首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
《Autophagy》2013,9(12):2362-2378
We investigated the role of autophagy, a controlled cellular self-digestion process, in regulating survival of neurons exposed to atypical antipsychotic olanzapine. Olanzapine induced autophagy in human SH-SY5Y neuronal cell line, as confirmed by the increase in autophagic flux and presence of autophagic vesicles, fusion of autophagosomes with lysosomes, and increase in the expression of autophagy-related (ATG) genes ATG4B, ATG5, and ATG7. The production of reactive oxygen species, but not modulation of the main autophagy repressor MTOR or its upstream regulators AMP-activated protein kinase and AKT1, was responsible for olanzapine-triggered autophagy. Olanzapine-mediated oxidative stress also induced mitochondrial depolarization and damage, and the autophagic clearance of dysfunctional mitochondria was confirmed by electron microscopy, colocalization of autophagosome-associated MAP1LC3B (LC3B henceforth) and mitochondria, and mitochondrial association with the autophagic cargo receptor SQSTM1/p62. While olanzapine-triggered mitochondrial damage was not overtly toxic to SH-SY5Y cells, their death was readily initiated upon the inhibition of autophagy with pharmacological inhibitors, RNA interference knockdown of BECN1 and LC3B, or biological free radical nitric oxide. The treatment of mice with olanzapine for 14 d increased the brain levels of autophagosome-associated LC3B-II and mRNA encoding Atg4b, Atg5, Atg7, Atg12, Gabarap, and Becn1. The administration of the autophagy inhibitor chloroquine significantly increased the expression of proapoptotic genes (Trp53, Bax, Bak1, Pmaip1, Bcl2l11, Cdkn1a, and Cdkn1b) and DNA fragmentation in the frontal brain region of olanzapine-exposed animals. These data indicate that olanzapine-triggered autophagy protects neurons from otherwise fatal mitochondrial damage, and that inhibition of autophagy might unmask the neurotoxic action of the drug.  相似文献   

3.
环状RNA(circular RNA,circRNA)是一类广泛表达于真核细胞的环形RNA,多起源于蛋白编码基因。近年来发现circRNAs可通过如miRNA“海绵”等作用模式在基因的表达中发挥重要的调控作用,存在器官组织特异性的表达谱,并且越来越多的证据表明circRNAs可能是一种潜在的疾病标志物和治疗靶点。本文将对circRNAs近年在疾病中的研究进展进行综述,具体分为以下几个方面:(1)circRNAs的基本特征;(2)circRNAs的合成调控;(3)环状RNA介导基因表达的调控机制;(4)circRNAs在肿瘤性疾病中的作用;(5)circRNAs在感染免疫相关性疾病中的作用;(6)circRNAs在心血管疾病中的作用;(7)研究展望。  相似文献   

4.
5.
6.
7.
Macroautophagy (autophagy herein) is a cellular catabolic mechanism activated in response to stress conditions including starvation, hypoxia and misfolded protein accumulation. Abnormalities in autophagy were associated with pathologies including cancer and neurodegenerative diseases. Hence, elucidation of the signaling pathways controlling autophagy is of utmost importance. Recently we and others described microRNAs (miRNAs) as novel and potent modulators of the autophagic activity. Here, we describe MIR181A (hsa-miR-181a-1) as a new autophagy-regulating miRNA. We showed that overexpression of MIR181A resulted in the attenuation of starvation- and rapamycin-induced autophagy in MCF-7, Huh-7 and K562 cells. Moreover, antagomir-mediated inactivation of endogenous miRNA activity stimulated autophagy. We identified ATG5 as an MIR181A target. Indeed, ATG5 cellular levels were decreased in cells upon MIR181A overexpression and increased following the introduction of antagomirs. More importantly, overexpression of ATG5 from a miRNA-insensitive cDNA construct rescued autophagic activity in the presence of MIR181A. We also showed that the ATG5 3′ UTR contained functional MIR181A responsive sequences sensitive to point mutations. Therefore, MIR181A is a novel and important regulator of autophagy and ATG5 is a rate-limiting miRNA target in this effect.  相似文献   

8.
The connection between circular RNAs (circRNAs) and gastric cancer has been reported widely in recent years. However, previous studies have focused mainly on circRNAs from gastric cancer tissue. The objectives of the present study were to detect dysregulated circRNAs from both tissue and plasma of patients with gastric cancer and to explore their potential roles in the pathogenesis of gastric cancer. Expression profiles of circRNAs were obtained from the Gene Expression Omnibus (GEO) and analyzed using the GEO2R tool to identify differential expressed circRNAs. The significance threshold was set as |log2 (fold change)| > 2 and adjusted P < .05. The microRNA (miRNA) binding sites of the differentially expressed circRNAs were predicted using the Circular RNA Interactome web tool. TargetScan and the miRNet database were used to predict the miRNA target genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed using Database for Annotation Visualization and Integrated Discovery. Hub genes were identified and a network was constructed with Cytoscape. The overall survival rates for the selected miRNAs and messenger RNAs were evaluated by Kaplan-Meier Plotter. A total of three downregulated circRNAs (hsa_circ_0001190, hsa_circ_0036287, and hsa_circ_0048607) were identified in this study. Six miRNAs and eight hub genes met the significance criteria and were selected for further analysis. A circRNA-miRNA-hub gene network was constructed based on three circRNAs, six miRNAs, and eight hub genes. Evaluation of overall survival rates for the hub genes showed that low expression levels of GADD45A, PPP1CB, PJA2, and KLF2 were associated with poor overall survival. This study identified potential novel plasma circRNA biomarkers and provides insights into the underlying mechanisms of gastric cancer pathogenesis.  相似文献   

9.
Autophagic recycling of intracellular plant constituents is maintained at a basal level under normal growth conditions but can be induced in response to nutritional demand, biotic stress, and senescence. One route requires the ubiquitin‐fold proteins Autophagy‐related (ATG)‐8 and ATG12, which become attached to the lipid phosphatidylethanolamine (PE) and the ATG5 protein, respectively, during formation of the engulfing vesicle and delivery of its cargo to the vacuole for breakdown. Here, we genetically analyzed the conjugation machinery required for ATG8/12 modification in Arabidopsis thaliana with a focus on the two loci encoding ATG12. Whereas single atg12a and atg12b mutants lack phenotypic consequences, atg12a atg12b double mutants senesce prematurely, are hypersensitive to nitrogen and fixed carbon starvation, and fail to accumulate autophagic bodies in the vacuole. By combining mutants eliminating ATG12a/b, ATG5, or the ATG10 E2 required for their condensation with a method that unequivocally detects the ATG8‐PE adduct, we also show that ATG8 lipidation requires the ATG12–ATG5 conjugate. Unlike ATG8, ATG12 does not associate with autophagic bodies, implying that its role(s) during autophagy is restricted to events before the vacuolar deposition of vesicles. The expression patterns of the ATG12a and ATG12b genes and the effects of single atg12a and atg12b mutants on forming the ATG12–ATG5 conjugate reveal that the ATG12b locus is more important during basal autophagy while the ATG12a locus is more important during induced autophagy. Taken together, we conclude that the formation of the ATG12–ATG5 adduct is essential for ATG8‐mediated autophagy in plants by promoting ATG8 lipidation.  相似文献   

10.
11.
BackgroundLiver fibrosis has been the focus and difficulty of medical research in the world and its concrete pathogenesis remains unclear. This study aims to observe the high-mobility group box 1 (HMGB1)-induced hepatic endothelial to mesenchymal transition (EndoMT) during the development of hepatic fibrosis, and further to explore the crucial involvement of Egr1 in this process.MethodsCarbon tetrachloride (CCl4), diosbulbin B (DB), N-acetyl-p-aminophenol (APAP) and bile duct ligation (BDL) were used to induce liver fibrosis in mice. Serum HMGB1 content, the occurrence of EndoMT and the production of extracellular matrix (ECM) in vitro and in vivo were detected by Western-blot.ResultsThe elevated serum HMGB1 content, the occurrence of EndoMT, the production of ECM and the activation of Egr1 were observed in mice with liver fibrosis induced by CCl4, DB, APAP or BDL. HMGB1 induced EndoMT and ECM production in human hepatic sinusoidal endothelial cells (HHSECs), and then HHSECs lost the ability to inhibit the activation of hepatic stellate cells (HSCs). The hepatic deposition of collagen, the increased serum HMGB1 content and hepatic EndoMT were further aggravated in Egr1 knockout mice. Natural compound silymarin attenuated liver fibrosis in mice induced by CCl4 via increasing Egr1 nuclear accumulation, decreasing serum HMGB1 content and inhibiting hepatic EndoMT.ConclusionEgr1 regulated the expression of HMGB1 that induced hepatic EndoMT, which plays an important role in the development of liver fibrosis.General significance:This study provides a novel therapeutic strategy for the treatment of liver fibrosis in clinic.  相似文献   

12.
《Autophagy》2013,9(3):468-479
Multiple genetic studies have implicated the autophagy-related gene, ATG16L1, in the pathogenesis of Crohn disease (CD). While CD-related research on ATG16L1 has focused on the functional significance of ATG16L1 genetic variations, the mechanisms underlying the regulation of ATG16L1 expression are unclear. Our laboratory has described that microRNAs (miRNAs), key regulators of gene expression, are dysregulated in CD. Here, we report miRNA-mediated regulation of ATG16L1 in colonic epithelial cells as well as Jurkat T cells. Dual luciferase reporter assays following the transfection of vectors containing the ATG16L1 3′-untranslated region (3′UTR) or truncated 3′UTR fragments suggest that the first half of ATG16L1 3′UTR in the 5′ end is more functional for miRNA targeting. Of 5 tested miRNAs with putative binding sites within the region, MIR142-3p, upon transient overexpression in the cells, resulted in decreased ATG16L1 mRNA and protein levels. Further observation demonstrated that the luciferase reporter vector with a mutant MIR142-3p binding sequence in the 3′UTR was unresponsive to the inhibitory effect of MIR142-3p, suggesting ATG16L1 is a gene target of MIR142-3p. Moreover, the regulation of ATG16L1 expression by a MIR142-3p mimic blunted starvation- and L18-MDP-induced autophagic activity in HCT116 cells. Additionally, we found that a MIR142-3p inhibitor enhanced starvation-induced autophagy in Jurkat T cells. Our study reveals MIR142-3p as a new autophagy-regulating small molecule by targeting ATG16L1, implying a role of this miRNA in intestinal inflammation and CD.  相似文献   

13.
Ming Chen  Jiaxing Liu  Wenqi Yang 《Autophagy》2017,13(11):1813-1827
Bacterial translocation and lipopolysaccharide (LPS) leakage occur at a very early stage of liver fibrosis in animal models. We studied the role of LPS in hepatic stellate cell (HSC) activation and the underlying mechanisms in vitro and in vivo. Herein, we demonstrated that LPS treatment led to a dramatic increase in autophagosome formation and autophagic flux in LX-2 cells and HSCs, which was mediated through the AKT-MTOR and AMPK-ULK1 pathway. LPS significantly decreased the lipid content, including the lipid droplet (LD) number and lipid staining area in HSCs; pretreatment with macroautophagy/autophagy inhibitors or silencing ATG5 attenuated this decrease. Furthermore, lipophagy was induced by LPS through the autophagy-lysosomal pathway in LX-2 cells and HSCs. Additionally, LPS-induced autophagy further reduced retinoic acid (RA) signaling, as demonstrated by a decrease in the intracellular RA level and Rar target genes, resulting in the downregulation of Bambi and promoting the sensitization of the HSC's fibrosis response to TGFB. Compared with CCl4 injection alone, CCl4 plus LPS injection exaggerated liver fibrosis in mice, as demonstrated by increased Col1a1 (collagen, type I, α 1), Acta2, Tgfb and Timp1 mRNA expression, ACTA2/α-SMA and COL1A1 protein expression, and Sirius Red staining area, which could be attenuated by injection of an autophagy inhibitor. LPS also reduced lipid content in HSCs in vivo, with this change being attenuated by chloroquine (CQ) administration. In conclusion, LPS-induced autophagy resulted in LD loss, RA signaling dysfunction, and downregulation of the TGFB pseudoreceptor Bambi, thus sensitizing HSCs to TGFB signaling.  相似文献   

14.

Background

Lipopolysaccharide (LPS) is recognized as the most potent microbial mediator presaging the threat of invasion of Gram-negative bacteria that implicated in the pathogenesis of sepsis and septic shock. This study was designed to examine the microRNA (miRNA) expression in whole blood from mice injected with intraperitoneal LPS.

Methods

C57BL/6 mice received intraperitoneal injections of varying concentrations (range, 10–1000 μg) of LPS from different bacteria, including Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, Salmonella enterica, and Serratia marcescens and were killed 2, 6, 24, and 72 h after LPS injection. Whole blood samples were obtained and tissues, including lung, brain, liver, and spleen, were harvested for miRNA expression analysis using an miRNA array (Phalanx miRNA OneArray® 1.0). Upregulated expression of miRNA targets in the whole blood of C57BL/6 and Tlr4−/− mice injected with LPS was quantified using real-time RT-PCR and compared with that in the whole blood of C57BL/6 mice injected with lipoteichoic acid (LTA) from Staphylococcus aureus.

Results

Following LPS injection, a significant increase of 15 miRNAs was observed in the whole blood. Among them, only 3 miRNAs showed up-regulated expression in the lung, but no miRNAs showed a high expression level in the other examined tissues. Upregulated expression of the miRNA targets (let-7d, miR-15b, miR-16, miR-25, miR-92a, miR-103, miR-107 and miR-451) following LPS injection on real-time RT-PCR was dose- and time-dependent. miRNA induction occurred after 2 h and persisted for at least 6 h. Exposure to LPS from different bacteria did not induce significantly different expression of these miRNA targets. Additionally, significantly lower expression levels of let-7d, miR-25, miR-92a, miR-103, and miR-107 were observed in whole blood of Tlr4−/− mice. In contrast, LTA exposure induced moderate expression of miR-451 but not of the other 7 miRNA targets.

Conclusions

We identified a specific whole blood–derived miRNA signature in mice exposed to LPS, but not to LTA, from different gram-negative bacteria. These whole blood-derived miRNAs are promising as biomarkers for LPS exposure.  相似文献   

15.
Macroautophagy/autophagy is an essential catabolic process that targets a wide variety of cellular components including proteins, organelles, and pathogens. ATG7, a protein involved in the autophagy process, plays a crucial role in maintaining cellular homeostasis and can contribute to the development of diseases such as cancer. ATG7 initiates autophagy by facilitating the lipidation of the ATG8 proteins in the growing autophagosome membrane. The noncanonical isoform ATG7(2) is unable to perform ATG8 lipidation; however, its cellular regulation and function are unknown. Here, we uncovered a distinct regulation and function of ATG7(2) in contrast with ATG7(1), the canonical isoform. First, affinity-purification mass spectrometry analysis revealed that ATG7(2) establishes direct protein–protein interactions (PPIs) with metabolic proteins, whereas ATG7(1) primarily interacts with autophagy machinery proteins. Furthermore, we identified that ATG7(2) mediates a decrease in metabolic activity, highlighting a novel splice-dependent function of this important autophagy protein. Then, we found a divergent expression pattern of ATG7(1) and ATG7(2) across human tissues. Conclusively, our work uncovers the divergent patterns of expression, protein interactions, and function of ATG7(2) in contrast to ATG7(1). These findings suggest a molecular switch between main catabolic processes through isoform-dependent expression of a key autophagy gene.  相似文献   

16.
The goal of this study was to investigate the role of lipopolysaccharides (LPS) in induction of resistance in tomato against the causal agent of bacterial spot, Xanthomonas perforans. The results showed that pre-treatment with LPS leads to enhancing resistance of tomato against X. perforans. In addition, expression profiling of β-1,3-glucanase (BGL), Phenylalanine ammonia-lyase (PAL) and catalase (CAT) was examined during the induced resistance by LPS. The effect of LPS on induction of BGL, PAL and CAT was demonstrated in the present study. The data suggest that the effect of LPS on resistance of tomato against X. perforans could be through activation of some defence genes such as of BGL, PAL and CAT which afford defence responses against the pathogen. Our findings might help to better understanding the molecular bases of the induced resistance by LPS.  相似文献   

17.
18.
Non-small cell lung cancer (NSCLC) often metastasizes to the brain, but identifying which patients will develop brain metastases (BM) is difficult. Macroautophagy/autophagy is critical for cancer initiation and progression. We hypothesized that genetic variants of autophagy-related genes may affect brain metastases (BM) in NSCLC patients. We genotyped 16 single nucleotide polymorphisms (SNPs) in 7 autophagy-related (ATG) genes (ATG3, ATG5, ATG7, ATG10, ATG12, ATG16L1, and MAP1LC3/LC3) by using DNA from blood samples of 323 NSCLC patients. Further, we evaluated the potential associations of these genes with subsequent BM development. Lung cancer cell lines stably transfected with ATG16L1: rs2241880 (T300A) were established. Mouse models of brain metastasis were developed using cells transfected with ATG16L1–300T or ATG16L1–300A. ATG10: rs10036653 and ATG16L1: rs2241880 were significantly associated with a decreased risk of BM (respective hazard ratios [HRs]=0.596, 95% confidence interval [CI] 0.398–0.894, P = 0.012; and HR = 0. 655, 95% CI 0.438–0.978, P = 0.039, respectively). ATG12: rs26532 was significantly associated with an increased risk of BM (HR=1.644, 95% CI 1.049–2.576, P = 0.030). Invasion and migration assays indicated that transfection with ATG16L1–300T (vs. 300A) stimulated the migration of A549 cells. An in vivo metastasis assay revealed that transfection with ATG16L1–300T (vs. 300A) significantly increased brain metastasis. Our results indicate that genetic variations in autophagy-related genes can predict BM and that genome analysis would facilitate stratification of patients for BM prevention trials.  相似文献   

19.
20.
Migration of dendritic cells (DCs) plays an important role in T‐cell‐mediated adaptive immune responses. Lipopolysaccharide (LPS) sensed by Toll‐like receptor 4 (TLR4) serves as a signal for DC migration. We analyzed LPS‐induced DC volume changes preceding the directed movement towards chemoattractants. Treatment with LPS resulted in rapid, prolonged cell swelling in wild‐type (WT), but not in TLR4?/? bone marrow‐derived (BM) DCs indicating that TLR4 signaling is essential for LPS‐induced swelling. As a consequence, LPS‐treatment enhanced the migratory activity along a chemokine (CCL21)‐gradient in WT, but not in TLR4‐deficient BMDCs suggesting that the LPS/TLR4‐induced swelling response facilitates DC migration. Moreover, the role of calcium‐activated potassium channels (KCa3.1) as putative regulators of immune cell volume regulation and migration was analyzed in LPS‐challenged BMDCs. We found that the LPS‐induced swelling of KCa3.1‐deficient DCs was impaired when compared to WT DCs. Accordingly, the LPS‐induced increase in [Ca2+]i detected in WT DCs was reduced in KCa3.1‐deficient DCs. Finally, directed migration of LPS‐challenged KCa3.1‐deficient DCs was low compared to WT DCs indicating that activation of KCa3.1 is involved in LPS‐induced DC migration. These findings suggest that both TLR4 and KCa3.1 contribute to the migration of LPS‐activated DCs as an important feature of the adaptive immune response.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号