首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J A Bell  M A Webb 《Plant physiology》1995,107(2):435-441
Allantoinase (allantoin amidohydrolase, EC 3.5.2.5) catalyzes the conversion of allantoin to allantoic acid in the final step of ureide biogenesis. We have purified allantoinase more than 4000-fold by immunoaffinity chromatography from root nodules and cotyledons of soybean (Glycine max [L] Merr.). We characterized and compared properties of the enzyme from the two sources. Seed and nodule allantoinases had 80% identity in the first 24 amino acid residues of the N terminus. Two-dimensional gel electrophoresis of the purified enzymes showed that multiple forms were present in each. Allantoinases from nodules and cotyledons had very low affinity for allantoin with a Km for allantoin of 17.3 mM in cotyledons and 24.4 mM in nodules. Both had activity in a broad range of pH values from 6.5 to 7.5. In addition, purified allantoinase from both sources was very heat stable. Enzyme activity was stable after 1 h at 70 degrees C, decreased gradually with heating to 85 degrees C, and was lost at 90 to 95 degrees C. Although these studies have revealed some differences between allantoinases in seeds and nodules, the differences were not reflected in key enzyme properties. The immunoaffinity approach enabled purification of allantoinase from soybean root nodules and simplified its purification from cotyledons, thereby allowing characterization and comparison of the enzyme from the two sources.  相似文献   

2.
Allantoinase (allantoin amidohydrolase, EC 3.5.2.5) catalyses the hydrolysis of allantoin to allantoic acid, a key reaction in the biosynthesis and degradation of ureides. This activity was determined in different tissues of French bean plants (Phaseolus vulgaris L.) which were grown under nitrogen-fixing conditions. Allantoinase activity was detected in all tissues analysed, but the highest levels of specific activity were found in developing fruits, from which allantoinase has been purified to electrophoretic homogeneity and further characterized. After diethylaminoethyl (DEAE)-Sephacel chromatography, two peaks showing allantoinase activity were obtained in the chromatographic profile and the corresponding proteins were independently purified. Total allantoinase activity was purified 200-fold, indicating the relevance of this enzymatic activity in French bean developing fruits, with allantoinase representing 0.5% of total soluble protein. Both proteins with allantoinase activity are monomeric with molecular masses of 45 and 42 kDa. The specific activities of the purified proteins were 560 and 295 units mg(-1), which correspond to turnover numbers of 25,200 and 12,100 min(-1), respectively. The two proteins have very similar biochemical properties showing Michaelis-Menten kinetics for allantoin with K(m) values of about 60 mM, with high optimal temperatures; are metalloenzymes; are inhibited by compounds reacting with sulphydryl groups; and are unaffected by reducing agents. All analysed tissues exhibited the two activities responsible for allantoin degradation, although one of them was the main form in leaves (the most photosynthetic tissue) and the other protein was the main form in roots (non-photosynthetic tissue). The allantoinase activity and distribution of both proteins have been analysed during fruit development. For both proteins, the allantoinase activity and distribution pattern were the same in plants growing either under nitrogen-fixing conditions or fertilized with nitrate.  相似文献   

3.
Allantoinase catalyses the hydrolysis of allantoin to allantoic acid. This reaction is a step in the purine degradation pathway, which produces nitrogenous waste for excretion. A cDNA encoding full-length allantoinase was cloned from a Ctenocephalides felis hindgut and Malpighian tubule (HMT) cDNA library. The cDNA encoded a 483 amino acid protein that had 43% identity with the bullfrog Rana catesbeiana allantoinase and contained the conserved histidine and aspartic acid residues required for zinc-binding and catalytic activity. Unlike the bullfrog allantoinase, the C. felis allantoinase sequence was predicted to contain a 22 amino acid signal sequence, which targets the protein to the secretory pathway. Expression of the mRNA was detected by Northern blot in the first, third, and wandering larval stages as well as in fed and unfed adults, but was not seen in eggs or pupae. In adults, mRNA encoding allantoinase was detected only in the HMT tissues. Immunohistochemistry performed using affinity-purified rabbit immune serum generated against purified recombinant flea allantoinase showed that the native protein localized to the HMT tissues in adult fleas. The anti-allantoinase serum recognized two proteins in an adult flea soluble protein extract, one migrating at 56 kDa and the other at 53 kDa. The two proteins were separated by gel filtration chromatography and were both associated with allantoinase activity. The difference in size appeared to be due to a difference in glycosylation of the proteins. The 53 kDa protein was further purified to near homogeneity by affinity chromatography and retained allantoinase activity. A comparison of the sizes of the native and recombinant C. felis proteins indicated that the 53 kDa native protein may be the product of a post-translational cleavage event, possibly at the putative 22 amino acid signal sequence at the N-terminus of the protein.  相似文献   

4.
Allantoinase and allantoicase are located in the same protein molecule in amphibian liver, whereas the two enzymes are different proteins in marine fish and invertebrate liver (Takada, Y., and Noguchi, T. (1983) J. Biol. Chem. 258, 4762-4764). The amphibian enzyme was rapidly purified from frog liver by using its following characteristics. 1) The enzyme binds to the intracellular membranes in the hypotonic solution. 2) The membrane-bound enzyme is not solubilized by the detergent. 3) The membrane-bound enzyme is solubilized by oxaloacetate. The electrophoresis of the purified enzyme gave a single protein band in the absence of sodium dodecyl sulfate, and gave two protein bands with molecular weights of 48,000 and 54,000, respectively, in the presence of sodium dodecyl sulfate. With a specific antibody raised against each subunit, allantoinase activity was found to be from the large subunit, and allantoicase activity to be from the small subunit. This amphibian allantoinase and allantoicase complex was compared with allantoinase and allantoicase purified from fish liver. Fish allantoinase was a single peptide and fish allantoicase was composed of two identical subunits. Fish allantoinase had an identical molecular weight with amphibian large (allantoinase) subunit and the subunit of fish allantoicase with amphibian small (allantoicase) subunit. These results suggest that the evolution of fish to amphibian resulted in the dissociation of allantoicase into subunits and in the association of allantoinase with allantoicase. The two enzymes are lost by further evolution.  相似文献   

5.
Enzymes of purine catabolism in soybean plants   总被引:2,自引:0,他引:2  
Remarkable formation and utilization of allantoin is observedin soybean (Glycine max variety A62-1). To study this, variousenzymes involved in purine catabolism (i.e., xanthine oxidase,uricase and allantoinase) were measured in different regionsof soybean plants during development. Uricase, which catalyzesthe direct formation of allantoin from uric acid, was studiedin detail. The activities of these three enzymes were highest in the rootnodules, indicating that the nodules are the major site of allantoinmetabolism. Radicles only showed appreciable activity about80 hr after the seeds were planted. Allantoinase activity wasdetected in all regions tested, showing that allantoin translocatedfrom the nodules can be metabolized in the roots, stem and leaves.In the nodules, xanthine oxidase was localized in the nuclearfraction, while uricase was mainly restricted to the mitochondrialfraction and allantoinase to the soluble fraction. Uricase was partially purified from the nodules and radicles,respectively. The pH optimum of enzyme from the nodules was9.5, whereas that of enzyme from the radicles was 7.0. The enzymefrom the nodules did not require a cofactor, while that fromthe radicles showed an absolute requirement for a cofactor,which was a low molecular substance easily separable from theapoprotein. Thus, the uricase in nodules differs in chemicalproperties from that in the host plant. The results are discussedin relation to change in the allantoin level in soybean tissues. (Received November 1, 1974; )  相似文献   

6.
Allantoinases (ALNase) in the water extracts distilled from seeds and leaves of soybean (Glycine max L. cv. Keyu 10) were. remarkably heat stable. However the enzyme and non-enzyme protein in the seed extract, but not leaf extract, lost their activity and were denaturated at 75℃ for 5 min in the presence of Ca2+, Mg2+. or Mn2+ions respecitively. At room temperature over 40%~50% of the non-enzyme proteins in the seed extract could be removed by the bivalent cations without affecting the enzyme activity. This effect was weakend by the increase of concentration. Both extracts had different responses to all sorts of insoluble Ca2. salts. For the seed extract about 50 % of the non-enzyme proteins were removed by 5 % CaSO4 (W/V), without effecting the enzyme activity, while the leaf extract was sensible to Ca3 (PO4) 2. After treatment with 5 % Ca3 (PO4) 2 about 50 % of the enzyme activities and about 70% of proteins were lost. Mn2+ ions could enhance the enzyme activity in crude seed extract, but had no effect on partially purified enzyme from seeds and enzyme in crude extract from leaves. Further, EDTA had no effect on enzyme activity in both extracts.  相似文献   

7.
Allantoinase was purified about 10-fold from nitrogen fixing root nodules of pigeonpea (Cajanus cajan) using (NH4)2S04 fractionation and chromatography on Sephadex G-100. The purified preparation showed a specific activity of 1.73 nkat/mg protein, Mr of 125 000, pH optimum between 7.5 and 7.7 and Km of 13.3 mM. The enzyme was heat stable up to 70dg and metal ions, except Hg2+, had no effect on the enzyme activity. The enzyme was inhibited significantly by reducing agents. Amino acids, ammonium, nitrate, potential precursors of allantoin and a number of other intermediate metabolites of ureide biosynthetic pathway had no effect on enzyme activity. It is suggested that allantoinase is unlikely to regulate the production of ureides in the nodule tissue.  相似文献   

8.
豌豆铁蛋白的纯化及其抗血清的制备   总被引:2,自引:0,他引:2  
干豌豆种子粗提物经MgCl2 盐析、AcA2 2 凝胶过滤和DEAE 纤维素阴离子交换柱层析等方法进行纯化 ,以邻菲咯啉显色法检测铁蛋白 ,最后获得纯的铁蛋白 .纯化的铁蛋白在PAGE上显示一条带 ,SDS PAGE显示该蛋白仅含 2 8kD一条亚基 .纯化的豌豆铁蛋白免疫兔 7周后 ,琼脂糖双扩散法检测抗血清效价达 1∶32 .用分级盐析法纯化抗血清 ,纯化后的抗体用琼脂糖双扩散法对大豆铁蛋白粗提物有免疫交叉反应  相似文献   

9.
In this paper, lipoxygenase lacking mutants were characterized in comparison with normal soybeans. The three lipoxygenase isozymes (L-l, L-2, and L-3) in crude seed extracts of normal soybeans were resolved clearly by an improved SDS-polyacrylamide gel electrophoresis. As expected, the three mutant types, L-l-less (P. I. 408251 and 133226), L-2-less (P. I. 86023), and L-3 less (Wasenatsu and Ichigowase) soybeans did not give L-l, L-2, and L-3 protein bands, respectively on a single dimension SDS gel.

An anti L-2 serum obtained from a rabbit reacted not only with the purified L-2 protein, but also partially with the purified L-l and L-3 proteins. By double immunodiffusion and immuno-disc gel electrofocusing analyses using the anti L-2 serum, L-l, L-2, and L-3 isozymes could not be detected in crude seed extracts from P.I. 408251, P. I. 86023, and Wasenatsu soybeans, respectively.

Three lipoxygenase activity peaks (L-l, L-2, and L-3 enzyme peaks) and a small unknown activity peak eluted right after the L-l peak were fractionated by DEAE-Sephacel column chromatography of crude seed extracts of Raiden (normal) soybeans. The chromatographic analyses have demonstrated that both the L-l and the unknown enzyme activities disappear completely in the L-l-less type soybean seeds, and that the L-2 and L-3 enzyme activities disappear completely in P. I. 86023 and the L-3-less type soybean seeds, respectively.  相似文献   

10.
An unusual allantoinase from Dolichos biflorus has been purified 62-fold. The purified enzyme has an unusual pH activity profile with a shoulder at pH 4 and a peak at pH 7.5. This is due to a single enzyme which does not need metal ions for activation. In the fully reduced state the enzyme exhibits a single sharp peak at 7.5; when it is not in the sulfhydryl form (in the fully oxidized SS form?) the enzyme shows a single pH optimum at pH 4. Km values for (±)-allantoin were 5.5 mM at pH 4 and 1.43 mM at pH 7.5. Allantoinase activity has been demonstrated in the resting seed, and increased linearly with time during the first 5 days of seedling growth.  相似文献   

11.
Soybean peroxidase (SBP), (EC 1.11.1.7) can be readily extracted from soybean seed hulls. This study reports on the direct use of soybean seed‐hull extracts for the bioremediation of phenolic wastes. The crude SBP extract from the hulls, like pure soybean peroxidase, is catalytically active in a broad range of pH and temperatures. As SBP is gradually released into the aqueous solution from seed hulls, the direct use of soybean seed hulls can reduce SBP inactivation by H2O2 and enhance the utilization efficiency of SBP through the slow release of the enzyme from the seed hulls. However, large doses of soybean seed hulls were found to be ineffective in phenol removal. Gradual additions of H2O2 in combination with the SBP released from the hulls were applied to optimize the bioremediation. Since the crude extract contains a mixture of multiple soybean proteins, soybean seed hull slurry required a higher concentration of H2O2 to remove the phenolic substrates than did the purified enzyme. Under the experimental conditions, 80 % of phenol (10.6 mM), 96 % of 2‐chlorophenol (3.9 mM), 95 % of 2,4‐dichlorophenol (3.1 mM), and 94 % of mixed phenol and chlorophenols were removed using soybean seed hulls in a single batch reactor. These results demonstrate that soybean seed hulls, compared to purified SBP, may be a more cost‐effective alternative in the enzymatic removal of phenolic compounds through polymerization reactions.  相似文献   

12.
A lectin from the crude extract of seeds of Delonix regia (DRL) has been purified by ammonium sulphate fractionation followed by specific adsorption on Sephadex G-50 column and subsequent displacement with 100 mM D-glucose. The purified lectin (yield 1.41 mg g?1 dry seed) is a hetero-tetramer of 156 kD in size, consisting of four polypeptides (Mr of 32, 36, 42 and 46 kD) as detected on SDS-PAGE. It is a thermostable protein and remains active between pH 2.0–11.0. The lectin agglutinated erythrocytes of human and other primates. The hemagglutinating activity was not affected by cations and chelating agents. Of the 23 different sugars tested for specificity, maximum inhibition of the hemagglutination was shown by D-glucose. The immunological crossreactions of DRL with monospecific antibodies against SBA, Con A, PNA, DBA and PHA-E indicate that DRL is very closely related to Concanavalin A.  相似文献   

13.
Allantoinase and allantoicase are known to form a complex in amphibian liver. In this study, a new type of allantoinase that did not form a complex with allantoicase was found in the amphibian liver. Purified enzyme had a molecular mass of about 44 kDa both in SDS-PAGE and gel-filtrations. The enzyme cross-reacted with anti-sardine allantoinase polyclonal antibody, and it weakly cross-reacted with anti-bullfrog allantoinase polyclonal antibody.  相似文献   

14.
Genetic modification removes an immunodominant allergen from soybean   总被引:17,自引:0,他引:17       下载免费PDF全文
The increasing use of soybean (Glycine max) products in processed foods poses a potential threat to soybean-sensitive food-allergic individuals. In vitro assays on soybean seed proteins with sera from soybean-sensitive individuals have immunoglobulin E reactivity to abundant storage proteins and a few less-abundant seed proteins. One of these low abundance proteins, Gly m Bd 30 K, also referred to as P34, is in fact a major (i.e. immunodominant) soybean allergen. Although a member of the papain protease superfamily, Gly m Bd 30 K has a glycine in the conserved catalytic cysteine position found in all other cysteine proteases. Transgene-induced gene silencing was used to prevent the accumulation of Gly m Bd 30 K protein in soybean seeds. The Gly m Bd 30 K-silenced plants and their seeds lacked any compositional, developmental, structural, or ultrastructural phenotypic differences when compared with control plants. Proteomic analysis of extracts from transgenic seed detected the suppression of Gly m Bd 30 K-related peptides but no other significant changes in polypeptide pattern. The lack of a collateral alteration of any other seed protein in the Gly m Bd 30 K-silenced seeds supports the presumption that the protein does not have a role in seed protein processing and maturation. These data provide evidence for substantial equivalence of composition of transgenic and non-transgenic seed eliminating one of the dominant allergens of soybean seeds.  相似文献   

15.
以大豆为外源DNA供体,用浸种及幼苗期浇灌法和花粉管通道法直接将大豆总DNA导入受体水稻,经常规栽培获得水稻后代种子。采用微量凯氏定氮法和氨基酸自动分析仪进行水稻后代种子糙米的粗蛋白含量和氨基酸含量的测定。结果显示:三组经大豆DNA溶液处理获得的水稻后代种子糙米粗蛋白平均含量分别为16.42%、16.80%和19.87%,与对照组相比有明显提高,统计分析都达到极显著的差异(P < 0.01);在氨基酸含量测定中,有些材料的总氨基酸(除色氨酸以外)含量高达17.20%、16.86%和16.09%,其中赖氨酸的含量分别为0.60%、0.60%和0.57%,与对照组相比也有明显提高,统计分析差异也都达到极显著水平(P < 0.01)。本试验结果充分说明,利用大豆总DNA的导入方法有可能达到迅速有效地提高稻米蛋白质及赖氨酸含量的目的。  相似文献   

16.
Allantoinase and allantoicase are known to form a complex in amphibian liver. In this study, a new type of allantoinase that did not form a complex with allantoicase was found in the amphibian liver. Purified enzyme had a molecular mass of about 44 kDa both in SDS-PAGE and gel-filtrations. The enzyme cross-reacted with anti-sardine allantoinase polyclonal antibody, and it weakly cross-reacted with anti-bullfrog allantoinase polyclonal antibody.  相似文献   

17.
Allantoinase is a suspected dinuclear metalloenzyme that catalyzes the hydrolytic cleavage of the five-member ring of allantoin (5-ureidohydantoin) to form allantoic acid. Recombinant Escherichia coli allantoinase purified from overproducing cultures amended with 2.5 mM zinc, 1 mM cobalt, or 1 mM nickel ions was found to possess approximately 1.4 Zn, 0.0 Co, 0.0 Ni, and 0.4 Fe; 0.1 Zn, 1.0 Co, 0.0 Ni, and 0.2 Fe; and 0.0 Zn, 0.0 Co, 0.6 Ni, and 0.1 Fe per subunit, respectively, whereas protein obtained from nonamended cultures contains near stoichiometric levels of iron. We conclude that allantoinase is incompletely activated in the recombinant cells, perhaps due to an insufficiency of a needed accessory protein. Enzyme isolated from nonsupplemented cultures possesses very low activity (k(cat) = 34.7 min(-1)) compared to the zinc-, cobalt-, and nickel-containing forms of allantoinase (k(cat) values of 5,000 and 28,200 min(-1) and 200 min(-1), respectively). These rates and corresponding K(m) values (17.0, 19.5, and 80 mM, respectively) are significantly greater than those that have been reported previously. Absorbance spectroscopy of the cobalt species reveals a band centered at 570 nm consistent with five-coordinate geometry. Dithiothreitol is a competitive inhibitor of the enzyme, with significant K(i) differences for the zinc and cobalt species (237 and 795 micro M, respectively). Circular dichroism spectroscopy revealed that the zinc enzyme utilizes only the S isomer of allantoin, whereas the cobalt allantoinase prefers the S isomer, but also hydrolyzes the R isomer at about 1/10 the rate. This is the first report for metal content of allantoinase from any source.  相似文献   

18.
Immature fruits of soybean ( Glycine max L. Merr. cv. Santa Rosa) were found to contain high ureide/amino acid ratios for plants dependent on atmospheric nitrogen (nodulated), but low ratios for plants cultivated on NO3 (non-nodulated). The pod tissue was responsible for almost all this difference, which reflects the N metabolism of these plants (nodulated:urcide-based; NO3 dependent: asparagine based). The capacity of fruit tissues to utilize ureides and asparagine via allantoinase (EC 3.5.2.5) and asparaginase (EC 3.5.1.1) was investigated during fruit development. Both enzymes were present in crude desalted extracts of all parts of the fruit analysed (pod, cotyledon and seed coat). Asparaginase was detected in pod tissue only at early stages and with very low activities, whereas high activities of allantoinase (up to 20 [imol pod−1 h−1) were present after this organ reached full expansion. The cotyledons contained most of the allantoinase and asparaginase activities of the seed, the highest activities being recorded during the period of rapid protein accumulation. There was little difference in the activity patterns for nodulated and NO3-grown plants, despite the large difference in nitrogen nutrition of the fruits.  相似文献   

19.
2‐D analysis of plant proteomes containing thousands of proteins has limited dynamic resolution because only abundant proteins can be detected. Proteomic assessment of the non‐abundant proteins within seeds is difficult when 60–80% is storage proteins. Resolution can be improved through sample fractionation using separation techniques based upon different physiological or biochemical principles. We have developed a fast and simple fractionation technique using 10 mM Ca2+ to precipitate soybean (Glycine max) seed storage globulins, glycinin and β‐conglycinin. This method removes 87±4% of the highly abundant seed proteins from the extract, allowing for 541 previously inconspicuous proteins present in soybean seed to be more detectable (volume increase of ≥50%) using fluorescent detection. Of those 541 enhanced spots, 197 increased more than 2.5‐fold when visualized with Coomassie. The majority of those spots were isolated and identified using peptide mass fingerprinting. Fractionation also provided detection of 63 new phosphorylated protein spots and enhanced the visibility of 15 phosphorylated protein spots, using 2‐D electrophoretic separation and an in‐gel phosphoprotein stain. Application of this methodology toward other legumes, such as peanut, bean, pea, alfalfa and others, also containing high amounts of storage proteins, was examined, and is reported here.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号