首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
According to logistic regressions derived for pike Esox lucius and burbot Lota lota , the probability of ingesting fishes in Lake Muddusjärvi, northern Finland, was 50% at 19·3 and 22·1 cm L T, whereas Arctic charr Salvelinus alpinus and brown trout Salmo trutta shifted to piscivory at the lengths of 25·7 and 26·4 cm L T. The specialist piscivores, pike and burbot, consumed more prey species and took a wider range of prey sizes than Arctic charr and brown trout. The prey length for all predators increased in relationship to predator length. Whitefish Coregonus lavaretus was the dominant prey species in the lake and in the diet of all the piscivorous species. The whitefish population was divided into three forms, of which the slow-growing, and the most numerous densely rakered whitefish form (DR), was selected by all predator species. This form also had the smallest average size and widest habitat range, utilizing both pelagic and epibenthic habitats. Two sparsely rakered whitefish forms (LSR and SSR) occupied only epibenthic habitats and had lower relative densities than DR. These forms, LSR and SSR, had a minor importance in the diet of predator species.  相似文献   

2.
The extensive phenotypic polymorphism in the European whitefish has triggered evolutionary research in order to disentangle mechanisms underlying diversification. To illuminate the ecological distinctiveness in polymorphic whitefish, and evaluate taxonomic designations, we studied nine Norwegian lakes in three watercourses, which each harboured pairs of divergent whitefish morphs. We compared the morphology and life history of these morphs, documented the extent of genetic differentiation between them, and contrasted the niche use of sympatric morphs along both the habitat and resource axes. In all cases, sympatric morphs differed in the number of gill rakers, a highly heritable trait related to trophic utilization. Individual growth rate, age and size at maturity, diet and habitat use also differed between morphs within lakes, but were remarkably similar across lakes within the same morph. Microsatellite analyses confirmed for all but one pair that sympatric morphs were significantly genetically different, and that similar morphs from different lakes likely have a polyphyletic origin. These results are most compatible with the process of parallel evolution through recurrent postglacial divergence into pelagic and benthic niches in each of these lakes. We propose that sparsely and densely rakered whitefish sympatric pairs may be a likely case of ecological speciation, mediated in oligotrophic lakes with few trophic competitors.  相似文献   

3.
Infection patterns of trophically transmitted helminth parasites were compared with feeding ecology in two sympatric whitefish Coregonus lavaretus morphs from two lake systems in northern Norway. In both lakes, the pelagic morph was an obligate zooplanktivore, while the benthic morph utilized both the benthivore and zooplanktivore trophic niches. The differences in niche utilization between the two morphs were associated with differences in trophic morphology (gill raker numbers), suggesting that they were genetically dissimilar and reproductively isolated. The benthic morph had the highest number of helminth species, probably because they exhibited a broader niche width compared to the pelagic morph. In both lakes, the species composition and intensities of helminths reflected the trophic diversification of the whitefish ecotypes with respect to different habitat choice (benthic v . pelagic) and dietary specialization (benthivore v . zooplanktivore feeding strategies within the benthic whitefish morph). Zooplanktivorous fish from both morphs acquired parasites mainly from pelagic copepods and in almost equal quantities. The benthivore feeders within the benthic morph had the highest proportion of parasites with transmission stages from benthic organisms. Host feeding behaviour seemed to be a major determinant of the helminth community structure, and helminths appeared to be useful indicators of long-term trophic specialization of whitefish ecotypes.  相似文献   

4.
Three field‐identified whitefish Coregonus lavaretus forms in Lake Muddusjärvi, Finland, were compared in morphology, diet and prey size. First, these forms were studied with univariate and multivariate analysis to assess morphological divergence at a higher resolution level than in the field. Second, stomach contents were analysed to estimate diet‐overlap among forms. Finally, the relationship between prey size and morphology was examined. The whitefish were assigned to the initial field‐classification with 99·2% and 98·8% accuracy for morphologic and meristic traits, respectively. The small sparsely‐rakered form (SSR) had the shortest rakers and largest gillraker space, followed by the large sparsely‐rakered form (LSR) with intermediate gillraker length and gillraker space, while densely‐rakered whitefish (DR) had the longest rakers and smallest gillraker space. The two sparsely‐rakered whitefish forms (LSR and SSR), consumed mainly benthic macroinvertebrates, while densely‐rakered whitefish (DR), utilized pelagic food items. Average diet‐overlaps between whitefish forms were low in June‐September (Schoener's α = 0·02 − 0·23). Gillraker number and length were negatively correlated to prey length in the diet ( r  = −0·73, and r  = −0·60), while gillraker space was positively correlated with prey length ( r  = 0·81). The fact that these whitefish forms were morphologically and ecologically segregated, and that gillraker traits probably have a functional value in food selection, further suggests that natural selection has been important in structuring life‐history trajectories into divergent niche use.  相似文献   

5.
Understanding how a monophyletic lineage of a species diverges into several adaptive forms has received increased attention in recent years, but the underlying mechanisms in this process are still under debate. Postglacial fishes are excellent model organisms for exploring this process, especially the initial stages of ecological speciation, as postglacial lakes represent replicated discrete environments with variation in available niches. Here, we combine data of niche utilization, trophic morphology, and 17 microsatellite loci to investigate the diversification process of three sympatric European whitefish morphs from three northern Fennoscandian lakes. The morphological divergence in the gill raker number among the whitefish morphs was related to the utilization of different trophic niches and was associated with reproductive isolation within and across lakes. The intralacustrine comparison of whitefish morphs showed that these systems represent two levels of adaptive divergence: (1) a consistent littoral–pelagic resource axis; and (2) a more variable littoral–profundal resource axis. The results also indicate that the profundal whitefish morph has diverged repeatedly from the ancestral littoral whitefish morph in sympatry in two different watercourses. In contrast, all the analyses performed revealed clustering of the pelagic whitefish morphs across lakes suggesting parallel postglacial immigration with the littoral whitefish morph into each lake. Finally, the analyses strongly suggested that the trophic adaptive trait, number of gill rakers, was under diversifying selection in the different whitefish morphs. Together, the results support a complex evolutionary scenario where ecological speciation acts, but where both allopatric (colonization history) and sympatric (within watercourse divergence) processes are involved.  相似文献   

6.
Habitat use of three sympatric whitefish Coregonus lavaretus forms was determined using hydroacoustics, pelagic trawling and epibenthic gillnetting in the subarctic Lake Muddusjärvi during the day and night in June, August and September. Whitefish constituted 97% of the numerical catches and whitefish with high number of gill rakers (DR) were the most abundant whitefish form. Forms with low numbers of gill rakers used only epibenthic habitats during both the day and night in all study periods: large whitefish with low numbers of gill rakers (LSR) dwelled mainly at depths 0–10 m, whereas small whitefish with low numbers of gill rakers (SSR) used deeper (>10 m) habitats. LSR and SSR whitefish consumed mainly benthic macroinvertebrates during all study occasions. The planktivorous DR whitefish used both epibenthic and pelagic habitats, but vertical habitat selection varied both over time of day and season. In June, when light intensity was continuously high, DR whitefish did not perform diel vertical migrations. In August and September, when dark nights were distinguishable, DR whitefish ascended from the bottom to the pelagic at dusk to feed on zooplankton, and descended at dawn. DR whitefish used pelagic habitats only at the lowest light intensities during the night, which was probably related to the high predation risk from brown trout Salmo trutta .  相似文献   

7.
Intraguild predation--competition and predation by the same antagonist--is widespread, but its evolutionary consequences are unknown. Intraguild prey may evolve antipredator defenses, superior competitive ability on shared resources, or the ability to use an alternative resource, any of which may alter the structure of the food web. We tested for evolutionary responses by threespine stickleback to a benthic intraguild predator, prickly sculpin. We used a comparative morphometric analysis to show that stickleback sympatric with sculpin are more armored and have more limnetic-like body shapes than allopatric stickleback. To test the ecological implications of this shift, we conducted a mesocosm experiment that varied sculpin presence and stickleback population of origin (from one sympatric and one allopatric lake). Predation by sculpin greatly increased the mortality of allopatric stickleback. In contrast, sculpin presence did not affect the mortality of sympatric stickleback, although they did have lower growth rates suggesting increased nonpredatory effects of sculpin. Consistent with their morphology, sympatric stickleback included more pelagic prey in their diets, leading to depletion of zooplankton in the mesocosms. These findings suggest that intraguild prey evolution has altered food web structure by reducing both predation by the intraguild predator and diet overlap between species.  相似文献   

8.
Adaptive radiation is considered an important mechanism for the development of new species, but very little is known about the role of thermal adaptation during this process. Such adaptation should be especially important in poikilothermic animals that are often subjected to pronounced seasonal temperature variation that directly affects metabolic function. We conducted a preliminary study of individual lifetime thermal habitat use and respiration rates of four whitefish (Coregonus lavaretus (L.)) morphs (two pelagic, one littoral and one profundal) using stable carbon and oxygen isotope values of otolith carbonate. These morphs, two of which utilized pelagic habitats, one littoral and one profundal recently diverged via adaptive radiation to exploit different major niches in a deep and thermally stratified subarctic lake. We found evidence that the morphs used different thermal niches. The profundal morph had the most distinct thermal niche and consistently occupied the coldest thermal habitat of the lake, whereas differences were less pronounced among the shallow water pelagic and littoral morphs. Our results indicated ontogenetic shifts in thermal niches: juveniles of all whitefish morphs inhabited warmer ambient temperatures than adults. According to sampling of the otolith nucleus, hatching temperatures were higher for benthic compared to pelagic morphs. Estimated respiration rate was the lowest for benthivorous profundal morph, contrasting with the higher values estimated for the other morphs that inhabited shallower and warmer water. These preliminary results suggest that physiological adaptation to different thermal habitats shown by the sympatric morphs may play a significant role in maintaining or strengthening niche segregation and divergence in life-history traits, potentially contributing to reproductive isolation and incipient speciation.  相似文献   

9.
Whitefish, genus Coregonus, show exceptional levels of phenotypic diversity with sympatric morphs occurring in numerous postglacial lakes in the northern hemisphere. Here, we studied the effects of human‐induced eutrophication on sympatric whitefish morphs in the Swiss lake, Lake Thun. In particular, we addressed the questions whether eutrophication (i) induced hybridization between two ecologically divergent summer‐spawning morphs through a loss of environmental heterogeneity, and (ii) induced rapid adaptive morphological changes through changes in the food web structure. Genetic analysis based on 11 microsatellite loci of 282 spawners revealed that the pelagic and the benthic morph represent highly distinct gene pools occurring at different relative proportions on all seven known spawning sites. Gill raker counts, a highly heritable trait, showed nearly discrete distributions for the two morphs. Multilocus genotypes characteristic of the pelagic morph had more gill rakers than genotypes characteristic of benthic morph. Using Bayesian methods, we found indications of recent but limited introgressive hybridization. Comparisons with historical gill raker data yielded median evolutionary rates of 0.24 haldanes and median selection intensities of 0.27 for this trait in both morphs for 1948–2004 suggesting rapid evolution through directional selection at this trait. However, phenotypic plasticity as an alternative explanation for this phenotypic change cannot be discarded. We hypothesize that both the temporal shifts in mean gill raker counts and the recent hybridization reflect responses to changes in the trophic state of the lake induced by pollution in the 1960s, which created novel selection pressures with respect to feeding niches and spawning site preferences.  相似文献   

10.
Icelandic freshwater systems are geologically young and contain only six species of freshwater fish. As these species colonized Icelandic fresh waters they were presented with a diversity of unique, uncontested habitats and food resources, promoting the evolution of new behaviour strategies crucial to the formation of new morphs and speciation. To determine the likelihood that predation threat could affect the antipredator behaviour and possibly the sympatric divergence of prey populations, we analysed antipredator behaviour of seven groups of Icelandic threespine sticklebacks ( Gasterosteus aculeatus ): two marine groups, one group from a lake without piscine predators, and two polymorphic lake populations, each with two groups occupying unique habitats. Shoaling cohesion, school formation and duration, and vigilance in predator inspection/avoidance behaviour varied greatly among groups. The differences appeared to be related to the risk of predation as well as to opportunities and constraints set by the different habitats. Antipredator behaviour was especially pronounced and differed extensively in two polymorphic forms from the lake Thingvallavatn, where predation risk is very high. By keeping the two morphs separate in their respective habitats, high predation risk may be a contributing factor in promoting the habitat-specific divergence of G. aculeatus seen in the lake. This suggests that in situations where refuge habitats are spatially separated, the risk of predation may contribute to the evolution of separate sympatric forms of small fish such as G. aculeatus .  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 189–203.  相似文献   

11.
This paper studies the properties of linear growth in sparsely rakered whitefish Coregonus lavaretus in the stretches of the large subarctic Imandra Lake, which are characterized by the diversity of habitat conditions and anthropogenic stress levels. The groups of sparsely rakered whitefish that are confined to different areas of the lake are marked out based on the properties of growth, trophic status, and anthropogenic stress intensity. A direct relationship of the linear growth in whitefish with the age of sexual development and trophic level of its habitats is found.  相似文献   

12.
The expression of two or more discrete phenotypes amongst individuals within a species (morphs) provides multiple modes upon which selection can act semi‐independently, and thus may be an important stage in speciation. In the present study, we compared two sympatric morph systems aiming to address hypotheses related to their evolutionary origin. Arctic charr in sympatry in Loch Tay, Scotland, exhibit one of two discrete, alternative body size phenotypes at maturity (large or small body size). Arctic charr in Loch Awe segregate into two temporally segregated spawning groups (breeding in either spring or autumn). Mitochondrial DNA restriction fragment length polymorphism analysis showed that the morph pairs in both lakes comprise separate gene pools, although segregation of the Loch Awe morphs is more subtle than that of Loch Tay. We conclude that the Loch Awe morphs diverged in situ (within the lake), whereas Loch Tay morphs most likely arose through multiple invasions by different ancestral groups that segregated before post‐glacial invasion (i.e. in allopatry). Both morph pairs showed clear trophic segregation between planktonic and benthic resources (measured by stable isotope analysis) but this was significantly less distinct in Loch Tay than in Loch Awe. By contrast, both inter‐morph morphological and life‐history differences were more subtle in Loch Awe than in Loch Tay. The strong ecological but relatively weak morphological and life‐history divergence of the in situ derived morphs compared to morphs with allopatric origins indicates a strong link between early ecological and subsequent genetic divergence of sympatric origin emerging species pairs. The emergence of parallel specialisms despite distinct genetic origins of these morph pairs suggests that the effect of available foraging opportunities may be at least as important as genetic origin in structuring sympatric divergence in post‐glacial fishes with high levels of phenotypic plasticity. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

13.
The strength of predation impact on recipient environments may vary among introduced populations due to their local adaptations to different prey. We examined whether functional diversification associated with morphological differences may be observed among the introduced populations of invasive bluegill sunfish Lepomis macrochirus (Perciformes, Centrarchidae) in Japan. The two examined populations are morphologically different, although they were recently derived from a common American source and colonized in different lakes. We performed a laboratory experiment wherein these populations were fed the benthic (chironomid larva) and the pelagic prey (daphnid zooplankton). The results revealed that a population colonizing in a shallower lake and foraging on benthic invertebrates in the wild had a greater impact on the benthic prey, whereas the other population colonizing in a deeper lake and foraging on crustacean zooplankton have consumed the pelagic prey more efficiently. A series of regression analyses showed that morphological differences among individuals were responsible for these population differences. The evidence obtained suggests that morphological adaptations by introduced bluegill populations enhance the strength of predation impact on a prey resource consumed in a relevant environment, but reduce the impact on the other prey. Thus, although the introduced Japanese populations were recently derived from a common ancestor, the predation impacts on the native prey community vary due to morphological adaptations to different prey.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 601–610.  相似文献   

14.
Trophic polymorphisms are a prominent form of phenotypic diversification in many animal taxa. Northern temperate lakes have become model systems for the investigation of sympatric speciation due to trophic polymorphisms. Many examples of niche-based phenotypic variation occur in temperate lakes, whereas northern rivers offer few such examples. To further investigate the conditions under which trophic polymorphisms are likely to evolve, the present study examined phenotypic variation related to snout size and shape in the mountain whitefish (Salmonidae: Prosopium williamsoni ), which has been hypothesized to exhibit a rare example of reproductively isolated trophic morphs in a northern river-dwelling fish species. Variation in snout size and shape increased greatly with body size and, although this variation was continuously distributed, individuals in the largest size class tended to lie at phenotypic extremes. At one extreme were individuals with a large bulbous snout and a sloping forehead ('pinocchio'), and at the other were individuals that lack the bulbous snout and have a concave forehead ('normal'). The pinocchio trait may result from a stage-specific developmental switch that occurs late in ontogeny. Consistent differences were found with respect to diet between individuals with extreme snout morphologies, but no evidence was found for assortative mating within populations at seven microsatellite loci. The explosive mating system of this species may be responsible for this lack of assortative mating. The present study highlights the influence of ecological factors in shaping phenotypic and behavioural diversification due to trophic morphology.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 253–267.  相似文献   

15.
16.
Understanding why some species coexist and others do not remains one of the fundamental challenges of ecology. Although there is evidence to suggest that closely‐related species are unlikely to occupy the same habitat because of competitive exclusion, there are many cases where closely‐related species do co‐occur. Research comparing sympatric and allopatric populations of co‐occurring species provides a framework for understanding the role of phenotypic diversification in species coexistence. In the present study, we compare phenotypic divergence between sympatric and allopatric populations of the livebearing fish, Poeciliopsis baenschi. We focus on life‐history traits and body shape, comprising two sets of integrated traits likely to diverge in response to varying selective pressures. Given that males and females can express different phenotypic traits, we also test for patterns of divergence among sexes by comparing size at maturity and sexual dimorphism in body shape between males and females in each population type. We take advantage of a natural experiment in western Mexico where, in some locations, P. baenschi co‐occur with a closely‐related species, Poeciliopsis turneri (sympatric populations) and, in other locations, they occur in isolation (allopatric populations). The results obtained in the present study show that sympatric populations of P. baenschi differed significantly in life‐history traits and in body shape compared to their allopatric counterparts. Additionally, males and females showed different responses for size at maturity in sympatric conditions versus allopatric conditions. However, the amount of sexual dimorphism did not differ between sympatric and allopatric populations of P. baenschi. Hence, we conclude that not all traits show similar levels of phenotypic divergence in response to sympatric conditions. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 608–618.  相似文献   

17.
Local adaptation towards divergent ecological conditions often results in genetic differentiation and adaptive phenotypic divergence. To illuminate the ecological distinctiveness of the schizothoracine fish, we studied a Gymnocypris species complex consisting of three morphs distributed across four bodies of water (the Yellow River, Lake Qinghai, the Ganzi River and Lake Keluke) in the Northeast Tibetan Plateau. We used a combination of mitochondrial (16S rRNA and Cyt b) and nuclear (RAG-2) genetic sequences to investigate the phylogeography of these morphs based on a sample of 277 specimens. Analysis of gill rakers allowed for mapping of phenotypic trajectories along the phylogeny. The phylogenetic and morphological analyses showed that the three sparsely rakered morphs were present at two extremes of the phylogenetic tree: the Yellow River morphs were located at the basal phylogenetic split, and the Lake Keluke and Ganzi River morphs at the peak, with the densely rakered Lake Qinghai morphs located between these two extremes. Age estimation further indicated that the sparsely rakered morphs constituted the oldest and youngest lineages, whereas the densely rakered morph was assigned to an intermediate-age lineage. These results are most compatible with the process of evolutionary convergence or reversal. Disruptive natural selection due to divergent habitats and dietary preferences is likely the driving force behind the formation of new morphs, and the similarities between their phenotypes may be attributable to the similarities between their forms of niche tracking associated with food acquisition. This study provides the first genetic evidence for the occurrence of convergence or reversal in the schizothoracine fish of the Tibetan Plateau at small temporal scales.  相似文献   

18.
A study of body and head development in three sympatric reproductively isolated Arctic charr (Salvelinus alpinus (L.)) morphs from a subarctic lake (Skogsfjordvatn, northern Norway) revealed allometric trajectories that resulted in morphological differences. The three morphs were ecologically assigned to a littoral omnivore, a profundal benthivore and a profundal piscivore, and this was confirmed by genetic analyses (microsatellites). Principal component analysis was used to identify the variables responsible for most of the morphological variation of the body and head shape. The littoral omnivore and the profundal piscivore morph had convergent allometric trajectories for the most important head shape variables, developing bigger mouths and relatively smaller eyes with increasing head size. The two profundal morphs shared common trajectories for the variables explaining most of the body and head shape variation, namely head size relative to body size, placement of the dorsal and pelvic fins, eye size and mouth size. In contrast, the littoral omnivore and the profundal benthivore morphs were not on common allometric trajectories for any of the examined variables. The findings suggest that different selective pressures could have been working on traits related to their trophic niche such as habitat and diet utilization of the three morphs, with the two profundal morphs experiencing almost identical environmental conditions.  相似文献   

19.
Ontogenetic changes in habitat use by whitefish,Coregonus lavaretus   总被引:1,自引:0,他引:1  
Synopsis The whitefish, Coregonus lavaretus, in the lake Mj?sa exhibited two niche changes during their life cycle. Juveniles (< 25 cm body length) were confined to the shallow (0–30 m) epibenthic zone. Medium sized whitefish (25–35 cm body length) expanded their habitat use to include the deep (30–90 m) epibenthic zone as well as the pelagic zone. From a body length of 35 cm, habitat use was restricted to the deep epibenthic zone. Small fish in the shallow epibenthic zone ate small and medium-sized prey (zooplankton, insect larvae and surface insects). Medium-sized fish in this zone were in addition feeding on the larger amphipod, Pallasea quadrispinosa. In the pelagic zone, the diet of medium-sized whitefish was dominated by zooplankton, although some larger prey like surface insects and age-0 smelt, Osmerus eperlanus, were also eaten. In the deep epibenthic zone, the diet of both medium-sized and large (< 35 cm) whitefish consisted mainly of the large prey P. quadrispinosa.  相似文献   

20.
In the paper, restriction-fragment length polymorphisms in mitochondrial DNA (mtDNA) were studied to test the hypothesis that sympatric populations of lake whitefish in the Allegash basin have recently diverged through sympatric speciation. Thirteen restriction enzymes were used to analyze mtDNA of 156 specimens representing 13 populations from eastern Canada and northern Maine where normal and dwarf phenotypes of whitefish exist in sympatry and allopatry. Two monophyletic assemblages of populations that exhibit different geographic distributions were identified. One showed an eastern distribution that expands from Cape Breton to the Allegash basin and the other exhibits a more western distribution. The Allegash basin was the only area of overlap. The western assemblage exhibited the normal size phenotype in all cases, whereas the eastern assemblage exhibited the normal size phenotype in allopatric conditions and the dwarf size phenotype in sympatry. The existence of sympatric pairs in the Allegash basin result from the secondary contact of two monophyletic groups of whitefish that evolved allopatrically in separate refugia during the last glaciation events. The weak mtDNA difference of sympatric pairs suggests that speciation of lake whitefish in eastern North America was accompanied by only minor alterations of the ancestral gene pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号