitosis To inhibit cells in G 2 fromentering mitosis the chilone requnes adrenalin, and for maximalactivity hydrocortisone It is not known if idrenalin and hydrocortisoneare required for chalone inhibition of cells in G 1 In addition to inhibiting cell division in normal epidermalcells the epidermal chalone can inhibit cell division in regeneratingepidermal cells induced to proliferate by chemical damage Thephase of the cell cycle in which the chalone inhibits legeneratingepidermal cells from entering mitosis is not known Epidermal tumors contain a decreased amount of chalone Mitosisin epidermal tumors is inhibited by treatment with epidermalchalone Tumor cells are inhibitedfrom entering mitosis fromeither the G 1 or G 2 phases of the cell cycle Chalones are said to inhibit mitosis by a negative feedbackmechanism However, experiments which presumably result in adecrease in chalone concentration do not result in an increasein mitotic activity It is suggested that if chalones are physiological controllers of cell division they do not act by a simplenegative feedback mechanism but require the action of a substanceto decrease their concentration  相似文献   

13.
To ascertain the activity and substrate specificity of nuclear protein kinases during various stages of the cell cycle of HeLa S3 cells, a nuclear phospho-protein-enriched sample was extracted from synchronised cells and assayed in vitro in the presence of homologous substrates. The nuclear protein kinases increased in activity during S and G2 phase to a level that was twice that of kinases from early S phase cells. The activity was reduced during mitosis but increased again in G1 phase. When the phosphoproteins were separated into five fractions by cellulose-phosphate chromatography each fraction, though not homogenous, exhibited differences in activity. Variations in the activity of the protein kinase fractions were observed during the cell cycle, similar to those observed for the unfractionated kinases. Sodium dodecyl sulfate polyacrylamide gel electrophoretic analysis of the proteins phosphorylated by each of the five kinase fractions demonstrated a substrate specificity. The fractions also exhibited some cell cycle stage-specific preference for substrates; kinases from G1 cells phosphorylated mainly high molecular weight polypeptides, whereas lower molecular weight species were phosphorylated by kinases from the S, G2 and mitotic stages of the cell cycle. Inhibition of DNA and histone synthesis by cytosine arabinoside had no effect on the activity or substrate specificity of S phase kinases. Some kinase fractions phosphorylated histones as well as non-histone chromosomal proteins and this phosphorylation was also cell cycle stage dependent. The presence of histones in the in vitro assay influenced the ability of some fractions to phosphorylate particular non-histone polypeptides; non-histone proteins also appeared to affect the in vitro phosphorylation of histones.  相似文献   

14.
After stimulation, T cells enter a transient refractory period, promoted by IL-2, during which they are resistant to re-stimulation. We previously demonstrated that these IL-2- and Ag-stimulated refractory T cells are able to suppress the Ag-induced proliferation of naive T cells in vitro. We show here that, after adoptive transfer, these T cells are also able to suppress naive T cell proliferation in vivo. More interestingly, potently suppressive T cells can be generated directly in vivo by stimulation with Ag and supplemental IL-2. The activity of the suppressive cells is dose dependent, and the suppressor and suppressed T cells need not be restricted to the same MHC or Ag. Similar to its role in promoting T cell-mediated suppression in vitro, IL-2 is critical for the induction of suppressive activity in activated T cells in vivo. Supplemental IL-2, however, cannot overcome the suppressive activity in target T cells, indicating that suppression is not mediated by competition for this cytokine. Although the activated T cells block naive T cell proliferation, the naive cells do engage Ag and up-regulate the CD25 and CD69 activation markers after stimulation. Therefore, activated T cells stimulated in the presence of IL-2 develop MHC- and Ag-unrestricted suppressive activity. These results provide a new mechanism for competition among CD4(+) T lymphocytes, in which initial waves of responding T cells may inhibit subsequently recruited naive T cells. They further suggest a novel negative feedback loop limiting the expansion of T cell responses that may be present during vigorous immune responses or after IL-2 immunotherapy.  相似文献   

15.
Auxin induction of cell cycle regulated activity of tobacco telomerase.   总被引:5,自引:0,他引:5  
Telomerase activity was measured at each phase of the cell cycle in synchronized tobacco (Nicotiana tabacum) BY-2 cells in suspension culture with the use of the telomeric repeat amplification protocol assay. The activity was low or undetectable at most phases of the cell cycle but showed a marked increase at early S phase. The induction of telomerase activity was not affected by the S phase blockers aphidicolin (which inhibits DNA polymerase alpha) or hydroxyurea (which inhibits ribonucleotide reductase), but it was prevented by olomoucine, an inhibitor of Cdc2/Cdk2 kinases that blocks G(1)-S cell cycle transition. These results suggest that the induction of telomerase activity is not directly coupled to DNA replication by conventional DNA polymerases, but rather is triggered by the entry of cells into S phase. Various analogs of the plant hormone auxin, including indole-3-acetic acid, alpha-naphthaleneacetic acid, and 2,4-dichlorophenoxyacetic acid, potentiated the increase in telomerase activity at early S phase; the growth-inactive analog 2,3-dichlorophenoxyacetic acid, however, had no such effect. Potentiation by indole-3-acetic acid of the induction of telomerase activity was dose dependent. Together, these data indicate that telomerase activity in tobacco cells is regulated in a cell cycle-dependent manner, and that the increase in activity at S phase is specifically inducible by auxin.  相似文献   

16.
The objective of this study is to investigate the activity of methylthioadenosine phosphorylase (MTA-Pase) in mammalian cells stimulated by serum to proliferate and during their cell cycle. A direct correlation between growth rate and MTA-Pase activity in chinese hamster ovary (CHO) cells was observed. High MTA-Pase activity was observed during the exponential growth phase followed by a low enzyme activity during plateau phase of growth. To understand whether the fluctuations in the enzyme activity was cell cycle dependent, initially the activity of MTA-Pase was studied in plateau phase (G0) CHO cells as they synchronously go into S phase upon plating in fresh medium. The MTA-Pase activity in G0 cells before initiation of growth was 10.3 n.mol/mg protein/30'. A peak activity of 16.0 n.mol/mg/30 min was found at 12 hr after stimulation of proliferation by serum. These results indicate a peak MTA-Pase activity between 10-12 hr after stimulation of proliferation coinciding with the initiation of DNA synthesis. The activity of the enzyme slowly decreased as the cells completed their DNA synthesis. To understand whether these fluctuations are cell cycle specific, HeLa cells were synchronized in different phases and MTA-Pase activity was studied. The specific activities of the enzyme were 2.76, 2.99, 3.97, 3.28 and 3.65 n.moles/mg/30 min. in mitosis, early G1, late G1, S and G2 phases of the cell cycle respectively. These results indicate that MTA-Pase activity peaks in late G1 phase before the initiation of DNA synthesis, similar to the polyamine biosynthetic enzymes and might play a role in the initiation of DNA synthesis by salvage of adenine into nucleotide pools.  相似文献   

17.
Progression through the cell cycle is dependent upon numerous external factors (growth factors, extracellular matrix components) which exert their effects through the activation of signal transduction networks. During last years we have studied the regulation of progression through the ongoing CHO cell cycle. Recently, we have demonstrated that in CHO cells at least two serum dependent points exist in G1 phase that lead to different cellular responses. The first point is located immediately after mitosis and is suggested to link with apoptosis, while the second is located in late G1 phase and probably corresponds to the classical restriction point R. Because of the suggested link with apoptosis of the restriction point in early G1 phase, we have studied the possible role of PI 3-K in cell cycle progression through the ongoing G1 phase of CHO cells. In the presence of the PI 3-K inhibitors wortmannin or LY294002, cells were arrested during early G1 phase, leading to the expression of cleaved caspase-3, a central mediator of apoptosis. Addition of AP-2, an inhibitor of PKB, the downstream substrate of PI 3-K, at several time points during G1 phase demonstrated that inhibition during early G1 phase caused cell cycle arrest, while addition of the inhibitors during mid or late G1 phase had no effect on S phase entry. As for inhibition of PI 3-K, also inhibition of PKB resulted in expression of cleaved caspase-3. These results clearly demonstrate that a decision point exists in the early G1 phase of the cell cycle; in the presence of PKB activity the cells are continuing cell cycle progression, while in the absence of PKB activity the cells are induced for apoptosis.  相似文献   

18.
19.
Anisomycin is a pyrrolidine antibiotic isolated from Streptomyces griseolus. It has been found that a quite low dose of anisomycin is sufficient to block proliferation of primary T lymphocytes. The focus of this study is to explore the possibility of anisomycin to treat human acute leukemia Jurkat T cells in vitro. The results indicated that the low dose of anisomycin could significantly inhibit the colony formation of Jurkat T cells and elevate the inhibition rate of Jurkat T cell growth along with its increasing concentrations. Jurkat T cell cycle was blocked into S-phase by anisomycin. Consistent with the increased proportion of sub-G1 phase, anisomycin promoted Jurkat T cell apoptosis. The CD69 and CD25 expression on the surface of Jurkat T cells was also down-regulated prominently along with the enhancing concentrations of anisomycin, followed by the decreased production of IL-4, IL-10, IL-17, TGF-β and IFN-γ, and the down-regulated expression of phosphorylated-ERK1/2. The results suggest that the suppressive effect of anisomycin on Jurkat T cell growth may be related to inhibiting TGF-β production and ERK1/2 activation, arresting the cell cycle at S-phase and promoting the apoptosis of Jurkat T cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号