首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Taurine and neural cell damage   总被引:22,自引:2,他引:20  
Saransaari P  Oja SS 《Amino acids》2000,19(3-4):509-526
Summary. The inhibitory amino acid taurine is an osmoregulator and neuromodulator, also exerting neuroprotective actions in neural tissue. We review now the involvement of taurine in neuron-damaging conditions, including hypoxia, hypoglycemia, ischemia, oxidative stress, and the presence of free radicals, metabolic poisons and an excess of ammonia. The brain concentration of taurine is increased in several models of ischemic injury in vivo. Cell-damaging conditions which perturb the oxidative metabolism needed for active transport across cell membranes generally reduce taurine uptake in vitro, immature brain tissue being more tolerant to the lack of oxygen. In ischemia nonsaturable diffusion increases considerably. Both basal and K+-stimulated release of taurine in the hippocampus in vitro is markedly enhanced under cell-damaging conditions, ischemia, free radicals and metabolic poisons being the most potent. Hypoxia, hypoglycemia, ischemia, free radicals and oxidative stress also increase the initial basal release of taurine in cerebellar granule neurons, while the release is only moderately enhanced in hypoxia and ischemia in cerebral cortical astrocytes. The taurine release induced by ischemia is for the most part Ca2+-independent, a Ca2+-dependent mechanism being discernible only in hippocampal slices from developing mice. Moreover, a considerable portion of hippocampal taurine release in ischemia is mediated by the reversal of Na+-dependent transporters. The enhanced release in adults may comprise a swelling-induced component through Cl channels, which is not discernible in developing mice. Excitotoxic concentrations of glutamate also potentiate taurine release in mouse hippocampal slices. The ability of ionotropic glutamate receptor agonists to evoke taurine release varies under different cell-damaging conditions, the N-methyl-D-aspartate-evoked release being clearly receptor-mediated in ischemia. Neurotoxic ammonia has been shown to provoke taurine release from different brain preparations, indicating that the ammonia-induced release may modify neuronal excitability in hyperammonic conditions. Taurine released simultaneously with an excess of excitatory amino acids in the hippocampus under ischemic and other neuron-damaging conditions may constitute an important protective mechanism against excitotoxicity, counteracting the harmful effects which lead to neuronal death. The release of taurine may prevent excitation from reaching neurotoxic levels. Received January 25, 2000/Accepted January 31, 2000  相似文献   

2.
Saransaari P  Oja SS 《Amino acids》2008,34(3):429-436
Summary. Nitric oxide (NO) has been shown to regulate neurotransmitter release in the brain; both inhibitory and excitatory effects have been seen. Taurine is essential for the development and survival of neural cells and protects them under cell-damaging conditions. In the brain stem, it regulates many vital functions such as cardiovascular control and arterial blood pressure. Now we studied the effects of the NO-generating compounds hydroxylamine (HA), S-nitroso-N-acetylpenicillamine (SNAP) and sodium nitroprusside (SNP) on the release of preloaded [3H]taurine under normal and ischemic conditions in slices prepared from the mouse brain stem from developing (7-day-old) to young adult (3-month-old) mice. In general, the effects of NO on the release were somewhat complex and difficult to explain, as expected from the multifunctional role of NO in the central nervous system. The basal initial release under normal conditions was enhanced by the NO donors 5 mM HA and 1.0 mM SNAP at both ages, but SNP was inhibitory in developing mice. The release was markedly enhanced by K+ stimulation. The effects of HA, SNAP and SNP on the basal release were not antagonized by the NO synthase inhibitor NG-nitro-L-arginine (L-NNA, 1.0 mM), demonstrating that mechanisms other than NO synthesis are involved. Taurine release in developing mice in the presence of SNP was reduced by the inhibitor of soluble guanylate cyclase, 1H-(1,2,3)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ), indicating the possible involvement of cGMP. In normoxia, N-methyl-D-aspartate (NMDA, 1.0 mM) enhanced the SNAP- and HA-evoked taurine release in developing mice and the HA-evoked release in adults. In ischemia, both K+ stimulation and NMDA potentiated the NO-induced release, particularly in the immature mice, probably without the involvement of the NO synthase or cGMP. The substantial release of taurine in the developing brain stem evoked by NO donors together with NMDA might represent signs of important mechanisms against excitotoxicity which protect the brain stem under cell-damaging conditions. Authors’ address: Prof. Pirjo Saransaari, Brain Research Center, Medical School University of Tampere, Tampere, FIN-3 3014, Finland  相似文献   

3.
The release of preloaded D-[3H]aspartate, an unmetabolizable analogue of L-glutamate, was studied in superfused hippocampal slices from 7-day-old and 3-month-old (adult) mice under various cell-damaging conditions, including hypoxia, hypoglycemia, ischemia, oxidative stress and the presence of free radicals and metabolic poisons. The release was generally markedly enhanced in most of the above conditions, the responses being greater in adults than in developing mice. The presence of dinitrophenol had the most pronounced effect at both ages, followed by NaCN- and free-radical-containing media and ischemia. Hypoxia did not affect release in the immature hippocampus. Under most conditions K+ stimulation (50 mM) was still able markedly to enhance D-aspartate release. This potentiation under cell-damaging conditions in both adult and developing hippocampus signifies that increased L-glutamate release contributes to excitotoxicity and subsequent cell death. The mechanisms of ischemia-induced release of D-aspartate were analyzed in the adult hippocampus using ion channel inhibitors and modified superfusion media. The induced release proved to be partly Ca2+-dependent and partly Ca2+-independent. The results obtained with Na+ omission and homo- and heteroexchange with D-aspartate and L-glutamate demonstrated that a part of the release in normoxia and ischemia is mediated by the reversal of Na+-dependent glutamate transporters. The Na+ channel blockers amiloride and riluzole reduced the ischemia-induced release, also indicating the involvement of Na+ channels. In addition to this, the enhanced release of D-aspartate may comprise a swelling-induced component through chloride channels.  相似文献   

4.
Saransaari P  Oja SS 《Amino acids》2003,24(1-2):213-221
Taurine is an inhibitory amino acid acting as an osmoregulator and neuroromodulator in the brain, with neuroprotective properties. The ionotropic glutamate receptor agonist N-methyl-D-aspartate (NMDA) greatly potentiates taurine release from brain preparations in both normal and ischemic conditions, the effect being particularly marked in the developing hippocampus. We now characterized the regulation of NMDA-stimulated taurine release from hippocampal slices from adult (3-month-old) and developing (7-day-old) mouse using a superfusion system. The NMDA-stimulated taurine release was receptor-mediated in both adult and developing mouse hippocampus. In adults, only NO-generating compounds, sodium nitroprusside, S-nitroso-N-acetylpenicillamine and hydroxylamine reduced the release, as did also NO synthase inhibitors, 7-nitroindazole and nitroarginine, indicating that the release is mediated by the NO/cGMP pathway. On the other hand, the regulation of the NMDA-evoked taurine release proved to be somewhat complex in the immature hippocampus. It was not affected by the NOergic compounds, but enhanced by the protein kinase C activator 4 beta-phorbol 12-myristate 13-acetate and adenosine receptor A(1) agonists, N(6)-cyclohexyladenosine and R(-)N(6)-(2-phenylisopropyl)adenosine in a receptor-mediated manner. The activation of both ionotropic 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors and metabotropic glutamate group I receptors also enhanced the evoked release. The NMDA-receptor-stimulated taurine release could be a part of the neuroprotective properties of taurine, being important particularly under cell-damaging conditions in the developing hippocampus and hence preventing excitotoxicity.  相似文献   

5.
The novel neurotransmitter/neuromodulator nitric oxide (NO), which is linked to the activation of the N-methyl-D-aspartate class of glutamate receptors, has been shown to modify transmitter release in brain tissue. Release of the inhibitory amino acid taurine is also markedly enhanced by N-methyl-D-aspartate and NO-producing agents under normal conditions in the mouse hippocampus. The release of preloaded [3H]taurine from hippocampal slices from adult (3-month-old) and developing (7-day-old) mice was characterized under ischemic conditions in the presence of different NO-generating compounds, hydroxylamine, sodium nitroprusside, and S-nitroso-N-acetylpenicillamine (SNAP), using a superfusion system. The ischemia-induced taurine release at both ages was markedly enhanced by 1.0 mM nitroprusside and 1.0 mM SNAP, whereas 5.0 mM hydroxylamine was effective only in adults. The nitroprusside- and SNAP-induced releases were reduced by the inhibitors of NO synthase (nitroarginine and 7-nitroindazole) and NO-sensitive soluble guanylyl cyclase [1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one], suggesting involvement of the NO/cGMP pathway. The release in ischemia in the absence of Na+ was modified by NO compounds only in adults; the 0.1 mM N-methyl-D-aspartate stimulated taurine release at both ages. The enhanced release of taurine associated with NO production could be beneficial to brain tissue under cell-damaging conditions and corroborates the neuroprotective role of this amino acid, particularly in the immature brain.  相似文献   

6.
The releases of endogenous glutamate, aspartate, GABA and taurine from hippocampal slices from 7-day-, 3-, 12-, and 18-month-old mice were investigated under cell-damaging conditions using a superfusion system. The slices were superfused under hypoxic conditions in the presence and absence of glucose and exposed to hydrogen peroxide. In the adult hippocampus under normal conditions the basal release of taurine was highest, with a response only about 2-fold to potassium stimulation (50 mM). The low basal releases of glutamate, aspartate, and GABA were markedly potentiated by K+ ions. In general, the release of the four amino acids was enhanced under all above cell-damaging conditions. In hypoxia and ischemia (i.e., hypoxia in the absence of glucose) the release of glutamate, aspartate and GABA increased relatively more than that of taurine, and membrane depolarization by K+ markedly potentiated the release processes. Taurine release was doubled in hypoxia and tripled in ischemia but K+ stimulation was abolished. In both the mature and immature hippocampus the release of glutamate and aspartate was greatly enhanced in the presence of H2O2, that of aspartate particularly in developing mice. In the immature hippocampus the increase in taurine release was 10-fold in hypoxia and 30-fold in ischemia, and potassium stimulation was partly preserved. The release processes of the four amino acids in ischemia were all partially Ca2+-dependent. High concentrations of excitatory amino acids released under cell-damaging conditions are neurotoxic and contribute to neuronal death during ischemia. The substantial amounts of the inhibitory amino acids GABA and taurine released simultaneously may constitute an important protective mechanism against excitatory amino acids in excess, counteracting their harmful effects. In the immature hippocampus in particular, the massive release of taurine under cell-damaging conditions may have a significant function in protecting neural cells and aiding in preserving their viability.  相似文献   

7.
Summary. The release of the inhibitory neuromodulator taurine in the hippocampus is markedly enhanced under various neural cell-damaging conditions, including ischemia and exposure to free radicals. The properties and regulation of the release evoked by a medium containing free radicals was investigated in hippocampal slices from adult (3-month-old) and developing (7-day-old) mice, using a superfusion system. The free radical damage was induced by applying 0.01% H2O2. The release of [3H]taurine was in both adult and developing hippocampus partly Ca2+-independent, mediated by Na+-dependent transporters and probably resulting from disruption of cell membranes and subsequent ion imbalance. The release in developing mice appeared to be more susceptible to regulation than that in adults, the stimulation by free radicals being in the latter already maximal. The release was reduced by adenosine A1 receptor agonist R(–)N6-(2-phenylisopropyl)adenosine, which effect was, however, abolished by the antagonist 8-cyclopentyl-1,3-dipropylxanthine only in the immature hippocampus, indicating a receptor-mediated process. Moreover, the evoked taurine release in developing mice was potentiated by the ionotropic glutamate receptor agonists N-methyl-D-aspartate, kainate and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate in a receptor-mediated manner, since the effects were abolished by their respective antagonists. The metabotropic glutamate receptors are of only minor significance in the release, the agonists of group I and II receptors slightly reducing the release. Furthermore, NO may also be involved in this release, the NO-generating compounds hydroxylamine and S-nitroso-N-acetylpenicillamine being able to enhance the free-radical-evoked release. It seems that the free-radical-stimulated release, potentiated by ionotropic glutamate receptor activation and NO production, could constitute part of the neuroprotective properties of taurine, being important particularly in the developing hippocampus and hence preventing excitotoxicity.  相似文献   

8.
Metabotropic glutamate receptors have recently been envisaged as involved in both potentiation and prevention of ischemic and excitotoxic neuronal damage. The release of the inhibitory amino acid taurine is markedly enhanced in ischemia in both the immature and mature mouse hippocampus. The modulation of [3H]taurine release by metabotropic receptor agonists and antagonists was studied in hippocampal slices from developing (7-day-old) and adult (3-month-old) mice using a superfusion system. Agonists of group I, II and III metabotropic glutamate receptors generally reduced the ischemia-induced release in adult animals. In the immature hippocampus the group I agonists (S)-3,5-dihydroxyphenylglycine and (1±)-1-aminocyclopentane-trans-1,3-dicarboxylate, which mainly enhance neuronal excitation, potentiated initial taurine release in ischemia. Ionotropic glutamate receptor agonists also enhance the ischemia-induced taurine release in developing mice. This glutamate-activated taurine release may thus constitute an important protective mechanism against excitotoxicity in the immature hippocampus.  相似文献   

9.
P. Saransaari  S. S. Ojal 《Amino acids》1997,13(3-4):323-335
Summary Taurine is a neuromodulator and osmoregulator in the central nervous system, also protecting neural cells against excitotoxicity. The effects of the ionotropic glutamate receptor agonists N-methyl-D-aspartate (NMDA), kainate and 2-amino-3-hydroxy-5-methyl-4-imidazolepropionate (AMPA) on [3H]taurine release from hippocampal slices from 3-month-old and 7-day-old mice were studied in cell-damaging conditions. Neural cell injury was induced by superfusing the slices in hypoxic, hypoglycemic and ischemic conditions and by exposing them to metabolic poisons, free radicals and oxidative stress. The release of taurine was greatly enhanced in these conditions at both ages, except in oxidative stress. In normal conditions the three glutamate agonists potentiated taurine release in the immature hippocampus in a receptor-mediated manner, but kainate receptors did not participate in the regulation in the adults. The ability of the agonists to evoke taurine release varied in the cell-damaging conditions, but the glutamate-receptor-activated release was generally operating in the immature hippocampus. This glutamate-receptor-evoked massive release of taurine could have significant neuroprotective effects, particularly in the developing hippocampus, countering the harmful actions of the simultaneously liberated excitatory amino acids.  相似文献   

10.
Saransaari P  Oja SS 《Amino acids》2007,32(3):439-446
Summary. Taurine has been thought to be essential for the development and survival of neural cells and to protect them under cell-damaging conditions. In the brain stem taurine regulates many vital functions, including cardiovascular control and arterial blood pressure. We have recently characterized the release of taurine in the adult and developing brain stem under normal conditions. Now we studied the properties of preloaded [3H]taurine release under various cell-damaging conditions (hypoxia, hypoglycemia, ischemia, the presence of metabolic poisons and free radicals) in slices prepared from the mouse brain stem from developing (7-day-old) and young adult (3-month-old) mice, using a superfusion system. Taurine release was greatly enhanced under these cell-damaging conditions, the only exception being the presence of free radicals in both age groups. The ischemia-induced release was characterized to consist of both Ca2+-dependent and -independent components. Moreover, the release was mediated by Na+-, Cl-dependent transporters operating outwards, particularly in the immature brain stem. Cl channel antagonists reduced the release at both ages, indicating that a part of the release occurs through ion channels, and protein kinase C appeared to be involved. The release was also modulated by cyclic GMP second messenger systems, since inhibitors of soluble guanylyl cyclase and phosphodiesterases suppressed ischemic taurine release. The inhibition of phospholipases also reduced taurine release at both ages. This ischemia-induced taurine release could constitute an important mechanism against excitotoxicity, protecting the brain stem under cell-damaging conditions.  相似文献   

11.
Adenosine is a neuromodulator known to inhibit the synaptic release of neurotransmitters, e.g., glutamate, and to hyperpolarize postsynaptic neurons. The release of adenosine is markedly enhanced under ischemic conditions. It may then act as an endogenous neuroprotectant against cerebral ischemia and excitotoxic neuronal damage. The mechanisms by which adenosine is released from nervous tissue are not fully known, particularly in the immature brain. We now characterized the release of [3H]adenosine from hippocampal slices from developing (7-day-old) and adult (3-month-old) mice using a superfusion system. The properties of the release differed only partially in the immature and mature hippocampus. The K+-evoked release was Ca2+ and Na+ dependent. Anion channels were also involved. Ionotropic glutamate receptor agonists potentiated the release in a receptor-mediated manner. Activation of metabotropic glutamate receptors enhanced the release in developing mice, with group II receptors alone being effective. The evoked adenosine release apparently provides neuroprotective effects against excitotoxicity under cell-damaging conditions. Taurine had no effect on adenosine release in adult mice, but depressed the release concentration dependently in the immature hippocampus.  相似文献   

12.
Taurine has been thought to protect neural cells against cell-damaging conditions to which the hippocampus is particularly vulnerable. We studied now how the release of preloaded [3H]taurine is regulated by glutamate receptors in glucose-free media in slices prepared from the mouse hippocampus from developing (7 days old) and young adult (3 months old) mice, using a superfusion system. The lack of glucose enhanced taurine release more from slices from developing mice than from slices from adults. At both ages ionotropic glutamate agonists significantly increased the release in a receptor-mediated manner. Of the metabotropic glutamate receptors those belonging to the group III were effective. The release was enhanced in adult mice but attenuated in developing mice. Both effects were blocked by the receptor antagonists. The results show that glutamate receptors affect taurine release in the absence of glucose in which condition taurine should be neuroprotective.  相似文献   

13.
The release of the inhibitory amino acid taurine is markedly enhanced under ischemic conditions in both adult and developing brain stem, together with a pronounced increase in the release of the neuromodulator adenosine. We now studied the effects of adenosine receptor agonists and antagonists on [3H]taurine release in the brain stem in normoxia and ischemia, using a superfusion system. Under standard conditions, the adenosine A1 receptor agonist N6-cyclohexyladenosine (CHA) potentiated basal taurine release in adult mice, which response was blocked by the antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). CHA and the A2a receptor agonist 2-p-(2-carboxyethyl)phenylamino-5′-N-ethylcarboxaminoadenosinehydrochloride (CGS 21680) had no effect on the release in developing mice. In ischemia, CHA depressed both basal and K+-stimulated taurine release in developing mice in a receptor-mediated manner, blocked by DPCPX. The A2a receptor agonist CGS 21680 was also inhibitory. Taurine and adenosine may thus not cooperate in developing mice to prevent ischemic neuronal damage. On the other hand, CGS 21680 enhanced taurine release in the adult brain stem in ischemia, both basal and K+-stimulated release being affected. These effects were abolished by the antagonist 3,7-dimethyl-1-propargylxanthine (DMPX), indicating a receptor-mediated process. In this case elevated levels of taurine could be beneficial, protecting against hyperexcitation and excitotoxicity.  相似文献   

14.
The release of preloaded [3H]glycine from hippocampal slices from 7-day-old and 3-month-old (adult) mice was studied in different cell-damaging conditions, including hypoxia, hypoglycemia, ischemia, oxidative stress and the presence of free radicals and metabolic poisons, using a superfusion system. Glycine release was greatly enhanced in all the above conditions in both age groups, with the exception of hypoxia in developing mice. This coincides with the increased susceptibility to seizures and excitotoxicity during postnatal development. The ischemia-induced release of glycine was Ca2+-independent at both ages. The release was potentiated by exogenously applied glycine but not in Na+-free conditions, indicating the involvement of Na+-dependent transporters operating outwards. The Cl channel blockers 4-acetamido-4-isothiocyanostilbene-2,2-disulphonate and diisothiocyanostilbene-2,2-disulphonate generally reduced the ischemia-induced release, suggesting that this occurs through anion channels in both developing and adult mice. Furthermore, in the adult hippocampus riluzole and amiloride inhibited the release, indicating that Na+ channels also contribute to the ischemia-evoked release. Since glycine is an essential factor in glutamate-induced Ca2+ channel opening at the N-methyl-D-aspartate receptor, the elevated levels of glycine, together with the increased release of excitatory amino acids, must obviously collaborate in the development of ischemic neuronal damage.  相似文献   

15.
The release of preloaded [3H]taurine from cultured cerebral cortical astrocytes was studied under various cell-damaging conditions, including hypoxia, ischemia, aglycemia and oxidative stress, and in the presence of free radicals. Astrocytic taurine release was enhanced by K+ (50 mM), veratridine (0.1 mM) and the ionotropic glutamate receptor agonist kainate (1.0 mM). Metabotropic glutamate receptor agonists had only weak effects on taurine release. Similarly to the swelling-induced taurine release the efflux in normoxia seems to be mediated mainly by DIDS-(diisothiocyanostilbene-2,2-disulphonate) and SITS-(4-acetamido-4-isothiocyanostilbene-2,2-disulphonate) sensitive CI channels, since these blockers were able to reduce both basal and K+ -stimulated release. The basal release of taurine was moderately enhanced in hypoxia and ischemia, whereas the potentiation in the presence of free radicals was marked. The small basal release from astrocytes signifies that taurine release from brain tissue in ischemia may originate from neurons rather than glial cells. On the other hand, the release evoked by K+ in hypoxia and ischemia was greater than in normoxia, with a very slow time-course. The enhanced release of the inhibitory amino acid taurine from astrocytes in ischemia may be beneficial to surrounding neurons, outlasting the initial stimulus and counteracting overexcitation.  相似文献   

16.
The inhibitory neuromodulator adenosine has been thought to act as an endogenous neuroprotectant against cerebral ischemia and neuronal damage. The release of preloaded [3H]adenosine from hippocampal slices from developing (7-day-old) and adult (3-month-old) mice was characterized using a superfusion system under various cell-damaging conditions, including hypoxia, hypoglycemia, ischemia, oxidative stress, and the presence of free radicals and metabolic poisons. The release of adenosine was greatly potentiated under the above conditions at both ages, with free radicals, metabolic poisons, and ischemia generally having the strongest stimulatory effects. Depolarization by K+ ions (50 mM) could then evoke more release of adenosine only in the immature hippocampus. Omission of Ca2+ from the superfusion media had no effect on the ischemia-induced release in the adults, indicating that it occurs by a Ca2+-independent system. In contrast, the release in the immature hippocampus was partially dependent on extracellular Ca2+. Furthermore, the ischemia-induced adenosine release was reduced in Na+-deficient media and enhanced by ouabain at both ages, pointing to the involvement of Na+-dependent transporters. The release was also reduced by Cl channel blockers, thus indicating that a part of the evoked release occurs through anion channels. Another inhibitory neuromodulator and cell volume regulator, taurine, was seen to enhance adenosine release in ischemia at both ages. The simultaneous release of taurine and adenosine under cell-damaging conditions could constitute an important protective mechanism against excessive amounts of excitatory amino acids, counteracting their harmful effects and preventing excitation from reaching neurotoxic levels.  相似文献   

17.
The release of the inhibitory amino acid -alanine was investigated in hippocampal slices from adult (3-month-old) and developing (7-day-old) mice, using a superfusion system. The release was enhanced by -alanine itself and the structural analogs taurine and -aminobutyrate. It was dependent on Na+, but independent of Ca2+ in both mature and immature hippocampus, being thus mostly mediated by uptake carriers operating in an outward direction. The release was potentiated in the developing mice, but not affected in the adults, by the ionotropic glutamate receptor agonists N-methyl-D-aspartate, kainate, 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate and tetrazolylglycine in a receptor-mediated manner. Cell-damaging conditions, including hypoxia, hypoglycemia, ischemia, oxidative stress and the presence of free radicals, greatly enhanced -alanine release at both ages, but more markedly in the adults. The great amounts of -alanine, together with the inhibitory amino acids taurine and -aminobutyrate, released simultaneously with the excitatory amino acids in the hippocampus may constitute an important protective mechanism against excitotoxicity, which leads to neuronal death.  相似文献   

18.
Saransaari P  Oja SS 《Amino acids》1999,17(4):323-334
Summary The release of taurine from cultured cerebellar granule neurons was studied in different cell-damaging conditions, including hypoxia, hypoglycemia, ischemia, oxidative stress and in the presence of free radicals. The effects of both ionotropic and metabotropic glutamate receptor agonists on the release were likewise investigated. The release of [3H]taurine from the glutamatergic granule cells was increased by K+ (50mM) and veratridine (0.1 mM), the effect of veratridine being the greater. Hypoxia and ischemia produced an initial increase in release compared to normoxia but resulted in a diminished response to K. Hypoglycemia, oxidative stress and free radicals enhanced taurine release, and subsequent K treatment exhibited a correspondingly greater stimulation. A common feature of taurine release in all the bove conditions was a slow response to the stimulus evoked by K+ and particularly to that evoked by veratridine. All ionotropic glutamate receptor agonists potentiated taurine release, but only the action of kainate seemed to be receptor-mediated. Metabotropic receptor agonists of group I slightly stimulated the release. The prolonged taurine release seen in both normoxia and cell-damaging conditions may be of importance in maintaining homeostasis in the cerebellum and reducing excitability for a longer period than other neuroprotective mechanisms.Abbreviations AIDA (RS)-1-aminoindan-1,5-dicarboxylate - AMPA 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate - CNOX 6-cyano-7-nitroquinoxaline-2,3-dione - DCG IV (2S,2R,3R)-2-(2,3-dicarboxycyclo-propyl)glycine - DHPG (S)-3,5-dihydroxyphenylglycine - EGLU (2S)-2-ethylglutamate - L-AP3 L(+)-2-amino-3-phosphonopropionate - L-AP4 L(+)-2-amino-4-phosphonobutyrate - L-SOP o-phospho-l-serine - NBOX 6-nitro-7-sulphamoyl[f]quinoxaline-2,3-dione - NMDA n-methyl-d-aspartate - trans-ACPD (1S,3S)-1-aminocyclopentane-1,3-dicarboxylate  相似文献   

19.
The novel type of neurotransmitter/neuromodulator nitric oxide (NO) is linked to activation of the N-methyl-D-aspartate (NMDA) class of glutamate receptors and has been shown to modify transmitter release in the brain. The inhibitory neuromodulator adenosine has been thought to act as an endogenous neuroprotectant against cerebral ischemia and neuronal damage. The effects of NO-generating compounds on the release of preloaded [3H]adenosine from hippocampal slices from developing (7-day-old) and adult (3-month-old) mice were investigated, using a superfusion system, under normal conditions and in vitro ischemia. The release of adenosine was markedly potentiated at both ages by the NO-producing compounds S-nitroso-N-acetylpenicillamine, sodium nitroprusside, and hydroxylamine. The evoked releases were reduced by the NO synthase inhibitors nitroarginine and 7-nitroindazole at both ages. They were also reduced by the inhibitor of soluble guanylyl cyclase 1H-(1,2,4-oxadiazolo(4,3a)quinoxalin-1-one (ODQ) in adults, indicating that the NO/cGMP pathway is involved in this release. Release of adenosine was also evoked when the cGMP levels were increased by superfusing slices with the phosphodiesterase inhibitor zaprinast. The markedly enhanced adenosine release under ischemic conditions was further potentiated by the ionotropic glutamate receptor agonists and NO-generating compounds, whereas zaprinast and ODQ had no effect, rendering unlikely the involvement of cGMP in the ischemic release. Moreover, NO was able to provoke substantial release of adenosine in the presence of NMDA under both normal and ischemic conditions, which could significantly add to the neuroprotective potential of this neuromodulator in both adult and developing hippocampus.  相似文献   

20.
The excitatory glutamatergic neurons in the hippocampus are modulated by inhibitory GABA-releasing interneurons. The neuromodulator adenosine is known to inhibit the presynaptic release of neurotransmitters and to hyperpolarize postsynaptic neurons in the hippocampus, which would imply that it is an endogenous protective agent against cerebral ischemia and excitotoxic neuronal damage. Interactions of the GABAergic and adenosinergic systems in regulating neuronal excitability in the hippocampus is of crucial importance, particularly under cell-damaging conditions. We now characterized the effects of adenosine receptor agonists and antagonists on the release of preloaded [3H]GABA from hippocampal slices prepared from adult (3-month-old) mice, using a superfusion system. The effects were tested both under normal conditions and in ischemia induced by omitting glucose and oxygen from the superfusion medium. Basal and K+-evoked GABA release in the hippocampus were depressed by adenosinergic compounds. Under normal conditions activation of both adenosine A1 and A2A receptors by the agonists R(-)N6-(2-phenylisopropyl)adenosine and CGS 21680 inhibited the K+-evoked release, which effects were blocked by their specific antagonists, 8-cyclopentyl-1,3-dipropyl-xanthine and 3,7-dimethyl-1-propargylxanthine, respectively. Under ischemic conditions the release of both GABA and adenosine is markedly enhanced. The above receptor agonists then depressed both the basal and K+-evoked GABA release, only the action of A2A receptors being however receptor-mediated. The demonstrated depression of GABA release by adenosine in the hippocampus could be deleterious to neurons and contribute to excitotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号