首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study has been made of the factors that contribute to the decreased rates of lipid peroxidation under different pro-oxidant conditions in intact Novikoff tumour cells, and in microsomal suspensions prepared from Novikoff tumour cells, compared with isolated normal rat hepatocytes and microsomal suspensions prepared from normal rat liver. The pro-oxidant conditions were the addition of either NADPH, NADPH + ADP + iron, NADPH + CCl4 or ascorbate+iron to the experimental systems used, or exposure to gamma-radiation. Contributory factors to the lower rates of lipid peroxidation observed include: a significant decrease in the polyunsaturated fatty acid content of Novikoff cells or Novikoff microsomes; the decreases are especially marked for the C20:4 and C22:6 fatty acids; a very marked reduction in NADPH-cytochrome c reductase; and no detectable content of cytochrome P-450. Another, and in our opinion critical, contribution to the diminished rate of lipid peroxidation in the tumour material is the substantial increase in alpha-tocopherol relative both to total lipid and to methylene-interrupted double bonds in fatty acids. Moreover, the alpha-tocopherol is the major contributor to lipid-soluble chain-breaking antioxidant in lipid extracts of normal liver and of Novikoff tumour material.  相似文献   

2.
Ascorbate-induced lipid peroxidation in rat liver microsomes reaches the adult level in 2-3 days. NADPH-induced peroxidation develops more gradually, in parallel with the activity of NADPH-cytochrome P-450 reductase, attaining adult levels by 10-12 days. The glutathione-dependent cytosolic enzyme activity which inhibits peroxidation is inhibited by bromosulphophthalein. The development of this system lags behind the development of microsomal lipid peroxidation between the ages of 2 and 20 days, allowing peroxidation to proceed.  相似文献   

3.
We studied the activity of NADPH-cytochrome P-450 reductase, NADPH- and ascorbate-dependent systems of lipid peroxidation in liver microsomes, the activity of superoxide dismutase in the supernatant and the level of malonic acid dialdehyde in liver tissue of rats of various age. The activity of lipid peroxidation system and the malonic dialdehyde content in the early postnatal period increased to the adult level. The NADPH-cytochrome P-450 reductase activity increased during the first four months of animals life while that of superoxide dismutase increased until the animals were seven months old. A single administration of polychlorinated diphenyls at a dose of 500 mg/kg (1/10 LD50) to pregnant rats drastically stimulated and changed the pattern of the studied activities in their offspring. The role of lipid peroxidation in modification of microsomal membranes after the monooxygenase system induction by polychlorinated diphenyls in early ontogenesis is discussed.  相似文献   

4.
1. NADPH-dependent iron and drug redox cycling, as well as lipid peroxidation process were investigated in microsomes isolated from human term placenta. 2. Paraquat and menadione were found to undergo redox cycling, catalyzed by NADPH:cytochrome P-450 reductase in placental microsomes. 3. The drug redox cycling was able to initiate microsomal lipid peroxidation in the presence of micromolar concentrations of iron and ethylenediaminetetraacetate (EDTA). 4. Superoxide was essential for the microsomal lipid peroxidation in the presence of iron and EDTA. 5. Drastic peroxidative conditions involving superoxide and prolonged incubation in the presence of iron were found to destroy flavin nucleotides, inhibit NADPH:cytochrome P-450 reductase and inhibit propagation step of lipid peroxidation. 6. Reactive oxo-complex formed between iron and superoxide is proposed as an ultimate species for the initiation of lipid peroxidation in microsomes from human term placenta as well as for the destruction of flavin nucleotides and inhibition of NADPH:cytochrome P-450 reductase as well as for impairment of promotion of lipid peroxidation under drastic peroxidative conditions.  相似文献   

5.
Role of cytochrome P-450 in ochratoxin A-stimulated lipid peroxidation.   总被引:2,自引:0,他引:2  
The role of cytochrome P-450 in the stimulation of lipid peroxidation by the nephrotoxic mycotoxin ochratoxin A has been investigated. Ochratoxin A was previously shown to markedly stimulate lipid peroxidation in a reconstituted system consisting of phospholipid vesicles, NADPH-cytochrome P-450 reductase, Fe3+, ethylenediaminetetraacetic acid (EDTA), and reduced nicotinamide adenine dinucleotide phosphate (NADPH). We now show that purified cytochrome P-450IIB1 could effectively replace EDTA in stimulating lipid peroxidation suggesting that it could mediate the transfer of electrons from NADPH to Fe3+. Cobalt protoporphyrin is known to cause an extensive and long-lasting depletion of hepatic cytochrome P-450 in rats, and it has been used to evaluate the role of hepatic cytochrome P-450 in xenobiotic metabolism and toxicity. We have observed that microsomes isolated from livers of cobalt protoporphyrin-pretreated rats underwent ochratoxin A-dependent lipid peroxidation much more slowly than control microsomes. Also, the level of ethane exhaled (an index of in vivo lipid peroxidation) on ochratoxin A administration was much lower in cobalt protoporphyrin-pretreated rats than in control rats. Taken together, these results provide evidence for the stimulatory role of cytochrome P-450 in ochratoxin A-induced lipid peroxidation in a reconstituted system and strongly implicate its role in microsomal and in vivo ochratoxin A-induced lipid peroxidation.  相似文献   

6.
The role of cytochrome P-450 in the stimulation of lipid peroxidation by the nephrotoxic mycotoxin ochratoxin A has been investigated. Ochratoxin A was previously shown to markedly stimulate lipid peroxidation in a reconstituted system consisting of phospholipid vesicles, NADPH-cytochrome P-450 reductase, Fe3+, ethylenediaminetetra-acetic acid (EDTA), and reduced nicotinamide adenine dinucleotide phosphate (NADPH). We now show that purified cytochrome P-450IIB1 could effectively replace EDTA in stimulating lipid peroxidation suggesting that it could mediate the transfer of electrons from NADPH to Fe3+. Cobalt protoporphyrin is known to cause an extensive and long-lasting depletion of hepatic cytochrome P-450 in rats, and it has been used to evaluate the role of hepatic cytochrome P-450 in xenobiotic metabolism and toxicity. We have observed that microsomes isolated from livers of cobalt protoporphyrin-pretreated rats underwent ochratoxin A-dependent lipid peroxidation much more slowly than control microsomes. Also, the level of ethane exhaled (an index of in vivo lipid peroxidation) on ochratoxin A administration was much lower in cobalt protoporphyrin-pretreated rats than in control rats. Taken together, these results provide evidence for the stimulatory role of cytochrome P-450 in ochratoxin A-induced lipid peroxidation in a reconstituted system and strongly implicate its role in microsomal and in vivo ochratoxin A-induced lipid peroxidation.  相似文献   

7.
A reconstituted lipid peroxidation system consisting of rat liver microsomal NADPH-cytochrome P450 reductase and cytochrome P450 incorporated into phospholipid vesicles was developed and characterized. Peroxidation of the vesicles required NADPH and ADP-Fe3+, just as in the NADPH-dependent peroxidation of microsomes. The peroxidation of the vesicles was inhibited 30-50% by superoxide dismutase, depending upon their cytochrome P450 content: those with higher cytochrome P450 contents exhibited greater rates of malondialdehyde formation which were less sensitive to inhibition by superoxide dismutase. When cytochrome P450 was incorporated into vesicles, EDTA-Fe3+ was not required for lipid peroxidation, distinguishing this system from the one previously described by Pederson and Aust [Biochem. Biophys. Res. Comm. 48, 789; 1972]. Since at least 50% of the malondialdehyde formation in the vesicular system was not inhibited by superoxide dismutase, alternative means of iron reduction (O2-.-independent) were examined. It was found that rat liver microsomes or a reconstituted mixed function oxidase system consisting of NADPH-cytochrome P450 reductase and cytochrome P450 in dilauroylphosphatidylcholine micelles reduced ADP-Fe3+ under anaerobic conditions.  相似文献   

8.
Inactivation of transforming activity of plasmid DNA by lipid peroxidation   总被引:2,自引:0,他引:2  
DNA damage due to NADPH-dependent lipid peroxidation of liposomes was examined using liposomes prepared from lipids, NADPH-cytochrome P-450 reductase and cytochrome P-450 isolated from rat liver microsomes. Plasmid pBR322 DNA was incubated in the reaction mixture for liposomal lipid peroxidation and introduced to Escherichia coli CSR603 (uvrArecA). More of the transforming activity of the DNA was lost as the lipid peroxidation progressed, and this inactivation was dependent on the extent of lipid peroxidation. Single strand breaks occurred in the plasmid DNA. Hydroxyl radical scavengers could not prevent most of the strand breaks or the lipid peroxidation reaction. Chloroform extracts from the reaction mixture of peroxidized microsomes also inactivated the transforming activity of pBR322 DNA but did not cause strand breaks. The 105 000 X g supernatant of the reaction mixture, which contained more than 85% of the thiobarbituric acid-reactive substances, did not inactivate the plasmid DNA. The degradative products of [U-14C]arachidonic acid in the liposomes did not bind to DNA. These results led to the conclusion that at least two types of DNA damaging agent are produced during NADPH-dependent microsomal lipid peroxidation. One induces single strand breaks of DNA and another inactivates the plasmid-transforming activity without inducing strand breaks.  相似文献   

9.
Microsomal membranes from the slow-growing Morris hepatoma 9618A catalyze, in the presence of t-butyl hydroperoxide, lower rates of lipid peroxidation than rat liver microsomes. The cytochrome P-450 content of hepatoma microsomes is about 40% that of the liver. SKF 525-A, an inhibitor of mixed-function oxidase, produces in hepatoma microsomes a P-450 type I binding spectrum similar to that of hepatic microsomes. The concentration of the inhibitor required for half-maximal spectral change is about 2 microM in both microsome types. SKF 525-A or ethylmorphine inhibit lipid peroxidation of normal and tumor microsomes to the same extent (about 60%). Treatment of the tumor-bearing rats with 3-methylcholanthrene increases the hepatoma cytochrome P-450 to values comparable to those of control membranes, although the hemoprotein has a peak in the CO-reduced difference absorption spectrum at 448 nm. The cytochrome P-448 induction is accompanied by an almost complete restoration of the hydroperoxide-dependent lipid peroxidation.  相似文献   

10.
Reduced rates of lipid peroxidation have been observed in Yoshida hepatoma cells and microsomes when compared with appropriate control tissue (normal rat liver) under the same pro-oxidant conditions. The pro-oxidant conditions used were incubation with NADPH+ADP+iron or ascorbate+iron or exposure to gamma-irradiation. As previously shown with the Novikoff hepatoma, the relative concentrations of alpha-tocopherol and polyunsaturated fatty acids are important in conferring resistance to lipid peroxidation in the Yoshida hepatoma. Furthermore, NADPH-cytochrome c reductase and the NADPH-cytochrome P-450 electron transport chain, which are involved in the initiation and propagation of certain types of lipid peroxidation, are found at very much reduced levels in the Yoshida hepatoma. The relative importance of these aberrations are discussed.  相似文献   

11.
The effect of hyper- and hypothyroidism on lipid peroxidation has been studied in rat liver microsomes under three different experimental conditions. Under none of these conditions was the formation of TBA-reactive substances affected by either of these two pathological states. On the contrary, with NADPH as the only peroxidation inducer, hydroperoxide concentration increased some three fold in microsomes from hyperthyroid rats, while a small decrease was measured in those from hypothyroid animals. Similarly, the activity of NADPH-cytochrome P-450 reductase was found to be 45.1% higher in hyperthyroid and 40.3% lower in hypothyroid microsomes. The possibility discussed here is that two distinct peroxidative mechanisms (of which one, NADPH-cytochrome P-450 reductase-dependent, is influenced by the thyroid hormone) can compete with each other for the substrate polyunsaturated fatty acids.  相似文献   

12.
The iron-catalysed production of hydroxyl radicals, by rat liver microsomes (microsomal fractions), assessed by the oxidation of substrate scavengers and ethanol, displayed a biphasic response to the concentration of O2 (varied from 3 to 70%), reaching a maximal value with 20% O2. The decreased rates of hydroxyl-radical generation at lower O2 concentrations correlates with lower rates of production of H2O2, the precursor of hydroxyl radical, whereas the decreased rates at elevated O2 concentrations correlate with lower rates (relative to 20% O2) of activity of NADPH-cytochrome P-450 reductase, which reduces iron and is responsible for redox cycling of iron by the microsomes. The oxidation of aniline or aminopyrine and the cytochrome P-450/oxygen-radical-independent oxidation of ethanol also displayed a biphasic response to the concentration of O2, reaching a maximum at 20% O2, which correlates with the dithionite-reducible CO-binding spectra of cytochrome P-450. Microsomal lipid peroxidation increased as the concentration of O2 was raised from 3 to 7 to 20% O2, and then began to level off. This different pattern of malondialdehyde generation compared with hydroxyl-radical production probably reflects the lack of a role for hydroxyl radical in microsomal lipid peroxidation. These results point to the complex role for O2 in microsomal generation of oxygen radicals, which is due in part to the critical necessity for maintaining the redox state of autoxidizable components of the reaction system.  相似文献   

13.
Lipid peroxidation was initiated by the addition of either ADP-complexed Fe3+ or cumene hydroperoxide to isolated rat hepatocytes and the resultant biochemical and morphological alterations investigated. As previously observed with microsomes, malonaldehyde formation was associated with the inactivation of glucose-6-phosphatase. Inhibition of microsomal oxidative drug metabolism was correlated with the release and subsequent inactivation of NADPH-cytochrome c reductase, whereas cytochrome P-450 destruction occurred only in the presence of high concentrations of the organic hydroperoxide which were associated with extensive malonaldehyde formation. Under these conditions there were also marked ultrastructural alterations in the hepatocytes which were not apparent after incubation in the presence of iron (less than or equal to 187 muM Fe3+). The latter treatment was, however, associated with moderate biochemical effects such as glucose-6-phosphatase inactivation and increased membrane permeability. The cellular defence system against lipid peroxidation is discussed and it is concluded that the isolated liver cell system provides a valuable tool for the study of lipid peroxidation and its pathological implications.  相似文献   

14.
Lipid peroxidation of microsomal membranes isolated from rat liver, and Morris hepatomas 9618A (slow-growing) and 3924A (fast-growing) was induced by superoxide radicals generated by the action of xanthine oxidase on xanthine. The peroxidation, measured as malondialdehyde and lipid hydroperoxide formation, was optimized with regard to iron concentration and chelation of iron by ADP. In such conditions hepatoma microsomes catalyze lower rates of lipid peroxidation than the normal counterpart. However, while microsomes from hepatoma 3924A show a marked decrease in both the malondialdehyde and hydroperoxide production rates, microsomes from hepatoma 9618A differ moderately from the control, mainly in the long-term production of hydroperoxides. It is also reported here that the 9618A microsomes partially lack cytochrome P-450 (about 40% deficiency), but they have a fatty acid composition similar to that of control. No differences were found in the content of vitamin E between normal and hepatoma 3924A microsomes. Moreover, induction of vitamin E deficiency in hepatoma 3924A microsomes does not influence the rate of either malondialdehyde or lipid hydroperoxide production. On the basis of these results and previous data on the lipid composition of hepatoma 3924A microsomes it is proposed that the high resistance to superoxide-dependent lipid peroxidation of hepatoma 3924A microsomes is related to the low substrate availability rather than the content of membrane antioxidants; and a limitation only in the propagation phase characterizes the hepatoma 9618A microsomal lipid peroxidation and would be due to the partial deficiency of the endogenous propagating agent, cytochrome P-450.  相似文献   

15.
The susceptibility of liver microsomes to lipid peroxidation was evaluated in seven species: rat, rabbit, trout, mouse, pig, cow, and horse. Lipid peroxidation was measured as thiobarbituric acid reactive substances formed in the presence of either FeCl3-ADP/ascorbate or FeCl2/H2O2 initiating systems. For rat, rabbit, and trout microsomes, the order of susceptibility to peroxidation was rat > rabbit >> trout. The lack of peroxidation in trout microsomes could be explained by high microsomal vitamin E levels. Membrane fatty acid levels differed between species. Docosahexaenoic acid predominated in the trout, arachidonic acid in the rat, and linoleic acid in the rabbit. The contribution of individual fatty acids to lipid peroxidation reflected the degree of unsaturation with docosahexaenoic > arachidonic >>> linoleic. For all species except trout, the predicted susceptibility to peroxidation, based on the response of individual fatty acids, agreed well with directly measured microsomal peroxidation. With the exception of the trout, vitamin E content ranged from 0.083–0.311 nmol/mg microsomal protein between species, and low levels did not influence susceptibility to peroxidation. Trout microsomes peroxidized only after vitamin E depletion by prolonged incubation. The data indicate that below a vitamin E threshold, species differences in membrane susceptibility to peroxidation can be reasonably predicted based only on content of individual peroxidizable fatty acids.  相似文献   

16.
Incubation of rabbit liver microsomes with alkaline phosphatase resulted in a marked decrease of NADPH-dependent monooxygenase activities. This decrease was found to be correlated with the decrease of NADPH-cytochrome c reductase activity catalyzed by NADPH-cytochrome P-450 reductase. Neither the content of cytochrome P-450, as determined from its CO difference spectrum, nor the peroxide-supported demethylase activity catalyzed by cytochrome P-450 alone was affected by the phosphatase treatment. NADH-cytochrome b5 reductase and cytochrome b5 were not affected by the phosphatase either. NADPH-cytochrome P-450 reductase purified from rabbit liver microsomes lost its NADPH-dependent cytochrome c reductase activity upon incubation with phosphatase in a way similar to that of microsome-bound reductase. Flavin analysis showed that the phosphatase treatment caused a decrease of FMN with concomitant appearance of riboflavin. Alkaline phosphatase, therefore, inactivates the reductase by attacking its FMN, and the inactivation of the reductase, in turn, leads to a decrease of the microsomal monooxygenase activities.  相似文献   

17.
The effect of radiation on the drug-metabolizing enzyme system of microsomes, reconstituted with liposomes of microsomal phospholipids, NADPH-cytochrome P-450 reductase and cytochrome P-450, was examined to elucidate the role of lipid peroxidation of membranes in radiation-induced damage to membrane-bound enzymes. The reconstituted system of non-irradiated enzymes with irradiated liposomes showed a low activity of hexobarbital hydroxylation, whereas irradiated enzymes combined with non-irradiated liposomes exhibited an activity equal to that of unirradiated controls. Irradiation of liposomes caused a decrease in cytochrome P-450 content by destruction of the haem of cytochrome P-450 and also inhibited the binding capacity of cytochrome P-450 for hexobarbital. The relationship between radiation-induced lipid peroxidation and membrane-bound enzymes is discussed.  相似文献   

18.
Liver microsomal steroid 5-alpha-reduction is catalyzed by a NADPH-dependent enzyme system. The requirement of NADPH-cytochrome P-450 reductase to shuttle reduction equivalents from NADPH to steroid 5-alpha-reductase was investigated using an inhibitory antibody against NADPH-cytochrome P-450 reductase. This antibody preparation inhibited cytochrome c reduction in microsomes from female rat liver with an I50 of 0.75 mg antibody/mg of microsomal protein. Benzphetamine N-demethylation and testosterone 6-beta-hydroxylation, two cytochrome P-450-mediated oxidative reactions, were inhibited by the antibody. On the other hand, testosterone 5-alpha-reductase was not affected by the antibody. These results suggest that NADPH-cytochrome P-450 reductase is not an obligatory component of the liver microsomal steroid 5-alpha-reduction.  相似文献   

19.
NADPH-supported lipid peroxidation monitored by malondialdehyde (MDA) production in the presence of ferric pyrophosphate in liver microsomes was inactivated by heat treatment or by trypsin and the activity was not restored by the addition of purified NADPH-cytochrome P450 reductase (FPT). The activity was differentially solubilized by sodium cholate from microsomes, and the fraction solubilized between 0.4 and 1.2% sodium cholate was applied to a Sephadex G-150 column and subfractionated into three pools, A, B, and C. MDA production was reconstituted by the addition of microsomal lipids and FPT to specific fractions from the column, in the presence of ferric pyrophosphate and NADPH. Pool B, after removal of endogenous FPT, was highly active in catalyzing MDA production and the disappearance of arachidonate and docosahexaenoate, and this activity was abolished by heat treatment and trypsin digestion, but not by carbon monoxide. The rate of NADPH-supported lipid peroxidation in the reconstituted system containing fractions pooled from Sephadex G-150 columns was not related to the content of cytochrome P450. p-Bromophenylacylbromide, a phospholipase A2 inhibitor, inhibited NADPH-supported lipid peroxidation in both liver microsomes and the reconstituted system, but did not block the peroxidation of microsomal lipid promoted by iron-ascorbate or ABAP systems. Another phospholipase A2 inhibitor, mepacrine, poorly inhibited both microsomal and pool-B'-promoted lipid peroxidation, but did block both iron-ascorbate-driven and ABAP-promoted lipid peroxidation. The phospholipase A2 inhibitor chlorpromazine, which can serve as a free radical quencher, blocked lipid peroxidation in all systems. The data presented are consistent with the existence of a heat-labile protein-containing factor in liver microsomes which promotes lipid peroxidation and is not FPT, cytochrome P450, or phospholipase A2.  相似文献   

20.
The addition of limiting amounts of cumene hydroperoxide to rat liver microsomes resulted in the rapid uptake of molecular oxygen, the formation of thiobarbituric acid reactive products, and the loss of hydroperoxide. The stoichiometry of lipid peroxidation and the yields of 2-phenyl-2-propanol (a major product of the reaction) and acetophenone (a minor product) observed with liver microsomes prepared from untreated rats is greater than that seen with liver microsomes from ciprofibrate-treated rats which, in turn, is greater than that observed with liver microsomes from phenobarbital-treated rats. The Km's and Vmax's of oxygen uptake varied with the type of rat liver microsomes used. Cytochrome P-450 substrates and inhibitors decreased the extents and initial rates of oxygen uptake and thiobarbituric acid reactive product formation. A mechanism is proposed involving the cytochrome P-450-catalyzed homolytic cleavage of the cumene hydroperoxide O-O bond to give the cumyloxyl radical. It is proposed that this oxygen-centered radical abstracts a hydrogen atom from an unsaturated fatty acid associated with a lipid (initiating lipid peroxidation) to give 2-phenyl-2-propanol or that the radical undergoes beta-scission to produce acetophenone and a methyl radical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号