首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Although spatial variation in the patterns of parasite infestations among host populations may have important ecological and epidemiological consequences, the causes underlying such variation are poorly known. In the context of a long-term study on the population biology of Common Blackbirds Turdus merula , we examined the prevalence and intensity of infestation by Ixodes ticks between birds living in rural vs. urban habitats. The overall prevalence of tick infestations was significantly higher in the rural habitat where 74% of individuals ( n  = 130) were infested. This result contrasted markedly with the situation in the urban habitat where less than 2% of individuals ( n  = 360) carried ticks. There was no significant effect of the sex of the host on the intensity or prevalence of tick infestations. There was a significant effect of the age of the host on tick infestations essentially due to the absence of ticks on nestlings. Possible mechanisms responsible for the differences between habitats could include differences in tick survival and/or host resistance towards ticks. Previous studies have shown higher population densities and suggested longer survival for Blackbirds in urban than in rural habitats. Given that ixodid ticks are known to transmit pathogens like Borrelia spp. to wild birds, and that Blackbirds can act as reservoirs for these pathogens, the infection patterns observed in our study area provide a suitable situation to study the interrelations between ticks, Blackbirds and pathogens.  相似文献   

2.
Mechanisms of host preference in ectoparasites are important to the understanding of host‐parasite interactions. Since ectoparasites negatively affect the condition of their hosts, while the hosts’ condition itself may affect the parasites’ choice, separating the factors that drive host preference from parasite impact asks for experiments. We combined the data of two choice experiments to investigate the preference of the nidicolous tick Ixodes arboricola when exposed to the nestlings of a passerine bird (Parus major). In the first experiment, in which complete broods at hatching were exposed to an ecologically relevant number of ticks, the relationship between tick loads and nestlings’ developmental status was characterized by a distribution with the highest tick loads on the more developed nestlings. Host preference became more apparent at a smaller brood size, suggesting a role for host density. In a second experiment we evaluated host choice in a pairwise choice experiment, exposing pairs of siblings with contrasting developmental status to eight ticks. In the first and the second pair, a median developed nestling was linked with the most developed and the least developed nestling, respectively. Seventy‐two h after tick exposure we measured the innate constitutive humoral immunity and haematocrit. No differences were found in innate immunity, but the least developed nestlings had on average a lower haematocrit than the median and most developed nestlings. Significantly fewer ticks attached on the least developed nestling compared to the median nestling, and this difference was more pronounced when the innate immunity of the median developed nestling was higher. No difference in tick load was found among the median and best developed nestlings. The linkage between host preference and host physiological condition provide further insight in the mechanisms driving ectoparasite aggregation, which is important for the population dynamics of host, ticks and tick‐transmitted pathogens.  相似文献   

3.
The resistance of cottontail rabbits to tick feeding appears correlated with the rabbits' development of skin-sensitizing antibodies. Resistance appeared to be greatest in adult rabbits which had been repeatedly infested with ticks. Rabbits with little exposure to ticks, usually the young cottontails, showed little or no skin-sensitizing antibody present in their blood and usually had relatively high tick loads when compared with adult rabbits. Models used to interpret the data show promise as tools for predicting tick population fluctuations and, perhaps, incidence of vector borne disease outbreaks. The existence of resistance to tick attachment has important implications for the host-parasite relationship. The research lends support to the hypothesis that the resistance may function as a homeostatic regulatory mechanism capable of maintaining the size of the tick population in equilibrium with the size of the rabbit population. In this way, host resistance may be advantageous to the parasite as well as to the host.  相似文献   

4.
Mechanisms of on-host habitat selection of parasites are important to the understanding of host-parasite interactions and evolution. To this end, it is important to separate the factors driving parasite micro-habitat selection from those resulting from host anti-parasite behaviour. We experimentally investigated whether tick infestation patterns on songbirds are the result of an active choice by the ticks themselves, or the outcome of songbird grooming behaviour. Attachment patterns of three ixodid tick species with different ecologies and host specificities were studied on avian hosts. Ixodes arboricola, Ixodes ricinus and Ixodes frontalis were put on the head, belly and back of adult great tits (Parus major) and adult domestic canaries (Serinus canaria domestica) which were either restricted or not in their grooming capabilities. Without exception, ticks were eventually found on a bird’s head. When we gave ticks full opportunities to attach on other body parts – in the absence of host grooming – they showed lower attachment success. Moreover, ticks moved from these other body parts to the host's head when given the opportunity. This study provides evidence that the commonly observed pattern of ticks feeding on songbirds’ heads is the result of an adaptive behavioural strategy. Experimental data on a novel host species, the domestic canary, and a consistent number of published field observations, strongly support this hypothesis. We address some proximate and ultimate causes that may explain parasite preference for this body part in songbirds. The link found between parasite micro-habitat preference and host anti-parasite behaviour provides further insight into the mechanisms driving ectoparasite aggregation, which is important for the population dynamics of hosts, ectoparasites and the micro-pathogens for which they are vectors.  相似文献   

5.
McCoy KD  Tirard C  Michalakis Y 《Heredity》2003,91(4):422-429
To examine the potential importance of the spatial subdivision of hosts for the functioning of parasite populations, we analysed patterns of local genetic structure within natural populations of the seabird ectoparasite, Ixodes uriae, at the scale of the host breeding cliff. The seabird hosts of this parasite nest in dense colonies with a hierarchical spatial organisation (individual nests-breeding cliffs-colony). Using eight microsatellite markers and samples from three breeding cliffs of the Black-legged kittiwake (Rissa tridactyla), we found that tick populations were indeed genetically structured at this spatial scale. However, the nature of this structuring depended on the characteristics of the cliffs considered. Both the host nest and cliff topography seemed to be important factors in the isolation of tick groups, but their relative roles may depend on the size of the local parasite population. We found no evidence of isolation by distance within a cliff suggesting that independent tick dispersal may not be a significant force influencing population structure in highly infested cliffs. However, genetic structure seemed to decrease with tick life stage, nymphal ticks being more strongly structured than adult ticks. These results may be related to the clustering of tick progeny combined with differential mortality and dispersal probabilities of each life stage. Overall, results indicate that the spatial organisation of hosts can indeed have important consequences for the population genetic structure of their parasites and, thus, may modify parasite dynamics and the scale at which local coevolutionary processes occur.  相似文献   

6.
When feeding on vertebrate host ticks (ectoparasitic arthropods and potential vectors of bacterial, rickettsial, protozoal, and viral diseases) induce both innate and specific acquired host-immune reactions as part of anti-tick defenses. In a resistant host immune defense can lead to reduced tick viability, sometimes resulting in tick death. Tick responds to the host immune attack by secreting saliva containing pharmacologically active molecules and modulating host immune response. Tick saliva-effected immunomodulation at the attachment site facilitates both tick feeding and enhances the success of transmission of pathogens from tick into the host. On the other hand, host immunization with antigens from tick saliva can induce anti-tick resistance and is seen to be able to induce immunity against pathogens transmitted by ticks. Many pharmacological properties of saliva described in ticks are shared widely among other blood-feeding arthropods.  相似文献   

7.
Abstract. The parasitic mite Riccardoella limacum sucks blood in the lung of its host, the land snail Arianta arbustorum . The infection of various host populations was examined in Switzerland. In a lowland snail population, prevalence of infection did not vary among seasons. However, intensity of mite infection in dissected individuals of A. arbustorum was high in autumn, but low in winter and spring when ≤100 mite eggs were found attached to the lung epithelium. A novel, non-invasive parasite screening method was used to estimate the number of mites on living host snails. An analysis of repeatability revealed that 92.9% of the snails were correctly classified as infected or non-infected with this non-invasive method. Prevalence of mite infection was examined in 997 adults of A. arbustorum from 11 natural populations distributed over an altitudinal gradient ranging 335–2360 m. No infected snails were found in 7 populations, while in the remaining 4 populations the prevalence of mite infection ranged 45.8–77.8%. Intensity of infection also differed among the 4 host populations. No geographic pattern in prevalence of infection was found. However, parasitic mites did not occur in snail populations situated at elevations of 1290 m or higher. A possible explanation for this finding could be that the host's hibernation period may be too long at high elevations for mites and their eggs to survive. At low elevations, other factors may affect the presence of R. limacum in the lung of A. arbustorum .  相似文献   

8.
Abstract The extent to which density‐dependent processes regulate natural populations is the subject of an ongoing debate. We contribute evidence to this debate showing that density‐dependent processes influence the population dynamics of the ectoparasite Aponomma hydrosauri (Acari: Ixodidae), a tick species that infests reptiles in Australia. The first piece of evidence comes from an unusually long‐term dataset on the distribution of ticks among individual hosts. If density‐dependent processes are influencing either host mortality or vital rates of the parasite population, and those distributions can be approximated with negative binomial distributions, then general host–parasite models predict that the aggregation coefficient of the parasite distribution will increase with the average intensity of infections. We fit negative binomial distributions to the frequency distributions of ticks on hosts, and find that the estimated aggregation coefficient k increases with increasing average tick density. This pattern indirectly implies that one or more vital rates of the tick population must be changing with increasing tick density, because mortality rates of the tick's main host, the sleepy lizard, Tiliqua rugosa, are unaffected by changes in tick burdens. Our second piece of evidence is a re‐analysis of experimental data on the attachment success of individual ticks to lizard hosts using generalized linear modelling. The probability of successful engorgement decreases with increasing numbers of ticks attached to a host. This is direct evidence of a density‐dependent process that could lead to an increase in the aggregation coefficient of tick distributions described earlier. The population‐scale increase in the aggregation coefficient is indirect evidence of a density‐dependent process or processes sufficiently strong to produce a population‐wide pattern, and thus also likely to influence population regulation. The direct observation of a density‐dependent process is evidence of at least part of the responsible mechanism.  相似文献   

9.
We explored infection patterns and temporal dynamics of the protozoan blood parasite Hepatozoon tuatarae (Apicomplexa) infecting the tuatara (Sphenodon punctatus), a protected reptile living on Stephens Island, New Zealand. In March 2006, we surveyed tuatara in five study sites to examine spatial variation in infection prevalence, and four times, from May 2005 to November 2006, we recaptured marked individuals within three study sites to examine the temporal dynamics of infection. We also examined how blood-parasite infection patterns were influenced by host sex, body size, and host infestation with ticks (Amblyomma sphenodonti) and mites (Neotrombicula spp.), which are potential vectors of the blood parasite. Infection prevalence (16.9-24% infected) and intensity (<0.01-0.1% blood cells infected) were low in all samples. Infection intensity varied among the five sampled sites in March 2006, but prevalence did not. Neither infection prevalence nor intensity varied with time, and infections were detected in consecutive samples from recaptured individuals for up to 18 mo. Neither survey showed an influence of host sex on infection, but both surveys showed infection intensity declined with increasing host body size, as did infection prevalence in the spatial survey. In the temporal survey, we found a positive relationship between the tick numbers on hosts and blood-parasite infection intensity, which were stronger in two of the sampling periods and among larger hosts. These data suggest that exposure and susceptibility to infection decreases with host size and that ticks, but not mites, are probably the vectors in this ancient host-parasite association of a long-lived (>50 yr) host.  相似文献   

10.
The tick Rhipicephalus appendiculatus Neumann (Acari: Ixodidae) naturally infests many host species. However, the mechanisms that enable it to feed on such a wide range of hosts are unclear. One possibility is that a tick population maintains molecular (genotypic and/or phenotypic) diversity among individuals such that individuals vary in their competency in taking bloodmeals under different feeding conditions. As a first step in testing this hypothesis, we showed that the polymorphism of salivary gland proteins, previously demonstrated in unfed ticks, was maintained during feeding on guinea-pigs. We then compared feeding performance under standard laboratory rearing conditions: one instar (adults or nymphs) feeding on guinea-pigs, with three changed conditions: (1) two instars (adults and nymphs) feeding together on guinea-pigs; (2) one instar (adults or nymphs) feeding on hamsters; and (3) two instars (adults and nymphs) feeding together on hamsters. The mean engorged weight of adult females was significantly reduced under all changed conditions, indicating that most of the adult individuals were significantly challenged by the changed conditions. However, some individuals achieved successful engorgement, indicating competence to the changed condition, and demonstrating variation in adaptive ability among individuals. Engorged females produced egg masses positively correlated to the engorged weights. More interestingly, the correlation coefficient (R) increased when feeding condition was changed. This may lead to more efficient selection for population adaptation under the changed conditions. As the feeding success of ixodid ticks depends on the efficiency of the cocktail of immunomodulatory saliva, the relevance of the polymorphism of salivary gland proteins and host adaptation is discussed.  相似文献   

11.
The spatial aggregation of ticks feeding on vertebrate hosts has been recognized for some time but, for hosts supporting more than one stage of the tick, observations of interstadial variation in the site of attachment have not previously been quantified. This study showed that all three parasitic stages of Ixodes ricinus ticks feeding on sheep attach most commonly to the hair-covered areas of the head and limbs while few ticks attach to the fleeced region of the body. However, significant differences were observed in the site of attachment of the three feeding stages of the tick. Larvae attached to distal limbs and rostral areas of the head and adult females attached to the proximal areas of the limbs and around the neck and ears, while nymphs attached in locations between the larvae and adults. The importance of the spatial aggregation of the ticks and interstadial variation in their distribution on the host, for the transmission of tick-borne pathogens and the epidemiology of the diseases they cause, is discussed. © Rapid Science Ltd. 1998  相似文献   

12.
A mathematical model that describes the transmission dynamics of Theileria annulata is proposed that consists of 2 host components: the Hyalomma tick population and a compartmental model of T. annulata infection in the cattle population. The model was parameterized using data describing tick infestation and the infection status of cattle in Turkey from 2006 to 2008. The tick attachment rates are highly seasonal and because of the temporal separation of infectious and susceptible ticks virtually all ticks are infected by carrier cattle, so that annual peaks of disease in cattle do not impact on infection in the Hyalomma tick population. The impact of intervention measures that target the tick population both on the host and in the environment and their impact on the transmission of T. annulata were investigated. Interventions that have a limited 'one-off' impact and interventions that have a more permanent impact were both considered. The results from the model show the importance of targeting ticks during the period when they have left their first host as nymphs but have yet to feed on their second host.  相似文献   

13.
Vector ticks possess a unique system that enables them to digest large amounts of host blood and to transmit various animal and human pathogens, suggesting the existence of evolutionally acquired proteolytic mechanisms. We report here the molecular and reverse genetic characterization of a multifunctional cysteine protease, longipain, from the babesial parasite vector tick Haemaphysalis longicornis. Longipain shares structural similarity with papain-family cysteine proteases obtained from invertebrates and vertebrates. Endogenous longipain was mainly expressed in the midgut epithelium and was specifically localized at lysosomal vacuoles and possibly released into the lumen. Its expression was up-regulated by host blood feeding. Enzymatic functional assays using in vitro and in vivo substrates revealed that longipain hydrolysis occurs over a broad range of pH and temperature. Haemoparasiticidal assays showed that longipain dose-dependently killed tick-borne Babesia parasites, and its babesiacidal effect occurred via specific adherence to the parasite membranes. Disruption of endogenous longipain by RNA interference revealed that longipain is involved in the digestion of the host blood meal. In addition, the knockdown ticks contained an increased number of parasites, suggesting that longipain exerts a killing effect against the midgut-stage Babesia parasites in ticks. Our results suggest that longipain is essential for tick survival, and may have a role in controlling the transmission of tick-transmittable Babesia parasites.  相似文献   

14.
Borrelia burgdorferi, the causative agent of Lyme borreliosis, is transmitted to humans from the bite of Ixodes spp. ticks. During the borrelial tick-to-mammal life cycle, B. burgdorferi must adapt to many environmental changes by regulating several genes, including bba64. Our laboratory recently demonstrated that the bba64 gene product is necessary for mouse infectivity when B. burgdorferi is transmitted by an infected tick bite, but not via needle inoculation. In this study we investigated the phenotypic properties of a bba64 mutant strain, including 1) replication during tick engorgement, 2) migration into the nymphal salivary glands, 3) host transmission, and 4) susceptibility to the MyD88-dependent innate immune response. Results revealed that the bba64 mutant's attenuated infectivity by tick bite was not due to a growth defect inside an actively feeding nymphal tick, or failure to invade the salivary glands. These findings suggested there was either a lack of spirochete transmission to the host dermis or increased susceptibility to the host's innate immune response. Further experiments showed the bba64 mutant was not culturable from mouse skin taken at the nymphal bite site and was unable to establish infection in MyD88-deficient mice via tick infestation. Collectively, the results of this study indicate that BBA64 functions at the salivary gland-to-host delivery interface of vector transmission and is not involved in resistance to MyD88-mediated innate immunity.  相似文献   

15.
Tick borne encephalitis (TBE) is endemic to eastern and central Europe with broad temporal and spatial variation in infection risk. Although many studies have focused on understanding the environmental and socio-economic factors affecting exposure of humans to TBE, comparatively little research has been devoted to assessing the underlying ecological mechanisms of TBE occurrence in enzootic cycles, and therefore TBE hazard. The aim of this study was to evaluate the effect of the main ungulate tick hosts on the pattern of tick infestation in rodents and TBE occurrence in rodents and questing adult ticks. In this empirical study, we considered three areas where endemic human TBE occurs and three control sites having no reported human TBE cases. In these six sites located in Italy and Slovakia, we assessed deer density using the pellet group count-plot sampling technique, collected questing ticks, live-trapped rodents (primarily Apodemus flavicollis and Myodes glareolus) and counted ticks feeding on rodents. Both rodents and questing ticks were screened for TBE infection. TBE infection in ticks and rodents was positively associated with the number of co-feeding ticks on rodents and negatively correlated with deer density. We hypothesise that the negative relationship between deer density and TBE occurrence on a local scale (defined by the minimum overlapping area of host species) could be attributed to deer (incompetent hosts) diverting questing ticks from rodents (competent hosts), know as the 'dilution effect hypothesis'. We observed that, after an initial increase, the number of ticks feeding on rodents reached a peak for an intermediate value of estimated deer density and then decreased. Therefore, while at a regional scale, tick host availability has already been shown to be directly correlated with TBE distribution, our results suggest that the interactions between deer, rodents and ticks are much more complex on a local scale, supporting the possibility of a dilution effect for TBE.  相似文献   

16.
Tick-borne viruses in tropical and temperate parts of the world have a significant impact on human, livestock and wildlife hosts both directly, through mortality/morbidity, and economically. Since the ticks have multiple life stages and can utilize a large range of host species our understanding of the dynamics of these infections is often not clear. In this paper we consider the impact of a population which is a tick host but non-viraemic on one which is both a tick host and viraemic. We present two simple deterministic models and use joint threshold density curves to illustrate the basic reproductive ratios of both the ticks and the virus. We find that the non-viraemic hosts can have considerable impact on the viraemic host. Either they amplify the tick population and cause the virus to persist, or they dilute the infection and cause it to die out. A general model framework is presented here but a special case of this model describes the red grouse-hare-Louping-ill system.  相似文献   

17.
Parasites profoundly influence the lives of their hosts, yet the dynamics of host–parasite interactions are poorly understood – especially in reptiles. We examined the ecological correlates of parasitism by ixodid ticks in an assemblage of 10 snake species in tropical Australia. In total, we recorded 3803 ticks on 1841 individual snakes of six species (no ticks were found on the other species). Molecular analyses confirmed the tropical reptile tick (Amblyomma fimbriatum: Ixodidae) to be the most common snake tick at our study site, with inter‐ and intraspecific variation in tick prevalence and intensity. Tick attachment sites were random on most snake species, but both male and female ticks congregated on the heads of the colubrid snake Boiga irregularis and the python Simalia amethistina. In these same species, tick loads were higher on snakes captured in woodland than in rainforest. Females of two python species (Aspidites melanocephalus and S. amethistina) had higher tick loads than did males. In B. irregularis, individuals captured in the dry season had higher tick loads than those captured in the wet season. In most parasitized snake species, larger individuals had greater tick loads. Data from snake recaptures confirmed individual tick burdens frequently varied, with little correlation between tick loads on the same snake at successive captures (except for B. irregularis). Finally, tick intensity was not correlated with (and thus, presumably did not influence) the body condition of any snake species in our study. Use of specific types of refuge sites may strongly influence tick loads on snakes in this system.  相似文献   

18.
Tick saliva: recent advances and implications for vector competence   总被引:13,自引:0,他引:13  
Abstract . Secretions of the tick salivary glands are essential to the successful completion of the prolonged feeding of these ectoparasites as well as the conduit by which most tick-borne pathogens are transmitted to the host. In ixodid ticks the salivary glands are the organs of osmoregulation, and excess water from the bloodmeal is returned via saliva into the host. Host blood must continue to flow into the feeding lesion as well as remain fluid in the tick mouthparts and gut. The host's haemostatic mechanisms are thwarted by various anti-platelet aggregatory, anticoagulatory and anti-vasoconstrictory factors in tick saliva. Saliva components suppress the immune and inflammatory response of the host permitting the ticks to remain on the host for an extended period of time and, adventitiously, enhancing the transmission and establishment of tick-borne pathogens. Over the years much work has been done on the numerous enzyme and pharmacological activities found in the tick saliva. The present article reviews the most recent work on salivary gland secretionith special emphasis on how they favour pathogen transmission.  相似文献   

19.
Ixodes ticks: serum species sensitivity of anticomplement activity   总被引:4,自引:0,他引:4  
Ixodid ticks feed for extended periods of up to 2 weeks or more. To complete engorgement, they must overcome their host's innate immune mechanisms of which the complement system is a major component. Using in vitro assays, salivary gland extracts of the ixodid ticks, Ixodes ricinus, I. hexagonus, and I. uriae, were shown to inhibit activity of the alternative pathway of complement. The ability of the different Ixodes species to inhibit complement activity varied with the animal species used as a complement serum source. Serum species sensitivity correlates to the reported host range of the tick species tested.  相似文献   

20.
The present study consisted of two experiments that evaluated experimental infections of Haemaphysalis leporispalustris ticks by a Brazilian strain of Rickettsia rickettsii, and their effect on tick biology. In experiment I, ticks were exposed to R. rickettsii during the larval, nymphal or adult stages by feeding on rabbits (Oryctolagus cuniculus) needle-inoculated with R. rickettsii, and thereafter reared on uninfected rabbits for the entire next tick generation. Regardless of the tick stage that acquired the infection, all subsequent tick stages were shown to be infected by PCR (infection rates varying from 1.3 to 41.7%), and were able to transmit R. rickettsii to uninfected rabbits, as demonstrated by rabbit seroconversion, guinea pig inoculation with rabbit blood, and PCR on rabbit blood. In Experiment II, ticks were exposed to R. rickettsii during the larval stage by feeding on rabbits co-infested with R. rickettsii-infected adult ticks, and thereafter reared on uninfected rabbits until the next generation of larvae. Again, all subsequent tick stages were shown to be infected by PCR (infection rates varying from 3.0 to 40.0%), and were able to transmit R. rickettsii to uninfected rabbits. Thus, it was demonstrated that larvae, nymphs, and adults of H. leporispalustris were able to acquire and maintain the R. rickettsii infection by transstadial and transovarial transmissions within the tick population, with active transmission of the bacterium to susceptible rabbits by all parasitic stages. Analyses of biological parameters of uninfected and R. rickettsii-infected tick lineages were performed in order to evaluate possible deleterious effects of R. rickettsii to the infected tick lineages. Surprisingly, all but one of the four R. rickettsii-experimental groups of the present study showed overall better biological performance than their sibling uninfected control ticks. Results of the present study showed that H. leporispalustris could support infection by a high virulent strain of R. rickettsii for at least two generations, in which infected tick lineages tended to have better performance than uninfected ticks. Our results support a possible role of H. leporispalustris in the enzootic maintenance of R. rickettsii in Latin America, as previously suggested by earlier works.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号