首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Longitudinal distribution of canine respiratory heat and water exchanges   总被引:1,自引:0,他引:1  
We assessed the longitudinal distribution of intra-airway heat and water exchanges and their effects on airway wall temperature by directly measuring respiratory fluctuations in airstream temperature and humidity, as well as airway wall temperature, at multiple sites along the airways of endotracheally intubated dogs. By comparing these axial thermal and water profiles, we have demonstrated that increasing minute ventilation of cold or warm dry air leads to 1) further penetration of unconditioned air into the lung, 2) a shift of the principal site of total respiratory heat loss from the trachea to the bronchi, and 3) alteration of the relative contributions of conductive and evaporative heat losses to local total (conductive plus evaporative) heat loss. These changes were not accurately reflected in global measurements of respiratory heat and water exchange made at the free end of the endotracheal tube. Raising the temperature of inspired dry air from frigid to near body temperature principally altered the mechanism of airway cooling but did not influence airway mucosal temperature substantially. When local heat loss was increased from both trachea and bronchi (by increasing minute ventilation), only the tracheal mucosal temperature fell appreciably (up to 4.0 degrees C), even though the rise in heat loss from the bronchi about doubled that in the trachea. Thus it appears that the bronchi are better able to resist changes in airway wall temperature than is the trachea. These data indicate that the sites, magnitudes, and mechanisms of respiratory heat loss vary appreciably with breathing pattern and inspired gas temperature and that these changes cannot be predicted from measurements made at the mouth. In addition, they demonstrate that local heat (and presumably, water) sources that replenish mucosal heat and water lost to the airstream are important in determining the degree of local airway cooling (and presumably, drying).  相似文献   

2.
The goals and objectives of the study were to investigate and compare the physiological effects of a heated oxygen-helium mixture (heliox) and air on the human external breathing function. The study involved eight subjects aged 24 ± 4 years who breathed the gases heated up to a temperature of 58 ± 5°C and atmospheric air for 21 min. The effects were evaluated according to the parameters of spontaneous pneometry and forced expiration using the Master Screen VIASYS device. The effect of the heated gases (heliox and air) on humans caused a phase-by-phase increase in the values of the external breathing parameters. Apparently, the patency of airways at the level of tracheas and bronchi appeared to increase significantly during breathing heliox compared to air.  相似文献   

3.
Previous studies have demonstrated sites of flow limitation in the central airways of dogs and humans. At low lung volumes, however, during a forced expiration, it is not clear whether flow-limiting segments (FLS) move into the lung periphery. Using intrabronchial lateral pressure catheters, we located FLS in human subjects at all lung volumes between functional residual capacity (FRC) and residual volume (RV). Three individuals with severe intracranial hemorrhage maintained on ventilators were studied. Partial maximal flow-volume curves were generated from 1 liter above FRC to RV by lowering downstream pressure and using the interrupter technique. Sites of FLS were defined as the most downstream points where lateral pressure did not change with driving pressure. FLS were found in all subjects in the central airways. In one subject, FLS moved from segmental bronchi to the first subsegmental bronchus as RV was approached but not beyond. In the other two subjects, FLS remained fixed in location at all measured lung volumes. At constant volume, multiple FLS were located, all in parallel, e.g., fixed in left upper, left lower, and right middle lobar bronchi. In conclusion, sites of flow limitation remain in the central airways as lung volume approaches RV. FLS may move peripherally within the central airways but not beyond proximal subsegmental bronchi.  相似文献   

4.
Role of tracheal and bronchial circulation in respiratory heat exchange   总被引:3,自引:0,他引:3  
Due to their anatomic configuration, the vessels supplying the central airways may be ideally suited for regulation of respiratory heat loss. We have measured blood flow to the trachea, bronchi, and lung parenchyma in 10 anesthetized supine open-chest dogs. They were hyperventilated (frequency, 40; tidal volume 30-35 ml/kg) for 30 min or 1) warm humidified air, 2) cold (-20 degrees C dry air, and 3) warm humidified air. End-tidal CO2 was kept constant by adding CO2 to the inspired ventilator line. Five minutes before the end of each period of hyperventilation, measurements of vascular pressures (pulmonary arterial, left atrial, and systemic), cardiac output (CO), arterial blood gases, and inspired, expired, and tracheal gas temperatures were made. Then, using a modification of the reference flow technique, 113Sn-, 153Gd-, and 103Ru-labeled microspheres were injected into the left atrium to make separate measurements of airway blood flow at each intervention. After the last measurements had been made, the dogs were killed and the lungs, including the trachea, were excised. Blood flow to the trachea, bronchi, and lung parenchyma was calculated. Results showed that there was no change in parenchymal blood flow, but there was an increase in tracheal and bronchial blood flow in all dogs (P less than 0.01) from 4.48 +/- 0.69 ml/min (0.22 +/- 0.01% CO) during warm air hyperventilation to 7.06 +/- 0.97 ml/min (0.37 +/- 0.05% CO) during cold air hyperventilation.  相似文献   

5.
The flow field at inspiration and expiration in the upper human airways consisting of the trachea down to the sixth generation of the bronchial tree is numerically simulated. The three-dimensional steady flow at a hydraulic diameter-based Reynolds number Re(D)=1250 is computed via a lattice-Boltzmann method (LBM). The simulation is validated by the experimental data based on particle-image velocimetry (PIV) measurements. The good agreement between numerical and experimental results is evidenced by comparing velocity contours and distributions in a defined reference plane. The results show the LBM to be an accurate tool to numerically predict flow structures in the human lung. Using an automatic Cartesian grid generator, the overall process time from meshing to a steady-state solution is <12h. Moreover, the numerical simulation allows a closer analysis of the secondary flow structures than in the experimental investigation. The three-dimensional streamline patterns reveal some insight on the air exchange mechanism at inspiration and expiration. At inspiration, the slower near-wall tracheal flow enters through the right principal bronchus into the right upper lobar bronchus. The bulk mass flux in the trachea is nearly evenly distributed over the left upper, center and lower lobar bronchi and the right center and lower bronchi. At expiration, the air from the right upper lobar bronchus enters the right center of the trachea and displaces the airflow from the lower and center right bronchi such that the tracheal positions of the streamlines at inspiration and expiration are switched. The flow in the left bronchi does not show this kind of switching. The findings emphasize the impact of the asymmetry of the lung geometry on the respiratory air exchange mechanism.  相似文献   

6.
The objective was to determine the effect of moderate changes in ambient temperature (TA) on breathing and body temperature in ponies chronically exposed to a TA of 21 degrees C in the summer and 5 degrees C in the winter. Normal (n = 6) and chronic carotid body-denervated (n = 6, 1-2 yr) ponies were studied during 1) winter months over 3-4 days at 5 (control TA) and 23 degrees C and 2) summer months over 2-4 days at 21 (control TA), 30, and 12 degrees C. Neither rectal nor arterial temperature changed with any alteration of TA (P greater than 0.10). Skin temperature (Tsk) always changed by 2-4 degrees C in the same direction as changes in TA (P less than 0.01), and Tsk was the only variable that differed between summer and winter control TA. While breathing room air 24-48 h after TA was altered, pulmonary ventilation (VE) and breathing frequency (f) were approximately 100 and 300%, respectively, above control with elevated TA and approximately 25-50% below control with reduced TA (P less than 0.01). Changes in f were closely related to changes in Tsk. Tidal volume (VT) changed inversely with changes in TA. Generally, while breathing room air, arterial PCO2 (Paco2) did not change from control during the first 48 h of altered TA. In studies when inspired CO2 was elevated VT increased by the same amount at all TA; f increased at low and control TA but decreased at elevated TA; and VE and Paco2 both increased relatively less at elevated TA, but the VE-Paco2 slope was independent of TA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Airway blood flow response to eucapnic dry air hyperventilation in sheep   总被引:1,自引:0,他引:1  
Eucapnic hyperventilation, breathing dry air, produces a two- to fivefold increase in airway blood flow in the dog. To determine whether airway blood flow responds similarly in the sheep we studied 16 anesthetized sheep. Seven sheep (1-7) were subjected to two 30-min periods of eucapnic hyperventilation breathing 1) warm humid air [100% relative humidity (rh)] followed by 2) warm dry air [0% rh] at 40 breaths/min. To determine whether there was a dose-response effect on blood flow of increasing levels of hyperventilation of dry air, another nine sheep (8-16) were subjected to four 30-min periods of eucapnic hyperventilation breathing warm humid O2 followed by warm dry O2 at 20 or 40 breaths/min in random sequence. Five minutes before the end of each period of hyperventilation, hemodynamics, blood gases, and tracheal mucosal temperature were measured, and tracheal and bronchial blood flows were determined by injection of 15- or 50-micron-diam radiolabeled microspheres. After the last measurements had been made, all sheep were killed, and the lungs and trachea were removed for determination of blood flow to trachea, bronchi, and parenchyma. In sheep 1-7, warm dry air hyperventilation at 40 breaths/min produced an increase in blood flow to trachea (7.6 +/- 3.5 to 17.0 +/- 6.2 ml/min, P less than 0.05) and bronchi (9.0 +/- 5.4 to 18.2 +/- 8.2 ml/min, P less than 0.05) but not to the parenchyma. When blood flow was compared with the two ventilatory rates (sheep 8-16), tracheal blood flow increased (9.1 +/- 3.3 to 18.2 +/- 6.1 ml/min, P less than 0.05) at a rate of 40 breaths/min but not at 20 breaths/min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Increasing minute ventilation of dry gas shifts the principal burden of respiratory heat and water losses from more proximal airway to airways farther into the lung. If these local thermal transfers determine the local stimulus for bronchoconstriction, then increasing minute ventilation of dry gas might also extend the zone of airway narrowing farther into the lung during hyperpnea-induced bronchoconstriction (HIB). We tested this hypothesis by comparing tantalum bronchograms in tracheostomized guinea pigs before and during bronchoconstriction induced by dry gas hyperpnea, intravenous methacholine, and intravenous capsaicin. In eight animals subjected to 5 min of dry gas isocapnic hyperpnea [tidal volume (VT) = 2-5 ml, 150 breaths/min], there was little change in the diameter of the trachea or the main stem bronchi up to 0.75 cm past the main carina (zone 1). In contrast, bronchi from 0.75 to 1.50 cm past the main carina (zone 2) narrowed progressively at all minute ventilations greater than or equal to 300 ml/min (VT = 2 ml). More distal bronchi (1.50-3.10 cm past the main carina; zone 3) did not narrow significantly until minute ventilation was raised to 450 ml/min (VT = 3 ml). The estimated VT during hyperpnea needed to elicit a 50% reduction in airway diameter was significantly higher in zone 3 bronchi [4.3 +/- 0.8 (SD) ml] than in zone 2 bronchi (3.5 +/- 1.1 ml, P less than 0.012).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
To discover whether increases in inhaled O2 fraction (FIO2; up to 40%) decrease apnea via an increase in minute ventilation (VE) or a change in respiratory pattern, 15 preterm infants (birth weight 1,300 +/- 354 g, gestational age 29 +/- 2 wk, postnatal age 20 +/- 9 days) breathed 21, 25, 30, 35, and 40% O2 for 10 min in quiet sleep. A nosepiece and a flow-through system were used to measure ventilation. Alveolar PCO2, transcutaneous PO2, and sleep states were also assessed. All infants had periodic breathing with apneas greater than or equal to 3 s. With an increase in FIO2 breathing became more regular and apneas decreased (P less than 0.001). This regularization in breathing was not associated with significant changes in VE. However, the variability of VE, tidal volume, and expiratory and inspiratory times decreased significantly. The results indicate that the more regular breathing observed with small increases in FIO2 was not associated with significant changes in ventilation. The findings suggest that the increased oxygenation decreases apnea and periodicity in preterm infants, not via an increase in ventilation, but through a decrease in breath-to-breath variability of VE.  相似文献   

10.
A two-compartment mechanical model of the lungs was constructed with two parallel peripheral and collapsible bronchi in series with one central and collapsible trachea. Maximal expiratory flow-volume (MEFV) curves similar to those obtained in most dogs and in some humans could be produced: a peak followed by a gently sloping plateau ending in a knee, where flow suddenly fell to a much smaller value approaching zero rather slowly over the last 25 to 50% of the expired vital capacity. It was shown that flow before the knee was limited in the trachea, and after the knee it was limited in the bronchi. Two patterns of changes in the configuration of the MEFV curve could be observed. Pattern of changes affecting the central airway, at a given volume, maximal flow during the first part of the expiration (i.e., before the knee) is decreased; the knee occurs at a lower lung volume; the flow at the beginning of the knee is decreased. This pattern was observed with the following interventions: decreased cross-sectional area of the trachea (partial obstruction); decreased axial tension of the trachea; and, increased frictional loss between the trachea and the bronchi. Pattern of changes affecting the airways in the periphery: the knee occurs at a higher lung volume; at a given volume, flow after the knee becomes smaller; the absolute flow at the start of the knee is almost unchanged. This pattern was observed with the following interventions: decreased cross-sectional area of the peripheral airways (partial obstruction); increased frictional loss upstream to the peripheral airways; and, decreased elastic recoil pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
To determine effects on metabolic responses, subjects were exposed to four environmental conditions for 90 min at rest followed by 30 min of exercise: breathing room air with an ambient temperature of 25 degrees C (NN); breathing room air with an ambient temperature of 8 degrees C (NC); hypoxia (induced by breathing 12% O2 in N2) with a neutral temperature (HN); and hypoxia in the cold (HC). Hypoxia increased heart rate (HR), systolic blood pressure (SBP), pulmonary ventilation (VE), respiratory exchange ratio (R), blood lactate, and perceived exertion during exercise while depressing rectal temperature (Tre) and O2 uptake (VO2). Cold exposure elevated SBP, diastolic blood pressure (DBP), VE, VO2, blood glucose, and blood glycerol but decreased HR, Tre, and R. Shivering and DBP were higher and Tre was lower in HC compared with NC. HR, SBP, VE, R, and lactate tended to be higher in HC compared with NC, whereas VO2 and blood glycerol tended to be depressed. These results suggest that cold exposure during hypoxia results in an increased reliance on shivering for thermogenesis at rest whereas, during exercise, heat loss is accelerated.  相似文献   

12.
Pulmonary gas exchange in panting dogs   总被引:1,自引:0,他引:1  
Pulmonary gas exchange during panting was studied in seven conscious dogs (32 kg mean body wt) provided with a chronic tracheostomy and an exteriorized carotid artery loop. The animals were acutely exposed to moderately elevated ambient temperature (27.5 degrees C, 65% relative humidity) for 2 h. O2 and CO2 in the tracheostomy tube were continuously monitored by mass spectrometry using a special sample-hold phase-locked sampling technique. PO2 and PCO2 were determined in blood samples obtained from the carotid artery. During the exposure to heat, central body temperature remained unchanged (38.6 +/- 0.6 degrees C) while all animals rapidly switched to steady shallow panting at frequencies close to the resonant frequency of the respiratory system. During panting, the following values were measured (means +/- SD): breathing frequency, 313 +/- 19 breaths/min; tidal volume, 167 +/- 21 ml; total ventilation, 52 +/- 9 l/min; effective alveolar ventilation, 5.5 +/- 1.3 l/min; PaO2, 106.2 +/- 5.9 Torr; PaCO2, 27.2 +/- 3.9 Torr; end-tidal-arterial PO2 difference [(PE' - Pa)O2], 26.0 +/- 5.3 Torr; and arterial-end-tidal PCO2 difference, [(Pa - PE')CO2], 14.9 +/- 2.5 Torr. On the basis of the classical ideal alveolar air approach, parallel dead-space ventilation accounted for 54% of alveolar ventilation and 66% of the (PE' - Pa)O2 difference. But the steepness of the CO2 and O2 expirogram plotted against expired volume suggested a contribution of series in homogeneity due to incomplete gas mixing.  相似文献   

13.
Thermoregulatory benefits of cold-induced changes in breathing pattern and mechanism(s) by which cold induces hypoventilation were investigated using male Holstein calves (1-3 mo old). Effects of ambient temperatures (Ta) between 4 and 18 degrees C on ventilatory parameters and respiratory heat loss (RHL) were determined in four calves. As Ta decreased, respiratory frequency decreased 29%, tidal volume increased 35%, total ventilation and RHL did not change, and the percentage of metabolic rate attributed to RHL decreased 26%. Total ventilation was stimulated by increasing inspired CO2 in six calves (Ta 4-6 degrees C), and a positive relationship existed between respiratory frequency and expired air temperature. Therefore, cold-exposed calves conserve respiratory heat by decreasing expired air temperature and dead space ventilation. Compared with thermoneutral exposure (16-18 degrees C), hypoventilation was induced by airway cold exposure (4-6 degrees C) alone and by exposing the body but not the airways to cold. Blocking nasal thermoreceptors with topical lidocaine during airway cold exposure prevented the ventilatory response but did not lower hypothalamic temperature. Hypothalamic cooling (Ta 16-18 degrees C) did not produce a ventilatory response. Thus, airway temperature but not hypothalamic temperature appears to control ventilation in cold-exposed calves.  相似文献   

14.
The role played by the mechanical tissue stress in supporting lymph formation and propulsion in thoracic tissues was studied in deeply anesthetized rats (n = 13) during spontaneous breathing or mechanical ventilation. After arterial and venous catheterization and insertion of an intratracheal cannula, fluorescent dextrans were injected intrapleurally to serve as lymphatic markers. After 2 h, the fluorescent intercostal lymphatics were identified, and the hydraulic pressure in lymphatic vessels (P lymph) and adjacent interstitial space (P int) was measured using micropuncture. During spontaneous breathing, end-expiratory P lymph and corresponding P int were -2.5 +/- 1.1 (SE) and 3.1 +/- 0.7 mmHg (P < 0.01), which dropped to -21.1 +/- 1.3 and -12.2 +/- 1.3 mmHg, respectively, at end inspiration. During mechanical ventilation with air at zero end-expiratory alveolar pressure, P lymph and P int were essentially unchanged at end expiration, but, at variance with spontaneous breathing, they increased at end inspiration to 28.1 +/- 7.9 and 28.2 +/- 6.3 mmHg, respectively. The hydraulic transmural pressure gradient (DeltaP tm = P lymph - P int) was in favor of lymph formation throughout the whole respiratory cycle (DeltaP tm = -6.8 +/- 1.2 mmHg) during spontaneous breathing but not during mechanical ventilation (DeltaP tm = -1.1 +/- 1.8 mmHg). Therefore, data suggest that local tissue stress associated with the active contraction of respiratory muscles is required to support an efficient lymphatic drainage from the thoracic tissues.  相似文献   

15.
This study was designed to determine the effects of a mild increase in body temperature within the physiological range (0.8 degrees C) in healthy premature infants. Seven unsedated premature infants (38.4 wk +/- 1.5 postconceptional age) were monitored polygraphically during "morning naps" in an incubator under two different environmental temperatures: (1) normothermia with the incubator temperature set at 25 degrees C and the rectal temperature equal to 36.9 degrees C +/- 0.1; (2) hyperthermia with the incubator temperature set at 35 degrees C and the rectal temperature equal to 37.7 degrees C +/- 0.15. Respiratory frequency and heart rate, respiratory events, i.e., central and obstructive apnea, and periodic breathing with and without apneic oscillations were tabulated. Results for respiratory events were expressed as (1) indices of the total number of respiratory events, and of specific respiratory events per hour of total, quiet and active sleep times; (2) duration of total and specific respiratory events expressed as a percentage of total sleep, quiet and active sleep times. Respiratory frequency and heart rate were significantly increased by hyperthermia (P less than 0.05). Hyperthermia did not significantly modify the indices or the duration of central and obstructive apnea. But the indices and the duration of periodic breathing with and without apneic oscillations were significantly increased by hyperthermia during active sleep (P less than 0.05) but not during quiet sleep. The present study shows that a mild increase in body temperature within the physiological range in premature infants enhances the instability of the breathing pattern during active sleep.  相似文献   

16.
Thoracic traction on the trachea: mechanisms and magnitude   总被引:3,自引:0,他引:3  
Both inspiratory increases and tonic thoracic traction (pull of the thorax) on the trachea [Ttx(tr)] have been shown to improve patency of the upper airway. To evaluate the origins and magnitude of Ttx(tr), we studied 15 anesthetized tracheotomized dogs. We divided the midcervical trachea and attached the thoracic stub to a strain gauge. Ttx(tr), esophageal pressure, and carinal displacement were observed during various conditions. These included unobstructed and obstructed spontaneous breathing, mechanical ventilation at various levels of positive end-expiratory pressure, and progressive hypercapnic stimulation. Observations during spontaneous breathing were performed before and after vagotomy. We found that inspiratory increases in Ttx(tr) were substantial, averaging 81 +/- 8 g force and increasing to 174 +/- 22 g force at an end-expiratory CO2 concentration of 10%. Ttx(tr) did not result simply from the pull of mediastinal and pulmonary structures transmitted through the carina. Changes in intrathoracic pressure acted independently to either draw the trachea into or push the trachea out of the thorax. Thus Ttx(tr) could be explained as the sum of mediastinal traction and force generated by changes in intrathoracic pressure.  相似文献   

17.
Extrathoracic and intrathoracic removal of O3 in tidal-breathing humans   总被引:1,自引:0,他引:1  
We measured the efficiency of O3 removal from inspired air by the extrathoracic and intrathoracic airways in 18 healthy, nonsmoking, young male volunteers. Removal efficiencies were measured as a function of O3 concentration (0.1, 0.2, and 0.4 ppm), mode of breathing (nose only, mouth only, and oronasal), and respiration frequency (12 and 24 breaths/min). Subjects were placed in a controlled environmental chamber into which O3 was introduced. A small polyethylene tube was then inserted into the nose of each subject, with the tip positioned in the posterior pharynx. Samples of air were collected from the posterior pharynx through the tube and into a rapidly responding O3 analyzer yielding inspiratory and expiratory O3 concentrations in the posterior pharynx. The O3 removal efficiency of the extrathoracic airways was computed with the use of the inspiratory concentration and the chamber concentration, and intrathoracic removal efficiency was computed with the use of the inspiratory and expiratory concentrations. The mean extrathoracic removal efficiency for all measurements was 39.6 +/- 0.7% (SE), and the mean intrathoracic removal efficiency was 91.0 +/- 0.5%. Significantly less O3 was removed both extrathoracically and intrathoracically when subjects breathed at 24 breaths/min compared with 12 breaths/min (P less than 0.001). O3 concentration had no effect on extrathoracic removal efficiency, but there was a significantly greater intrathoracic removal efficiency at 0.4 ppm than at 0.1 ppm (P less than 0.05). Mode of breathing significantly affected extrathoracic removal efficiency, with less O3 removed during nasal breathing than during either mouth breathing or oronasal breathing (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
To determine the effect of a single breath of 100% O2 on ventilation, 10 full-term [body wt 3,360 +/- 110 (SE) g, gestational age 39 +/- 0.4 wk, postnatal age 3 +/- 0.6 days] and 10 preterm neonates (body wt 2,020 +/- 60 g, gestational age 34 +/- 2 wk, postnatal age 9 +/- 2 days) were studied during active and quiet sleep states. The single-breath method was used to measure peripheral chemoreceptor response. To enhance response and standardize the control period for all infants, fractional inspired O2 concentration was adjusted to 16 +/- 0.6% for a control O2 saturation of 83 +/- 1%. After 1 min of control in each sleep state, each infant was given a single breath of O2 followed by 21% O2. Minute ventilation (VE), tidal volume (VT), breathing frequency (f), alveolar O2 and CO2 tension, O2 saturation (ear oximeter), and transcutaneous O2 tension were measured. VE always decreased with inhalation of O2 (P less than 0.01). In quiet sleep, the decrease in VE was less in full-term (14%) than in preterm (40%) infants (P less than 0.001). Decrease in VE was due primarily to a drop in VT in full-term infants as opposed to a fall in f and VT in preterm infants (P less than 0.05). Apnea, as part of the response, was more prevalent in preterm than in full-term infants. In active sleep the decrease in VE was similar both among full-term (19%) and preterm (21%) infants (P greater than 0.5). These results suggest greater peripheral chemoreceptor response in preterm than in full-term infants, reflected by a more pronounced decrease in VE with O2. The results are compatible with a more powerful peripheral chemoreceptor contribution to breathing in preterm than in full-term infants.  相似文献   

19.
Mild reductions in ambient temperature dramatically increase the mortality of neonatal mice deficient in pituitary adenylate cyclase-activating polypeptide (PACAP), with the majority of animals succumbing in the second postnatal week. During anesthesia-induced hypothermia, PACAP(-/-) mice at this age are also vulnerable to prolonged apneas and sudden death. From these observations, we hypothesized that before the onset of genotype-specific mortality and in the absence of anesthetic, the breathing of PACAP-deficient mice is more susceptible to mild reductions in ambient temperature than wild-type littermates. To test this hypothesis, we recorded breathing in one group of postnatal day 4 PACAP+/+, (+/-), and (-/-) neonates (using unrestrained, flow-through plethysmography) and metabolic rate in a separate group (using indirect calorimetry), both of which were exposed acutely to ambient temperatures slightly below (29 degrees C), slightly above (36 degrees C), or at thermoneutrality (32 degrees C). At 32 degrees C, the breathing frequency of PACAP(-/-) neonates was significantly less than PACAP+/+ littermates. Reducing the ambient temperature to 29 degrees C caused a significant suppression of tidal volume and ventilation in both PACAP+/- and (-/-) animals, while the tidal volume and ventilation of PACAP+/+ animals remained unchanged. Genotype had no effect on the ventilatory responses to ambient warming. At all three ambient temperatures, genotype had no influence on oxygen consumption or body temperature. These results suggest that during mild reductions in ambient temperature, PACAP is vital for the preservation of neonatal tidal volume and ventilation, but not for metabolic rate or body temperature.  相似文献   

20.
The reported investigations were carried out on rabbits exposed for three hours to ambient temperature of 25 degrees C or 35 degrees breathing athmospheric air (controls) or gas mixtures containing 4% or 7% of CO2. During the exposure to 35 degrees C in rabbits breathing the gas mixture with 7% of CO2 the rise of rectal temperature was significantly greater, heat elimination from the auricular surface was increased, whereas the oxygen uptake was increased insignificantly. In tracheostomized rabbits breathing the gas mixture with 7% of CO2 at 32 degrees C the respiratory rate decreased but the respiration volume increased as compared with the animals breathing atmospheric air. It seems that the hyperthermic effect of hypercapnia demonstrated in this work can be attributed to the impairment of heat elimination through the upper airways due to an inhibition of thermal panting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号