首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
IL-1β is a major regulator of islet inflammation in type 2 diabetes. Several factors contribute to the induction of islet-derived IL-1β, including glucose, free fatty acids, and leptin. A recent report in Nature Immunology (Masters et?al., 2010) identifies amyloid polypeptide as an additional enhancer of IL-1β production.  相似文献   

2.

Background

Cigarette smoking is the main risk factor for the development of chronic obstructive pulmonary disease (COPD), a major cause of morbidity and mortality worldwide. Despite this, the cellular and molecular mechanisms that contribute to COPD pathogenesis are still poorly understood.

Methodology and Principal Findings

The objective of this study was to assess IL-1 α and β expression in COPD patients and to investigate their respective roles in perpetuating cigarette smoke-induced inflammation. Functional studies were pursued in smoke-exposed mice using gene-deficient animals, as well as blocking antibodies for IL-1α and β. Here, we demonstrate an underappreciated role for IL-1α expression in COPD. While a strong correlation existed between IL-1α and β levels in patients during stable disease and periods of exacerbation, neutrophilic inflammation was shown to be IL-1α-dependent, and IL-1β- and caspase-1-independent in a murine model of cigarette smoke exposure. As IL-1α was predominantly expressed by hematopoietic cells in COPD patients and in mice exposed to cigarette smoke, studies pursued in bone marrow chimeric mice demonstrated that the crosstalk between IL-1α+ hematopoietic cells and the IL-1R1+ epithelial cells regulates smoke-induced inflammation. IL-1α/IL-1R1-dependent activation of the airway epithelium also led to exacerbated inflammatory responses in H1N1 influenza virus infected smoke-exposed mice, a previously reported model of COPD exacerbation.

Conclusions and Significance

This study provides compelling evidence that IL-1α is central to the initiation of smoke-induced neutrophilic inflammation and suggests that IL-1α/IL-1R1 targeted therapies may be relevant for limiting inflammation and exacerbations in COPD.  相似文献   

3.
Inflammasome activation permits processing of interleukins (IL)-1β and 18 and elicits cell death (pyroptosis). Whether these responses are independently licensed or are “hard-wired” consequences of caspase-1 (casp1) activity has not been clear. Here, we show that that each of these responses is independently regulated following activation of NLRP3 inflammasomes by a “non-canonical” stimulus, the secreted Listeria monocytogenes (Lm) p60 protein. Primed murine dendritic cells (DCs) responded to p60 stimulation with reactive oxygen species (ROS) production and secretion of IL-1β and IL-18 but not pyroptosis. Inhibitors of ROS production inhibited secretion of IL-1β, but did not impair IL-18 secretion. Furthermore, DCs from caspase-11 (casp11)-deficient 129S6 mice failed to secrete IL-1β in response to p60 but were fully responsive for IL-18 secretion. These findings reveal that there are distinct licensing requirements for processing of IL-18 versus IL-1β by NLRP3 inflammasomes.  相似文献   

4.
Early detection of viruses by the innate immune system is critical for host defense. Antiviral immunity is initiated by germline encoded pattern recognition receptors (PRRs) that recognize viral pathogen-associated molecular patterns (PAMPs) such as nucleic acids. Intracellular PRRs then drive the production of interferons and cytokines to orchestrate immune responses. One key host factor that is critical for antiviral immunity and for systemic inflammatory reactions including fever is interleukin-1beta (IL-1β). Here we discuss current insights into the molecular mechanisms how the cytosolic RNA helicase RIG-I triggers NF-κB signaling and inflammasome activation specifically for RNA virus-induced IL-1β production.  相似文献   

5.
Mechanical stimuli play important roles in proliferation and differentiation of connective tissue cells, and development and homeostatic maintenance of tissues. However, excessive mechanical loading to a tissue can injure cells and disrupt the matrix, as occurs in tendinopathy. Tendinopathy is a common clinical problem in athletes and in many occupational settings due to overuse of the tendon. Moreover, interleukin (IL)-1β is generally considered to be a "bad" cytokine, activating NF-κb and cell death and inducing matrix metalloproteinase (MMPs 1, 2, 3) expression and matrix destruction. However, activated NF-κB can also drive a cell survival pathway. We have reported that cyclic strain induced tenocyte death in three-dimensional (3D) cultures, and IL-1β could promote cell survival under strain. Therefore, it was hypothesized that 1) cyclic strain could induce cell death in tenocytes as observed in pathologic tendons in vivo; 2) a gene expression profile indicative of tendinopathy could be identified; and 3) low-dose IL-1β could protect cells from strain-induced, tendinopathy-like changes. Human tenocytes were cultured in 3D type I collagen hydrogels and subjected to 3.5% elongation at 1 Hz for 1 h/day for up to 5 days with or without IL-1β. Real-time RT-PCR data showed that cyclic strain regulated the expression of tendinopathy marker genes in a manner similar to that found in pathological tendons from patients and that addition of IL-1β reversed the gene expression changes to control levels. Results of further studies showed that IL-1β may modulate cell survival through upregulating the expression of connexin 43, which is involved in the modulation of cell death/survival in a variety of cells and tissues. The elucidation of the mechanisms underlying strain-induced cell death and recovery from strain injury will facilitate our understanding of the pathogenesis of tendinopathy and may lead to the discovery of new molecular targets for early diagnosis and treatment of tendinopathy.  相似文献   

6.
The regulation of neutrophil recruitment, activation, and disposal is pivotal for circumscribed inflammation. SHP1(Y208N/Y208N) mutant mice develop severe cutaneous inflammatory disease that is IL-1R dependent. Genetic reduction in neutrophil numbers and neutrophilic responses to infection is sufficient to prevent the spontaneous initiation of this disease. Neutrophils from SHP1(Y208N/Y208N) mice display increased pro-IL-1β production due to altered responses to MyD88-dependent and MyD88-independent signals. The IL-1R-dependent inflammatory disease in SHP1(Y208N/Y208N) mice develops independently of caspase 1 and proteinase 3 and neutrophil elastase. In response to Fas ligand, a caspase 1-independent inducer of IL-1β production, neutrophils from SHP1(Y208N/Y208N) mice produce elevated levels of IL-1β but display reduced caspase 3 and caspase 7 activation. In neutrophils deficient in SHP1, IL-1β induces high levels of pro-IL-1β suggesting the presence of a paracrine IL-1β loop. These data indicate that the neutrophil- and IL-1-dependent disease in SHP1(Y208N/Y208N) mice is a consequence of loss of negative regulation of TLR and IL-1R signaling.  相似文献   

7.
8.
Pneumonic plague is the most rapid and lethal form of Yersinia pestis infection. Increasing evidence suggests that Y. pestis employs multiple levels of innate immune evasion and/or suppression to produce an early “pre-inflammatory” phase of pulmonary infection, after which the disease is highly inflammatory in the lung and 100% fatal. In this study, we show that IL-1β/IL-18 cytokine activation occurs early after bacteria enter the lung, and this activation eventually contributes to pulmonary inflammation and pathology during the later stages of infection. However, the inflammatory effects of IL-1β/IL-1-receptor ligation are not observed during this first stage of pneumonic plague. We show that Y. pestis also activates the induction of IL-1 receptor antagonist (IL-1RA), and this activation likely contributes to the ability of Y. pestis to establish the initial pre-inflammatory phase of disease.  相似文献   

9.
Leishmania mexicana can cause both localized (LCL) and diffuse (DCL) cutaneous leishmaniasis, yet little is known about factors regulating disease severity in these patients. We analyzed if the disease was associated with single nucleotide polymorphisms (SNPs) in IL-1β (−511), CXCL8 (−251) and/or the inhibitor IL-1RA (+2018) in 58 Mexican mestizo patients with LCL, 6 with DCL and 123 control cases. Additionally, we analyzed the in vitro production of IL-1β by monocytes, the expression of this cytokine in sera of these patients, as well as the tissue distribution of IL-1β and the number of parasites in lesions of LCL and DCL patients. Our results show a significant difference in the distribution of IL-1β (−511 C/T) genotypes between patients and controls (heterozygous OR), with respect to the reference group CC, which was estimated with a value of 3.23, 95% CI = (1.2, 8.7) and p-value = 0.0167), indicating that IL-1β (−511 C/T) represents a variable influencing the risk to develop the disease in patients infected with Leishmania mexicana. Additionally, an increased in vitro production of IL-1β by monocytes and an increased serum expression of the cytokine correlated with the severity of the disease, since it was significantly higher in DCL patients heavily infected with Leishmania mexicana. The distribution of IL-1β in lesions also varied according to the number of parasites harbored in the tissues: in heavily infected LCL patients and in all DCL patients, the cytokine was scattered diffusely throughout the lesion. In contrast, in LCL patients with lower numbers of parasites in the lesions, IL-1β was confined to the cells. These data suggest that IL-1β possibly is a key player determining the severity of the disease in DCL patients. The analysis of polymorphisms in CXCL8 and IL-1RA showed no differences between patients with different disease severities or between patients and controls.  相似文献   

10.
Clinical and epidemiological studies implicate IL-1 as an important mediator of perinatal inflammation. We tested the hypothesis that intra-amniotic IL-1α would induce pulmonary and systemic fetal inflammatory responses. Sheep with singleton fetuses were given an intra-amniotic injection of recombinant sheep IL-1α (100 μg) and were delivered 1, 3, or 7 days later, at 124 ± 1 days gestation (n=5-8/group). A separate group of sheep were given two intra-amniotic IL-1α injections (100 μg dose each): 7 days and again 1 day prior to delivery. IL-1α induced a robust increase in monocytes, neutrophils, lymphocytes, and IL-8 protein in bronchoalveolar lavage fluid. H(2)O(2) secretion was increased in inflammatory cells isolated from lungs of IL-1α-exposed lambs upon LPS challenge in vitro compared with control monocytes. T lymphocytes were recruited to the lung. IL-1β, cyclooxygenase-1, and cyclooxygenase-2 mRNA expression increased in the lung 1 day after intra-amniotic IL-1α exposure. Lung volumes increased 7 days after intra-amniotic IL-1α exposure, with minimal anatomic changes in air space morphology. The weight of the posterior mediastinal lymph node draining the lung and the gastrointestinal tract doubled, inducible nitric oxide synthase (NOSII)-positive cells increased, and Foxp3-positive T-regulatory lymphocytes decreased in the lymph node after IL-1α exposure. In the blood, neutrophil counts and plasma haptoglobin increased after IL-1α exposure. Compared with a single exposure, exposure to intra-amniotic IL-1α 7 days and again 1 day before delivery had a variable effect (increases in some inflammatory markers, but not pulmonary cytokines). IL-1α is a potent mediator of the fetal inflammatory response syndrome.  相似文献   

11.
Intravital visualization of thrombopoiesis revealed that formation of proplatelets, which are cytoplasmic protrusions in bone marrow megakaryocytes (MKs), is dominant in the steady state. However, it was unclear whether this is the only path to platelet biogenesis. We have identified an alternative MK rupture, which entails rapid cytoplasmic fragmentation and release of much larger numbers of platelets, primarily into blood vessels, which is morphologically and temporally different than typical FasL-induced apoptosis. Serum levels of the inflammatory cytokine IL-1α were acutely elevated after platelet loss or administration of an inflammatory stimulus to mice, whereas the MK-regulator thrombopoietin (TPO) was not elevated. Moreover, IL-1α administration rapidly induced MK rupture–dependent thrombopoiesis and increased platelet counts. IL-1α–IL-1R1 signaling activated caspase-3, which reduced plasma membrane stability and appeared to inhibit regulated tubulin expression and proplatelet formation, and ultimately led to MK rupture. Collectively, it appears the balance between TPO and IL-1α determines the MK cellular programming for thrombopoiesis in response to acute and chronic platelet needs.  相似文献   

12.
胃癌是常见的恶性肿瘤之一,在我国其发病率居各类肿瘤前列,导致的死亡人数占所有肿瘤的四分之一,而且每年有近40万新增的胃癌病人,但是其早期诊断率低于20%,胃癌已经成为危害人民健康的最严重的疾病之一。白细胞介素(interleukin,IL)作为在白细胞或免疫细胞间相互作用的淋巴因子,不仅在介导T、B细胞活化、增殖与分化以及炎症反应中起着重要作用,近年来,越来越多的学者发现其与肿瘤的发生及发展也有着密不可分的联系。目前为止,已经发现了29种白细胞介素,分别被命名为IL-1~IL-29,它们各自承担着相应的使命。国内外大量实验及文献表明,IL-1,IL-6,IL-8和胃癌有着密切的关系,这对于胃癌的早期诊断及治疗提出了新的思路,进而提高胃癌的早期诊断率,改善胃癌的治疗状况。本文对IL-1,IL-6,IL-8的来源、分子结构及受体方面进行简要概述,同时阐述了其生物学特性及与胃癌的关系。  相似文献   

13.
14.
The role played by lung dendritic cells (DCs) which are influenced by external antigens and by their redox state in controlling inflammation is unclear. We studied the role played by nitric oxide (NO) in DC maturation and function. Human DCs were stimulated with a long-acting NO donor, DPTA NONOate, prior to exposure to lipopolysaccharide (LPS). Dose-and time-dependent experiments were performed with DCs with the aim of measuring the release and gene expression of inflammatory cytokines capable of modifying T-cell differentiation, towardsTh1, Th2 and Th17 cells. NO changed the pattern of cytokine release by LPS-matured DCs, dependent on the concentration of NO, as well as on the timing of its addition to the cells during maturation. Addition of NO before LPS-induced maturation strongly inhibited the release of IL-12, while increasing the expression and release of IL-23, IL-1β and IL-6, which are all involved in Th17 polarization. Indeed, DCs treated with NO efficiently induced the release of IL-17 by T-cells through IL-1β. Our work highlights the important role that NO may play in sustaining inflammation during an infection through the preferential differentiation of the Th17 lineage.  相似文献   

15.
CBA/J mice infected with the helminth Schistosoma mansoni develop severe CD4 T cell-mediated hepatic granulomatous inflammation against parasite eggs associated with a robust Th17 cell response. We investigated the requisites for Th17 cell development using novel CD4 T cells expressing a transgenic TCR specific for the major Sm-p40 egg Ag, which produce IL-17 when stimulated with live schistosome eggs. Neutralization of IL-23 or blockade of the IL-1 receptor, but not IL-6 neutralization, abrogated egg-induced IL-17 secretion by transgenic T cells, whereas exogenous IL-23 or IL-1β reconstituted their ability to produce IL-17 when stimulated by syngeneic IL-12p40-deficient dendritic cells. Kinetic analysis demonstrated that IL-17 production was initiated by IL-23 and amplified by IL-1β. Significantly, schistosome-infected IL-12p40-deficient or IL-1R antagonist-treated CBA/J mice developed markedly reduced hepatic immunopathology with a dampened egg Ag-specific IL-17 response. These results demonstrate that the IL-23-IL-1-IL-17 axis has a central role in the development of severe schistosome egg-induced immunopathology.  相似文献   

16.
Microbial sensing plays essential roles in the innate immune response to pathogens. In particular, NLRP3 forms a multiprotein inflammasome complex responsible for the maturation of interleukin (IL)-1β. Our aim was to delineate the role of the NLRP3 inflammasome in macrophages, and the contribution of IL-1β to the host defense against Citrobacter rodentium acute infection in mice. Nlrp3−/− and background C57BL/6 (WT) mice were infected by orogastric gavage, received IL-1β (0.5 µg/mouse; ip) on 0, 2, and 4 days post-infection (DPI), and assessed on 6 and 10 DPI. Infected Nlrp3−/− mice developed severe colitis; IL-1β treatments reduced colonization, abrogated dissemination of bacteria to mesenteric lymph nodes, and protected epithelial integrity of infected Nlrp3−/− mice. In contrast, IL-1β treatments of WT mice had an opposite effect with increased penetration of bacteria and barrier disruption. Microscopy showed reduced damage in Nlrp3−/− mice, and increased severity of disease in WT mice with IL-1β treatments, in particular on 10 DPI. Secretion of some pro-inflammatory plasma cytokines was dissipated in Nlrp3−/− compared to WT mice. IL-1β treatments elevated macrophage infiltration into infected crypts in Nlrp3−/− mice, suggesting that IL-1β may improve macrophage function, as exogenous administration of IL-1β increased phagocytosis of C. rodentium by peritoneal Nlrp3−/− macrophages in vitro. As well, the exogenous administration of IL-1β to WT peritoneal macrophages damaged the epithelial barrier of C. rodentium-infected polarized CMT-93 cells. Treatment of Nlrp3−/− mice with IL-1β seems to confer protection against C. rodentium infection by reducing colonization, protecting epithelial integrity, and improving macrophage activity, while extraneous IL-1β appeared to be detrimental to WT mice. Together, these findings highlight the importance of balanced cytokine responses as IL-1β improved bacterial clearance in Nlrp3−/− mice but increased tissue damage when given to WT mice.  相似文献   

17.
LPS-activated neutrophils secrete IL-1β by activation of TLR-4. Based on studies in macrophages, it is likely that ROS and lysosomal destabilization regulated by Syk activation may also be involved. Since neutrophils have abundant expression of the ITIM-containing co-receptor CEACAM1 and Gram-negative bacteria such as Neisseria utilize CEACAM1 as a receptor that inhibits inflammation, we hypothesized that the overall production of IL-1β in LPS treated neutrophils may be negatively regulated by CEACAM1. We found that LPS treated neutrophils induced phosphorylation of Syk resulting in the formation of a complex including TLR4, p-Syk, and p-CEACAM1, which in turn, recruited the inhibitory phosphatase SHP-1. LPS treatment leads to ROS production, lysosomal damage, caspase-1 activation and IL-1β secretion in neutrophils. The absence of this regulation in Ceacam1−/− neutrophils led to hyper production of IL-1β in response to LPS. The hyper production of IL-1β was abrogated by in vivo reconstitution of wild type but not ITIM-mutated CEACAM1 bone marrow stem cells. Blocking Syk activation by kinase inhibitors or RNAi reduced Syk phosphorylation, lysosomal destabilization, ROS production, and caspase-1 activation in Ceacam1−/− neutrophils. We conclude that LPS treatment of neutrophils triggers formation of a complex of TLR4 with pSyk and pCEACAM1, which upon recruitment of SHP-1 to the ITIMs of pCEACAM1, inhibits IL-1β production by the inflammasome. Thus, CEACAM1 fine-tunes IL-1β production in LPS treated neutrophils, explaining why the additional utilization of CEACAM1 as a pathogen receptor would further inhibit inflammation.  相似文献   

18.
19.
Damage associated molecular patterns (DAMPs) are released form red blood cells (RBCs) during intravascular hemolysis (IVH). Extracellular heme, with its pro-oxidant, pro-inflammatory and cytotoxic effects, is sensed by innate immune cells through pattern recognition receptors such as toll-like receptor 4 and nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3), while free availability of heme is strictly controlled. Here we investigated the involvement of different hemoglobin (Hb) forms in hemolysis-associated inflammatory responses.We found that after IVH most of the extracellular heme molecules are localized in oxidized Hb forms. IVH was associated with caspase-1 activation and formation of mature IL-1β in plasma and in the liver of C57BL/6 mice. We showed that ferrylHb (FHb) induces active IL-1β production in LPS-primed macrophages in vitro and triggered intraperitoneal recruitment of neutrophils and monocytes, caspase-1 activation and active IL-1β formation in the liver of C57BL/6 mice. NLRP3 deficiency provided a survival advantage upon IVH, without influencing the extent of RBC lysis or the accumulation of oxidized Hb forms. However, both hemolysis-induced and FHb-induced pro-inflammatory responses were largely attenuated in Nlrp3?/? mice.Taken together, FHb is a potent trigger of NLRP3 activation and production of IL-1β in vitro and in vivo, suggesting that FHb may contribute to hemolysis-induced inflammation. Identification of RBC-derived DAMPs might allow us to develop new therapeutic approaches for hemolytic diseases.  相似文献   

20.
Anthrax lethal toxin (LeTx) is a virulence factor of Bacilillus anthracis that is a bivalent toxin, containing lethal factor (LF) and protective Ag proteins, which causes cytotoxicity and altered macrophage function. LeTx exposure results in early K(+) efflux from macrophages associated with caspase-1 activation and increased IL-1β release. The mechanism of this toxin-induced K(+) efflux is unknown. The goals of the current study were to determine whether LeTx-induced K(+) efflux from macrophages is mediated by toxin effects on specific K(+) channels and whether altered K(+)-channel activity is involved in LeTx-induced IL-1β release. Exposure of macrophages to LeTx induced a significant increase in the activities of two types of K(+) channels that have been identified in mouse macrophages: Ba(2+)-sensitive inwardly rectifying K(+) (Kir) channels and 4-aminopyridine-sensitive outwardly rectifying voltage-gated K(+) (Kv) channels. LeTx enhancement of both Kir and Kv required the proteolytic activity of LF, because exposure of macrophages to a mutant LF-protein (LF(E687C)) combined with protective Ag protein had no effect on the currents. Furthermore, blocking Kir and Kv channels significantly decreased LeTx-induced release of IL-1β. In addition, retroviral transduction of macrophages with wild-type Kir enhanced LeTx-induced release of IL-1β, whereas transduction of dominant-negative Kir blocked LeTx-induced release of IL-1β. Activation of caspase-1 was not required for LeTx-induced activation of either of the K(+) channels. These data indicate that a major mechanism through which LeTx stimulates macrophages to release IL-1β involves an LF-protease effect that enhances Kir and Kv channel function during toxin stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号