首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sialyloligosaccharide, NeuAc alpha 2-3Gal beta 1-3GlcNAc beta 1-3Gal beta 1-4Glc (LS-tetrasaccharide a), a minor component of human milk, is obtained in relatively large quantities from autohydrolysates of the major milk disialyloligosaccharide, NeuAc alpha 2-3Gal beta 1-3[NeuAc alpha 2-6]GlcNAc beta 1-3Gal beta 1-4Glc (disialyllacto-N-tetraose). Rabbits immunized with an oligosaccharide-protein conjugate prepared from keyhole limpet hemocyanin and LS-tetrasaccharide a produce antibodies directed against the corresponding oligosaccharide alditol. The anti-LS-tetrasaccharide a sera bind 3H-labeled LS-tetrasaccharide a in a direct-binding radioimmunoassay on nitrocellulose filters. The specificities of these antibodies are determined by comparing inhibitory activities of structurally related oligosaccharides. Strong hapten-antibody binding (Ka greater than 10(6) M-1) requires sialic acid linked alpha 2-3 to the nonreducing terminal galactose residue of reduced lacto-N-tetraose (Gal beta 1-3GlcNAc beta 1-3Gal beta 1-4GlcOH). Specificities of antibodies prepared against keyhole limpet hemocyanin conjugates of LS-tetrasaccharide b (Gal beta 1-3[NeuAc alpha 2-6]GlcNAc beta 1-3Gal beta 1-4Glc) and LS-tetrasaccharide c (NeuAc alpha 2-6Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc) differ only slightly from rabbit antibodies prepared against the corresponding bovine serum albumin conjugates described previously [D. F. Smith and V. Ginsburg (1980) J. Biol. Chem. 255, 55-59].  相似文献   

2.
The N-acetylglucosaminyltransferases probably involved in the biosynthesis in vitro of Ii core glycosphingolipids have been solubilized from a membrane preparation of mouse lymphoma P-1798 and partially characterized. The detergent-extracted membrane supernatant contains both beta 1-3- and beta 1-6-N-acetylglucosaminyltransferase activities that transfer [3H]GlcNAc from UDP-[3H]GlcNAc to the terminal galactose of neolactotetraosylceramide (Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc-ceramide; nLcOse4ceramide), to form the Ii core structures. The linkage of [3H]N-acetylglucosamine incorporated into the terminal galactose of nLcOse4Cer was determined from identification of 2,4,6-tri-O-methyl[3H]galactose and 2,3,4-tri-O-methyl[3H]galactose after hydrolysis of the permethylated enzymatic products, GlcNAc beta-[3H]Gal-GlcNAc-Gal-Glc-ceramide. In addition to the presence of beta-N-acetylglucosaminyltransferases, we have detected a galactosyltransferase activity in this soluble supernatant fraction that catalyzes the transfer of [14C]galactose from UDP-[14C]galactose to lactotriaosylceramide (GlcNAc beta 1-3Gal beta 1-4Glc-ceramide; LcOse3ceramide) to form nLcOse4ceramide, the acceptor in the N-acetylglucosaminyltransferase-catalyzed reaction.  相似文献   

3.
The branch specificity of Escherichia coli beta-galactosidase (EC 3.2.1.23) was studied by analyzing the cleavage of the branched hexasaccharide Gal beta 1-4GlcNAc beta 1-3(Gal beta 1-4GlcNAc beta 1-6)[14C(U)]Gal beta 1-4GlcNAc (1). This hexasaccharide was cleaved to pentasaccharides Gal beta 1-4GlcNAc beta 1-3(GlcNAc beta 1-6) [14C(U)]Gal beta 1-4GlcNAc (3) and GlcNAc beta 1-3(Gal-beta 1-4GlcNAc beta 1-6) [14C(U)]Gal beta 1-4GlcNAc (4) without any appreciable branch specificity. Even the further conversions of the pentasaccharides 3 and 4 into the tetrasaccharide GlcNAc beta 1-3(GlcNAc beta 1-6)[14C(U)]Gal beta 1-4GlcNAc seemed to proceed at similar rates, without any appreciable branch specificity. In marked contrast to the hexasaccharide 1, the pentasaccharide Gal beta 1-4GlcNAc beta 1-3(Gal beta 1-4GlcNAc beta 1-6)[14C(U)]Gal (2), missing the reducing end GlcNAc, is known to be cleaved selectively at the 6-branch; this finding was confirmed in the present study. The different behaviour of hexasaccharide 1 and pentasaccharide 2 reflects differences in the reactivity of their 6-branches; the preferred conformations of these closely related molecules may be quite different.  相似文献   

4.
The Gal alpha 1-3Gal structural determinant has been found to have a unique distribution in mammals. Although this determinant is abundantly expressed by erythrocytes and nucleated cells of many mammals, it has not been detected in human cells. However, our previous studies (Galili, U., Rachmilewitz, E. A., Peleg, A., and Flechner, I. (1984) J. Exp. Med. 160, 1519-1531; Galili, U., Clark, M. R., and Shohet, S. B. (1986) J. Clin. Invest. 77, 27-33) have suggested that this epitope is present in small amounts and may be involved in immune-mediated destruction of senescent human erythrocytes. To have a means for exploring this possibility and for studying the species and tissue distribution of this epitope we have raised a monoclonal antibody (Gal-13) which specifically binds to glycoconjugates with a nonreducing terminal Gal alpha 1-3Gal disaccharide. Mice were immunized with rabbit erythrocytes, which express an abundance of glycoconjugates with Gal alpha 1-3Gal epitopes. Clones were screened with a solid-phase binding assay (enzyme-linked immunosorbent assay) for antibodies which bound to ceramide pentahexoside (Gal alpha 1-3Gal beta 1-4GlcNAc beta 1-3-Gal beta Gal beta 1-4Glc1-1Cer) but not to ceramide trihexoside (Gal alpha 1-4Gal beta 1-4Glc1-1Cer). Gal-13 bound to a number of neutral glycosphingolipids from rabbit and bovine erythrocytes. These glycosphingolipids have previously been shown to be a family of linear and branched polylactosamine structures, which have non-reducing terminal Gal alpha 1-3Gal epitopes. The antibody did not bind to the human blood group B glycolipid, Gal alpha 1-3(Fuc alpha 1-2)Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc1-1Cer, and, therefore, branching at the penultimate galactose blocks Gal-13 binding. However, after removal of the fucose from the B antigen Gal-13 recognized the resulting derivative. Other Gal alpha 1-3Gal glycosphingolipids with an isogloboside or globoside core structure were not recognized by Gal-13 suggesting that the antibody binds to Gal alpha 1-3Gal carried by a lactosamine core structure. Gal-13 has been used to demonstrate that the Gal alpha 1-3Gal ceramide pentahexoside has been evolutionarily conserved in red cells of animals up to the stage of New World monkeys but is not found in Old World monkey red cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
We found for the first time that Zygomycetes species showed resistance to Aureobasidin A, an antifungal agent. A novel family of neutral glycosphingolipids (GSLs) was found in these fungi and isolated from Mucor hiemalis, which is a typical Zygomycetes species. Their structures were completely determined by compositional sugar, fatty acid, and sphingoid analyses, methylation analysis, matrix-assisted laser desorption ionization time-of-flight/mass spectrometry, and (1)H NMR spectroscopy. They were as follows: Gal beta 1-6Gal beta 1-1Cer (CDS), Gal alpha 1-6Gal beta 1-6Gal beta 1-1Cer (CTS), Gal alpha 1-6Gal alpha 1-6Gal beta 1-6Gal beta 1-1Cer (CTeS), and Gal alpha 1-6Gal alpha 1-6Gal alpha 1-6Gal beta 1-6Gal beta 1-1Cer (CPS). The ceramide moieties of these GSLs consist of 24:0, 25:0, and 26:0 2-hydroxy acids as major fatty acids and 4-hydroxyoctadecasphinganine (phytosphingosine) as the sole sphingoid. However, the glycosylinositolphosphoceramide families that are the major GSLs components in fungi were not detected in Zygomycetes at all. This seems to be the reason that Aureobasidin A is not effective for Zygomycetes as an antifungal agent. Our results indicate that the biosynthetic pathway for GSLs in Zygomycetes is significantly different from those in other fungi and suggest that any inhibitor of this pathway may be effective for mucormycosis, which is a serious pathogenic disease for humans.  相似文献   

6.
Four radiolabeled pentasaccharides, GlcNAc beta 1-3(Gal beta 1-4GlcNAc beta 1-6)Gal beta 1-4GlcNAc, Gal beta 1-4GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4GlcNAc, GlcNAc beta 1-3(Gal beta 1-4GlcNAc beta 1-6)Gal beta 1-4Glc, and Gal beta 1-4GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4Glc, were prepared in virtually pure form. They were obtained by partial enzymic beta 1,4-galactosylations of the appropriate tetrasaccharide acceptors or by partial enzymic degalactosylations of the appropriate hexasaccharides, followed by paper chromatographic separations. All four pentasaccharides contain two nonidentical distal branches, making them valuable primers for enzymatic in vitro synthesis of larger oligo(N-acetyllactosaminoglycans).  相似文献   

7.
Langerin mediates the carbohydrate-dependent uptake of pathogens by Langerhans cells in the first step of antigen presentation to the adaptive immune system. Langerin binds to an unusually diverse number of endogenous and pathogenic cell surface carbohydrates, including mannose-containing O-specific polysaccharides derived from bacterial lipopolysaccharides identified here by probing a microarray of bacterial polysaccharides. Crystal structures of the carbohydrate-recognition domain from human langerin bound to a series of oligomannose compounds, the blood group B antigen, and a fragment of β-glucan reveal binding to mannose, fucose, and glucose residues by Ca2+ coordination of vicinal hydroxyl groups with similar stereochemistry. Oligomannose compounds bind through a single mannose residue, with no other mannose residues contacting the protein directly. There is no evidence for a second Ca2+-independent binding site. Likewise, a β-glucan fragment, Glcβ1-3Glcβ1-3Glc, binds to langerin through the interaction of a single glucose residue with the Ca2+ site. The fucose moiety of the blood group B trisaccharide Galα1-3(Fucα1-2)Gal also binds to the Ca2+ site, and selective binding to this glycan compared to other fucose-containing oligosaccharides results from additional favorable interactions of the nonreducing terminal galactose, as well as of the fucose residue. Surprisingly, the equatorial 3-OH group and the axial 4-OH group of the galactose residue in 6SO4-Galβ1-4GlcNAc also coordinate Ca2+, a heretofore unobserved mode of galactose binding in a C-type carbohydrate-recognition domain bearing the Glu-Pro-Asn signature motif characteristic of mannose binding sites. Salt bridges between the sulfate group and two lysine residues appear to compensate for the nonoptimal binding of galactose at this site.  相似文献   

8.
S W Homans 《Glycobiology》1992,2(2):153-159
Two new homonuclear three-dimensional NMR techniques are described for the simplification of proton resonance assignment in oligosaccharides, namely HOHAHA-COSY and ROESY-COSY. The former technique is of value in the resonance assignment of gluco-configuration monosaccharide residues, whereas the latter is more suited to resonance assignment of galacto-configuration monosaccharide residues. The value of these techniques is illustrated by application to the proton resonance assignment of the pentasaccharide Gal beta 1-4(Fuc alpha 1-3)GlcNAc beta 1-3 Gal beta 1-4Glc, a compound which exhibits a variety of assignment problems due to severe cross-peak overlap in conventional COSY or HOHAHA spectra.  相似文献   

9.
Previous studies (Galili, U., Clark, M. R., Shohet, S. B., Buehler, J., and Macher, B. A. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 1369-1373; Galili, U., Shohet, S. B., Korbrin, E., Stults, C. L. M., and Macher, B. A. (1988) J. Biol. Chem. 263, 17755-17762) have established that there is a unique evolutionary distribution of glycoconjugates carrying the Gal alpha 1-3Gal beta 1-4GlcNAc epitope. These glycoconjugates are expressed by cells from New World monkeys and non-primate mammals, but not by cells from humans, Old World monkeys, or apes. The lack of expression of this epitope in the latter species appears to result from the suppression of gene expression for the enzyme UDP-galactose:nLc4Cer alpha 1-3-galactosyltransferase (alpha 1-3GalT) (Joziasse, D. H., Shaper, J. H., Van den Eijnden, D. H., Van Tunen, A. J., and Shaper, N. L. (1989) J. Biol. Chem. 264, 14290-14297). Although many non-primate species are known to express this carbohydrate epitope, the nature (i.e. glycoprotein or glycosphingolipid) of the glycoconjugate carrying this epitope is only known for a few tissues in a few animal species. Furthermore, it is not known whether all animal species express this epitope in the same tissues. We have investigated these questions by analyzing the glycosphingolipids in kidney from several non-primate animal species. Immunostained thin layer chromatograms of glycosphingolipids from sheep, pig, rabbit, cow, and rat kidney with the Gal alpha 1-3Gal beta 1-4GlcNAc glycosphingolipid-specific monoclonal antibody, Gal-13, demonstrated that kidney from all of these species except rat contained Gal alpha 1-3Gal beta 1-4GlcNAc neutral glycosphingolipids. A lack of expression of Gal alpha 1-3Gal beta 1-4GlcNAc glycosphingolipids in rat may be due to the lack of expression of the enzyme (alpha 1-3GalT) which catalyzes the formation of the Gal alpha 1-3Gal nonreducing terminal sequence of these compounds or to the lack of expression of glycosyltransferases which are necessary for the synthesis of the neolacto core structure of these compounds. These possibilities were evaluated in two ways. First, the three enzymes (UDP-N-acetylglucosamine:LacCer beta 1-3-N-acetyl-glucosaminyltransferase, UDP-galactose:Lc3Cer beta 1-4-galactosyltransferase, and alpha 1-3GalT) involved in the synthesis of the Gal alpha 1-3Gal beta 1-4GlcNAc glycosphingolipids were assayed using an enzyme-linked immunosorbent assay-based assay system and carbohydrate sequence-specific monoclonal antibodies. Second, TLC immunostaining was done to determine if the glycosphingolipid precursors (i.e. Lc3Cer and nLc4Cer) are expressed in rat kidney. Interestingly, rat kidney had a relatively high level of alpha 1-3GalT activity compared with the other animals tested.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Neutral glycosphingolipids from sheep-derived Fasciola hepatica liver flukes were isolated and characterized both structurally and serologically. After HPLC fractionation, glycolipids were analyzed by linkage analysis, enzymatic cleavage, and MALDI-TOF as well as electrospray ionization mass spectrometry. Obtained results revealed the presence of two types of neutral glycolipids. The first group represented mammalian-type species comprising globo- and isoglobotriaosylceramides (Gal(alpha1-4)Gal(beta1-4)Glc(1-1)ceramide and Gal(alpha1-3)Gal(beta1-4)Glc(1-1)ceramide, respectively) as well as Forssman antigen (GalNAc(alpha1-3)GalNAc(beta1-3/4)Gal(alpha1-4/3)Gal(beta1-4)Glc(1-1)ceramide). Applying Helix pomatia agglutinin, recognizing terminal alpha-linked GalNAc, to cryosections of adult flukes, the latter glycolipid could be localized to the F. hepatica gut. As Forssman antigen from the parasite and sheep host led to identical MALDI-TOF MS profiles, this glycolipid might be acquired from the definitive host. As a second group, highly antigenic glycolipids were structurally characterized as Gal(beta1-6)Gal(beta1-4)Glc(1-1)ceramide, Gal(beta1-6)Gal(alpha1-3/4)Gal(beta1-4)Glc(1-1)ceramide and Gal(beta1-6)Gal(beta1-6)Gal(alpha1-3/4)Gal(beta1-4)Glc(1-1)ceramide, the latter two structures of which exhibited both isoglobo- or globo-series core structures. Terminal Gal(beta1-6)Gal1-motifs have previously been shown to represent antigenic epitopes of neogala-series glycosphingolipids from tape worms. Using human Echinococcus granulosus infection sera, Gal(beta1-6)Gal-terminating glycolipids could be allocated to the gut in adult liver fluke cryosections. Corresponding neogala-reactive antibodies in F. hepatica infection serum were detected by their binding to E. granulosus and Taenia crassiceps neogala-glycosphingolipids. These antibodies might contribute to the known serological cross-reactivity between F. hepatica and parasitic cestode infections.  相似文献   

11.
Carbohydrate chains of cancer glycoprotein antigens contain major outer changes dictated by tissue-specific regulation of glycosyltransferase genes, the availability of sugar nucleotides, and competition between enzymes for acceptor intermediates during glycan elongation. However, it is evident from recent studies with recombinant mucin probes that the final glycosylation profiles of mucin glycoproteins are mainly determined by the cellular repertoire of glycosyltransferases. Hence, we examined various cancer cell lines for the levels of fucosyl-, beta-galactosyl, beta-N-acetylgalactosaminyl-, sialyl-, and sulfotransferase activities that generate the outer ends of the oligosaccharide chains. We have identified glycosyltransferases activities at the levels that would give rise to O-glycan chains as reported by others in breast cancer cell lines, T47D, ZR75-1, MCF-7, and MDA-MB-231. Most breast cancer cells express Gal-3-O-sulfotransferase specific for T-hapten Gal beta1-->3GalNAc alpha-, whereas the enzyme from colon cancer cells exhibits a vast preference for the Gal beta1,4GlcNAc terminal unit in O-glycans. We also studied ovarian cancer cells SW626 and PA-1 and hepatic cancer cells HepG2. Our studies show that alpha1,2-L-fucosyl-T, alpha(2,3) sialyl-T, and 3-O-Sulfo-T capable of acting on the mucin core 2 tetrasaccharide, Gal beta1,4GlcNAc beta1,6(Gal beta1,3)GalNAc alpha-, can also act on the Globo H antigen backbone, Gal beta1,3GalNAc beta1,3Gal alpha-, suggesting the existence of unique carbohydrate moieties in certain cancer-associated glycolipids. Briefly, our study indicates the following: (i) 3'-Sulfo-T-hapten has an apparent relationship to the tumorigenic potential of breast cancer cells; (ii) the 3'-sulfo Lewis(x), the 3-O-sulfo-Globo unit, and the 3-fucosylchitobiose core could be uniquely associated with colon cancer cells; (iii) synthesis of a polylactosamine chain and T-hapten are favorable in ovarian cancer cells due to negligible sialyltransferase activities; and (iv) a 6'-sialyl LacNAc unit and 3'-sialyl T-hapten appear to be prevalent structures in hepatic cancer cell glycans. Thus, it is apparent that different cancer cells are expressing unique glycan epitopes, which could be novel targets for cancer diagnosis and treatment.  相似文献   

12.
The binding of Toxin A isolated from Clostridium difficile to rabbit erythrocyte glycolipids has been studied. Total lipid extracts from rabbit erythrocytes were subjected to thin-layer chromatography and toxin-binding glycolipids detected by using 125I-labeled Toxin A in a direct binding overlay technique. Two major and several minor toxin-binding glycolipids were detected in rabbit erythrocytes by this method. The results of structural analyses of the major toxin-binding glycolipids were consistent with a pentasaccharide-ceramide (Gal alpha 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc-Cer) and a branched decasaccharide-ceramide (Gal alpha 1-3Gal beta 1-4GlcNAc beta 1-3[Gal alpha 1-3Gal beta 1-4GlcNAc beta 1-6]Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc-Cer) previously identified as the two most abundant glycolipids in rabbit erythrocytes. 125I-Toxin A binding to these glycolipids could be inhibited by bovine thyroglobulin, monospecific antiserum to the toxin, or by treatment of the glycolipids with alpha-galactosidase. The absence of toxin interaction with isoglobotriaosylceramide (Gal alpha 1-3Gal beta 1-4Glc-Cer) isolated from canine intestine suggested that the GlcNAc residue present in the terminal Gal alpha 1-3Gal beta 1-4GLcNAc sequence common to all known toxin binding glycoconjugates is required for carbohydrate-specific recognition by Toxin A. These observations are consistent with the proposed carbohydrate binding specificity of Toxin A for the nonreducing terminal sequence, Gal alpha 1-3Gal beta 1-4GlcNAc.  相似文献   

13.
In a previous paper, we reported the presence of globoside as a major neutral glycolipid in PC12 pheochromocytoma cells [Ariga, T., Macala, L. J., Saito, M., Margolis, R. K., Greene, L. A., Margolis, R. U., & Yu, R. K. (1988) Biochemistry 27, 52-58]. Recently, we found that subcloned PC12h cells accumulated another unusual neutral glycolipid. In order to characterize this glycolipid, PC12h cells were subcutaneously transplanted into rats. The induced tumor tissue accumulated two major neutral glycolipids, which were purified by Iatrobeads column and preparative thin-layer chromatographies. One of the glycolipids was found to be globoside, and the other had a globotriaosyl structure with an additional terminal Gal alpha 1-3 residue. Its structure was determined by fast atom bombardment mass spectrometry, two-dimensional proton nuclear magnetic resonance spectrometry (2D NMR), permethylation study, sequential degradation with exoglycosidase, and mild acid hydrolysis to be Gal(alpha 1-3)Gal(alpha 1-4)Gal(beta 1-4)Glc(beta 1-1')Cer.  相似文献   

14.
Thin layer chromatograms of ostrich liver neutral glycosphingolipids were immunostained with human sera. In addition to the expected staining of the Forssman pentaglycosylceramide by some sera, more polar and less abundant unknown glycolipids could be stained. Among them, the shortest carbohydrate chain glycolipid was purified and structurally characterized by mass spectrometry, proton NMR and methylation analysis. It was a novel pentaglycosylceramide of the neolactoseries terminated with the Gal(beta1-4)Gal determinant which is not expressed in mammalian species. Human antibodies affinity-purified on a synthetic Gal(beta1-4)Gal(beta1-4)Glc-Sepharose column recognized the newly characterized Gal(beta1-4)Gal-terminated pentaglycosylceramide, and, in addition, longer chain glycolipids. Occurrence of antibodies directed at the Gal(beta1-4)Gal epitope was studied by ELISA on 108 human sera. Anti-Gal(beta1-4)Gal antibodies were predominantly IgM, and their distribution was similar to that of anti-Gal(alpha1-3)Gal and anti-Forssman IgMs. It was concluded that anti-Gal(beta1-4)Gal are natural antibodies, not previously identified in man. They can be considered as xenoantibodies directed at species which express Gal(beta1-4)Gal-terminated carbohydrate chains.  相似文献   

15.
A beta 1-6N-acetylglucosaminyltransferase has been identified in microsomal preparations from hog gastric mucosa which is able to synthesize branch points in branched lactosaminoglycans (blood group I antigenic structures). The enzyme can be assayed specifically using the synthetic trisaccharide GlcNAc beta 1-3Gal beta 1-4Glc beta-OMe as acceptor. The product of the transferase reaction was isolated and identified by methylation analysis as, (Formula: see text) Into this tetrasaccharide two galactose residues were incorporated by the specific beta-N-acetylglucosaminide beta 1-4-galactosyltransferase from bovine milk. Thus a hexasaccharide was formed which was shown to inhibit strongly a murine monoclonal and a human anti-I antibody. Using a variety of oligosaccharides and glycolipids, which correspond to structures found in linear lactosaminoglycan chains, the acceptor substrate specificity of the branching enzyme was determined. From these results it is concluded that branching occurs only during the elongation process at the nonreducing end and follows a well-defined order. N-Acetylglucosamine is first transferred to position 3 of a terminal galactose followed immediately by the addition of a second N-acetylglucosamine to position 6; only then the 1-3 and the 1-6 branches are further elongated by galactose residues.  相似文献   

16.
Neutral glycolipids in PC12 cells were examined. A major neutral glycosphingolipid, isolated from a chloroform/methanol extract of the cells, was found to contain only galactose and glucose at a ratio of 3:1 and identified as ceramide tetrahexoside by fast atom bombardment (FAB) mass spectrometry. Its saccharide sequence was determined by a new method developed here using endoglycoceramidase (Ito, M., and Yamagata, T. (1986) J. Biol. Chem. 261, 14278-14282). The glycosphingolipid was digested with endoglycoceramidase to produce oligosaccharide which was subsequently pyridylaminated. The fluorescence-labeled oligosaccharide was digested with a series of specific exoglycosidases and fractionated by high performance liquid chromatography. The 2-aminopyridyl oligosaccharide was hydrolyzed by alpha-galactosidase to give a 2-aminopyridyl oligosaccharide which was identified as 2-aminopyridyl lactose by high performance liquid chromatography, indicating the glycolipid structure to be Gal alpha Gal alpha Gal beta GlcCer. Ceramide trihexoside obtained by limited digestion of the intact glycolipid was clearly identical with ceramide trihexoside obtained from human erythrocytes, according to NMR spectroscopy and methylation analysis. From these and other data on the intact glycolipid, obtained by methylation analysis and NMR spectroscopy, its structure was confirmed as Gal alpha 1-3Gal alpha 1-4Gal beta 1-4Glc beta 1-1Cer, III3-Gal alpha-globotriaosylceramide. This is the first report indicating the presence of this glycosphingolipid in PC12 cells.  相似文献   

17.
A UDP-GlcNAc:R1-beta 1-3Gal(NAc)-R2 [GlcNAc to Gal(NAc)] beta 6-N-acetylglucosaminyltransferase activity from pig gastric mucosa microsomes catalyzes the formation of GlcNAc beta 1-3(GlcNAc beta 1-6)Gal-R from GlcNAc beta 1-3Gal-R where -R is -beta 1-3GalNAc-alpha-benzyl or -beta 1-3(GlcNAc beta 1-6)GalNAc-alpha-benzyl. This enzyme is therefore involved in the synthesis of the I antigenic determinant in mucin-type oligosaccharides. The enzyme also converts Gal beta 1-3Gal beta 1-4Glc to Gal beta 1-3(GlcNAc beta 1-6)Gal beta 1-4Glc. The enzyme was stimulated by Triton X-100 at concentrations between 0 and 0.2% and was inhibited by Triton X-100 at 0.5%. There is no requirement for Mn2+ and the enzyme activity is reduced to 65% in the presence of 10 mM EDTA. Enzyme products were purified and identified by proton NMR, methylation analysis and beta-galactosidase digestion. Competition studies suggest that this pig gastric mucosal beta 6-GlcNAc-transferase activity is due to the same enzyme that converts Gal beta 1-3GalNAc-R to mucin core 2, Gal beta 1-3(GlcNAc beta 1-6)GalNAc-R, and GlcNAc beta 1-3GalNAc-R to mucin core 4, GlcNAc beta 1-3(GlcNAc beta 1-6)GalNAc-R. Substrate specificity studies indicate that the enzyme attaches GlcNAc to either Gal or GalNAc in beta (1-6) linkage, provided these residues are substituted in beta (1-3) linkage by either GlcNAc or Gal. The insertion of a GlcNAc beta 1-3 residue into Gal beta 1-3GalNAc-R to form GlcNAc beta 1-3Gal beta 1-3GalNAc-R prevents insertion of GlcNAc into GalNAc. These studies establish several novel pathways in mucin-type oligosaccharide biosynthesis.  相似文献   

18.
The complete structure is proposed for a ceramide (Cer), bis(2-aminoethylphosphono)-pentaoside, isolated from the skin of Aplysia kurodai. This new phosphonoglycosphingolipid was purified using two systems of column chromatography on silicic acid. The purity of the glycolipid was confirmed by thin-layer chromatography, analysis of its composition, and proton magnetic resonance spectrometry. The component carbohydrates were glucose, galactose, N-acetylgalactosamine, and 3-O-methylgalactose. Most (90%) of the fatty acid was palmitic acid and the major sphingosine bases were octadeca-4-sphingenine (51%) and anteisononadeca-4-sphingenine (38%). 2-Aminoethylphosphonyl-6-galactose was identified after its partial hydrolysis. From studies by methanolysis, permethylation, mild acid hydrolysis, hydrogen fluoride treatment, chromium trioxide oxidation combined with thin-layer chromatography, gas liquid chromatography, gas chromatography-mass spectrometry, and proton magnetic resonance spectrometry, the structure of the glycolipid was concluded to be 3-OMeGal beta 1----3GalNAc alpha 1----3[6'-O-(2-aminoethylphosphonyl)-Gal alpha 1----2](2-aminoethylphosphonyl----6)Gal beta 1----4Glc beta 1----1Cer.  相似文献   

19.
A new type of fucose-containing glycolipid exhibiting blood group H activity was isolated from rat ascites hepatoma cell AH 7974F. As a result of studying its structure by partial acid hydrolysis, enzymatic degradation and immuno-precipitation reaction, the structure was tentatively proposed as Fuc(1 → 2)Gal(1 → 3)GalNAc(1 → 4)Gal(1 → 4)Glc(1 → 1)Cer.  相似文献   

20.
A novel glucuronyltransferase (GlcAT-1) has been detected in embryonic chicken brains. This enzyme catalyzes the biosynthesis in vitro of glucuronic acid containing glycolipids starting from neolactotetraosylceramide (nLcOse4Cer) and neolactohexaosylceramide (nLcOse6Cer). The activity is present primarily in the Golgi-rich membrane fraction and can be extracted (60%) from the membrane using a neutral detergent, Nonidet P-40, at pH 7.0. The detergent-solubilized GlcAT-1 is stable (70%) at -20 degrees C for at least 4 months. Both membrane-bound GlcAT-1 and solubilized GlcAT-1 show similar pH optima, 6.5-7.0, in HEPES buffer. The Km values were 15 and 200 microM with UDP-[14C] GlcA and nLcOse4Cer, respectively, when the detergent-solubilized supernatant fraction was used as enzyme source. The purified 14C radioactive product that comigrated with chemically characterized GlcA beta 1-3nLcOse4Cer (GlcA-nLc4) also yielded a positive immunostain with monoclonal antibody (human IgM-RI). The anomeric linkage was established as beta-linked GlcA to the terminal galactose of the substrate, as evidenced by 90-99% cleavage of the terminal [14C] GlcA by purified Helix pomatia and limpet glucuronidases. Permethylation studies of the radioactive product obtained from [6-3H]Gal beta 1-4LcOse3Cer and non-radioactive UDP-GlcA showed the presence of 2,4,6-tri-O-methylgalactose in the hydrolyzed enzymatic product. These studies established the structure of the biosynthesized product from nLcOse4Cer as GlcA beta 1-3Gal beta 1-4 GlcNAc beta 1-3Gal beta 1-4Glc-ceramide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号