首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of the flowering mechanism is influenced by many environmental factors. Dissecting the regulatory processes upstream of the LFY (LEAFY) gene will help us to understand the molecular mechanisms of floral induction. In total, 53 LFY sequences were identified in 37 species. Among the 53 selected LFY promoters and after eliminating the short sequences, 47 LFY promoters were analyzed. Comparative genome studies for LFY promoters among plants showed that TATA-box existed in all herbaceous plants. The 1345-bp promoter sequence upstream to hickory LFY gene was cloned and analyzed, together with functional studies. The result of sequence alignment showed that the region of the hickory LFY promoter has only two conserved auxin response elements (AuxRE), whereas other plants had four. The positions of AuxRE in hickory and walnut were the same, but they were different from the positions from other plants. Furthermore the sequence analysis showed that the promoter have TATA-box and CAAT-box motifs. Deletion analysis of these motifs did not block β-glucuronidase (GUS) activity during the transient expression assay, suggesting that it may be a TATA-less promoter. Low temperature and light significantly induced the full-length promoter to increase about two folds of the GUS enzymatic activity, suggesting these environmental factors induced flowering in hickory.  相似文献   

2.

Key message

CaVIL1 is a homolog of VIL1, a regulator of vernalization response in Arabidopsis and acts as a flowering promoter in pepper which does not respond to vernalization and photoperiod.

Abstract

As part of our goal to study the genetic and molecular basis of transition to flowering in pepper, we isolated the late-flowering mutant E-2698. Aside from late flowering, multiple pleiotropic alterations of the shoot structure, such as enlarged and distorted leaves, weak apical dominance, and reduced angle of the lateral branches were observed, indicating a broad role for the mutated gene in pepper development. Genetic mapping and sequence analyses revealed that the disrupted gene in E-2698 is the pepper homolog of VERNALIZATION INSENSITIVE 3-LIKE 1 (VIL1) that acts as a regulator of vernalization in Arabidopsis through chromatin modification. The pepper gene, CaVIL1, contains a plant homeodomain motif associated with chromatin modification and a VERNALIZATION INSENSITIVE 3-interacting domain that is truncated in E-2698 and in two other allelic mutants. Because pepper flowering does not respond to vernalization, we postulate that CaVIL1 regulates flowering time via chromatin modification of unknown targets. Expression analysis indicated that CaVIL1 activates the flowering promoter CaFLOWERING LOCUS T and represses the flowering repressor CaAPETALA2. Furthermore, CaVIL1 represses several genes from the FLOWERING LOCUS C (FLC)-LIKE clade that are clustered together in the pepper genome. This indicates their possible involvement in flowering regulation in this species. Our results show that CaVIL1 is a major regulator of flowering and interacts with other flowering promoters and repressors, as well as with FLC-LIKE genes whose function in flowering regulation is not yet known in pepper.
  相似文献   

3.
4.
5.
Flowering time (Ft) is the most important characteristic of Chinese cabbage with high leaf yields and late-flowering are favorable traits, while little knowledge on genes involved in Ft and the flowering mechanism in this crop. In this study, we conducted genome-wide RNA-seq analysis using an inbred Chinese cabbage ‘4004’ line in response to vernalization and compared the Ft gene expression with radish crop. A number of Ft genes which play roles in flowering pathways were performed quantitative RT-PCR analysis to verify the regulatory flowering gene network in Chinese cabbage. We found that a total of 223 Ft genes in Chinese cabbage, and 50 of these genes responded to vernalization. The majority of flowering enhancers were upregulated, whereas most flowering repressors were downregulated in response to vernalization as confirmed by RT-qPCR. Among the major Ft genes, the expression of BrCOL1-2, BrFT1/2, BrSOC1/2/3, BrFLC1/2/3/5, and BrMAF was strongly affected by vernalization. In reference to comparative RNA-seq profiling of Ft genes, Chinese cabbage and radish revealed substantially different vernalization response in particular GA flowering pathway. Thus, this study provides new insight into functional divergence in flowering pathways and the regulatory mechanisms in Brassicaceae crops. Further analysis of the major integrator genes between early and late-flowering inbred lines facilitates understanding flowering trait variation and molecular basis of flowering in Chinese cabbage.  相似文献   

6.
7.
The mirid bug Apolygus lucorum (Meyer-Dür) (Heteroptera: Miridae) is a severe pest of cotton and other crops in China. The feeding preferences of this pest are unclear due to its frequent movement among different host plants and the inconspicuous signs of its feeding. Here, we present results of a field trial that used direct observation of bug densities and a PCR-based molecular detection assay to detect plant DNA in bugs to explore relationships between A. lucorum population abundance and its feeding preference between two host plants, Humulus scandens (Loureiro) Merrill and Medicago sativa L. The field-plot samples showed that A. lucorum adults generally prefer flowering host plants. Its density was significantly higher on flowering H. scandens than on seedlings of M. sativa, and a similarly higher bug density was observed on flowering M. sativa than on seedlings of H. scandens. In the laboratory, we designed two pairs of species-specific primers targeting the trnL-F region for H. scandens and M. sativa, respectively. The detectability of plant DNA generally decreased with time post-feeding, and the half-life of plant DNA detection (DS50) in the gut was estimated as 6.26 h for H. scandens and 3.79 h for M. sativa with significant differences between each other. In mirid bugs exposed to seedlings of H. scandens and flowering M. sativa, the detection rate of M. sativa DNA was significantly higher than that of H. scandens. Meanwhile, in mirid bugs exposed to seedlings of M. sativa and flowering H. scandens, a significantly higher detection rate of H. scandens DNA was found. We developed a useful tool to detect the remaining plant food species specifically from the gut of A. lucorum in the current study. We provided direct evidence of its feeding preference between H. scandens and M. sativa at different growth stages, which strongly supported a positive correlation between population abundance and feeding preference of A. lucorum on different plants under field conditions. The findings provide new insights into the understanding of A. lucorum’s feeding preference, and are helpful for developing the strategies to control this pest.  相似文献   

8.
The gene FRIGIDA (FRI) is floral repressor and plays a key role in the timing of Arabidopsis flowering. To study the function of FRI-like genes in bamboo, we isolated a FRI family gene from bamboo Phyllostachys violascens and named it PvFRI-L. Sequence alignment and phylogenetic analysis show that the PvFRI-L protein belongs to the FRL3 (III) subfamily from monocots and contains a conserved FRIGIDA domain. PvFRI-L was located in the nucleus of onion epidermal cells. PvFRI-L was expressed in all tested organs of flowering and non-flowering bamboo plants with a higher expression in non-flowering than in flowering plants. Overexpression of PvFRI-L in Arabidopsis caused late flowering by downregulating flowering locus T and upregulating flowering locus C. A P-box, the binding site involved in gibberellin response, was found only in the promoter region of PvFRI-L but not in that of FRI. Furthermore, PvFRI-L expression in the leaves of Ph. violascens seedlings was downregulated with gibberellic acid treatment. Taking together, our observation suggests that PvFRI-L may be flowering repressor and its delaying floral timing may be regulated by gibberellic acid in bamboo.  相似文献   

9.

Key message

Arabidopsis det1 mutants exhibit salt and osmotic stress resistant germination. This phenotype requires HY5, ABF1, ABF3, and ABF4.

Abstract

While DE-ETIOLATED 1 (DET1) is well known as a negative regulator of light development, here we describe how det1 mutants also exhibit altered responses to salt and osmotic stress, specifically salt and mannitol resistant germination. LONG HYPOCOTYL 5 (HY5) positively regulates both light and abscisic acid (ABA) signalling. We found that hy5 suppressed the det1 salt and mannitol resistant germination phenotype, thus, det1 stress resistant germination requires HY5. We then queried publically available microarray datasets to identify genes downstream of HY5 that were differentially expressed in det1 mutants. Our analysis revealed that ABA regulated genes, including ABA RESPONSIVE ELEMENT BINDING FACTOR 3 (ABF3), are downregulated in det1 seedlings. We found that ABF3 is induced by salt in wildtype seeds, while homologues ABF4 and ABF1 are repressed, and all three genes are underexpressed in det1 seeds. We then investigated the role of ABF3, ABF4, and ABF1 in det1 phenotypes. Double mutant analysis showed that abf3, abf4, and abf1 all suppress the det1 salt/osmotic stress resistant germination phenotype. In addition, abf1 suppressed det1 rapid water loss and open stomata phenotypes. Thus interactions between ABF genes contribute to det1 salt/osmotic stress response phenotypes.
  相似文献   

10.
11.
12.
13.

Key message

A major QTL controlling early flowering in broccoli × cabbage was identified by marker analysis and next-generation sequencing, corresponding to GRF6 gene conditioning flowering time in Arabidopsis.

Abstract

Flowering is an important agronomic trait for hybrid production in broccoli and cabbage, but the genetic mechanism underlying this process is unknown. In this study, segregation analysis with BC1P1, BC1P2, F2, and F2:3 populations derived from a cross between two inbred lines “195” (late-flowering) and “93219” (early flowering) suggested that flowering time is a quantitative trait. Next, employing a next-generation sequencing-based whole-genome QTL-seq strategy, we identified a major genomic region harboring a robust flowering time QTL using an F2 mapping population, designated Ef2.1 on cabbage chromosome 2 for early flowering. Ef2.1 was further validated by indel (insertion or deletion) marker-based classical QTL mapping, explaining 51.5% (LOD = 37.67) and 54.0% (LOD = 40.5) of the phenotypic variation in F2 and F2:3 populations, respectively. Combined QTL-seq and classical QTL analysis narrowed down Ef1.1 to a 228-kb genomic region containing 29 genes. A cabbage gene, Bol024659, was identified in this region, which is a homolog of GRF6, a major gene regulating flowering in Arabidopsis, and was designated BolGRF6. qRT-PCR study of the expression level of BolGRF6 revealed significantly higher expression in the early flowering genotypes. Taken together, our results provide support for BolGRF6 as a possible candidate gene for early flowering in the broccoli line 93219. The identified candidate genomic regions and genes may be useful for molecular breeding to improve broccoli and cabbage flowering times.
  相似文献   

14.
15.
Phytochrome mutants (phyA, phyB and phyAB) of Arabidopsis thaliana were grown under ambient and UV-excluded sunlight to understand their influence on growth and development by mutual exclusion. Phytochrome A and B played a complementary role in the regulation of germination. Suppression of hypocotyl length was predominantly under the control of phytochrome B; UV photoreceptors were active in suppression of hypocotyl growth only in phyB and phyAB mutants. Exclusion of UV promoted the number and the area of rosette leaves only in presence of phytochrome A and B. Phytochrome mutation reduced petiole length, whereas UV exclusion led to an increase. Requirement of long-day period for flowering was removed in the mutants. Under short-day conditions, flowering was predominantly under the control of phytochrome B, since phyB mutants flowered earlier than phyA mutants. Solar UV regulates the number of boltings and number of siliques per plant. Overall biomass of the plants is enhanced by the exclusion of UV only in the wild type. The interaction of phytochromes with UV photoreceptors is discussed in the paper.  相似文献   

16.
17.
18.
Heading date is one of most important agronomic traits in rice. Flowering regulatory mechanisms have been elucidated in many cultivars through various approaches. Although study about flowering has been extensively examined in rice, but contributions of floral regulators had been poorly understood in a common genetic background for rice grown under paddy conditions. Thus, we compared the expression of 10 flowering-time genes — OsMADS50, OsMADS51, OsVIL2, OsPhyA, OsPhyB, OsPhyC, Ghd7, Hd1, OsGI, and OsTrx1 — in the same genetic background for ‘Dongjin’ rice (Oryza sativa) grown under paddy conditions when days were longer than 13.5 h. Whereas the wild type (WT) rice flowered 105 days after sowing, the latest mutant to do so was ostrx1, flowering 53 d later. This indicated that the gene is the strongest inducer among all of those examined. Mutations in OsMADS50 delayed flowering by 45 d when compared with the WT, suggesting that this MADS gene is another strong positive element. The third positive element was OsVIL2; mutations in the gene caused plants to flower 27 d late. In contrast, the double phytochrome mutant osphyA osphyB flowered 44 d earlier than the WT. The single mutant osphyB and the double mutant osphyB osphyC did the same, although not as early as the osphyA osphyB double mutant. These results demonstrated that phytochromes are major inhibitors under paddy conditions. Mutations in Ghd7 accelerated flowering by 34 d, indicating that the gene is also a major inhibitor. The hd1 mutants flowered 16 d earlier than the WT while a mutation in OsGI hastened flowering by 10 d, suggesting that both are weak flowering repressors. Of the two florigen genes (Hd3a being the other one), RFT1 played a major role under paddy conditions. Its expression was strongly promoted by Ehd1, which was negatively controlled by Ghd7. Here we show that phytochromes strongly inhibit flowering and OsTrx1 and OsMADS50 significantly induce flowering under paddy conditions through Ghd7-Ehd1-RFT1 pathway. Thus, we may be able to control heading date under paddy conditions through manipulating those genes, Ghd7, Ehd1 and RFT1.  相似文献   

19.
In the present study, three Arabidopsis thaliana pop2 mutant lines with different T-DNA insertions in a gene coding γ-aminobutyric acid transaminase (GABA-TA) were screened for seed germination percentage, stress-induced oxidative damage, and GABA content and metabolism under various abiotic stresses including high temperature (42 °C), low temperature (4 °C), salinity (NaCl), and osmotic stress (mannitol). All mutant lines showed a decreased germination under all the stress treatments with a significant reduction in the pop2-1 and pop2-3 mutant lines. Content of GABA and MDA increased significantly in all pop2 mutants and wild type (WT) seedlings in response to all the treatments. However, content of GABA and MDA was lower in all pop2 mutants comparing to the WT under the same treatments. GABA increased already after 30 min and increased significantly after 2 h at 42 °C especially in the pop2-3 and WT seedlings. In response to the cold treatment, GABA content increased up to 4-fold compared to the control in all pop2 mutants and WT seedlings. In response to the NaCl treatment, GABA accumulated slightly in the WT and all pop2 mutants. On the contrary, GABA content increased significantly in the pop2, pop2-1, and pop2-3 mutants and WT under all mannitol treatments.  相似文献   

20.
Trichoderma species are widespread phytostimulant fungi that act through biocontrol of root pathogens, modulation of root architecture, and improving plant adaptation to biotic and abiotic stress. With the major challenge to better understand the contribution of Trichoderma symbionts to plant adaptation to climate changes and confer stress tolerance, we investigated the potential of Trichoderma virens and Trichoderma atroviride in modulating stomatal aperture and plant transpiration. Arabidopsis wild-type (WT) seedlings and ABA-insensitive mutants, abi1-1 and abi2-1, were co-cultivated with either T. virens or T. atroviride, and stomatal aperture and water loss were determined in leaves. Arabidopsis WT seedlings inoculated with these fungal species showed both decreased stomatal aperture and reduced water loss when compared with uninoculated seedlings. This effect was absent in abi1-1 and abi2-1 mutants. T. virens and T. atroviride induced the abscisic acid (ABA) inducible marker abi4:uidA and produced ABA under standard or saline growth conditions. These results show a novel facet of Trichoderma-produced metabolites in stomatic aperture and water-use efficiency of plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号