首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of Class Pi glutathione S-transferases (GST) such as rat GST P (7-7), human GST pi and mouse GST MII with 0.05-0.1 mM N-ethylmaleimide (NEM) in 0.1 M Tris-HCl (pH 7.8) resulted in almost complete inactivation of these forms, whereas no or less inactivation occurred for GSTs in Class Alpha and Mu under the same conditions. Inactivated GST P lost its S-hexyl-GSH-Sepharose column affinity. About 0.8 mol of [14C]NEM was found to be covalently bound to 1 mol of GST P subunit when 80% of the activity was lost. Similar treatment with N-dimethyl-amino-3,5-dinitrophenyl maleimide, a colored analogue of NEM, followed by trypsin digestion, HPLC and amino acid sequence analysis revealed that one cysteine residue at the 47th position from the N-terminal of the GST P subunit was preferentially modified. Subunits of GST P and GST pi are known to have 4 cysteine residues at the same corresponding positions. The present results suggest that the 47th cysteine residue may be located in the vicinity of the active site of Class Pi GSTs.  相似文献   

2.
Isozyme characterization of glutathione S-transferase (GST) isolated from bovine ocular tissue was undertaken. Two isozymes of lens, GST 7.4 and GST 5.6, were isolated and found to be homodimers of a Mr 23,500 subunit. Amino acid sequence analysis of a 20-residue region of the amino terminus was identical for both isozymes and was identical to GST psi and GST mu of human liver. Antibodies raised against GST psi cross-reacted with both lens isozymes. Although lens GST 5.6 and GST 7.4 demonstrated chemical and immunological relatedness, they were distinctly different as evidenced by their pI and comparative peptide fingerprint. A corneal isozyme, GST 7.2, was also isolated and established to be a homodimer of Mr 24,500 subunits. Sequence analysis of the amino-terminal region indicated it to be about 67% identical with the GST pi isozyme of human placenta. Antibodies raised against GST pi cross-reacted with cornea GST 7.2. Another corneal isozyme, GST 8.7, was found to be homodimer of Mr 27,000 subunits. Sequence analysis revealed it to have a blocked amino-terminus. GST 8.7 immunologically cross-reacted with the antibodies raised against cationic isozymes of human liver indicating it to be of the alpha class. Two isozymes of retina, GST 6.8 and GST 6.3, were isolated and identified to be heterodimers of subunits of Mr 23,500 and 24,500. Amino-terminal sequence analysis gave identical results for both retina GST 6.8 and GST 6.3. The sequence analysis of the Mr 23,500 subunit was identical to that obtained for lens GSTs. Similarly, sequence analysis of the Mr 24,500 subunit was identical to that obtained for the cornea GST 7.2 isozyme. Both the retina isozymes cross-reacted with antibodies raised against human GST psi as well as GST pi. The results of these studies indicated that all three major classes of GST isozymes were expressed in bovine eye but the GST genes were differentially expressed in lens, cornea, and retina. In lens only the mu class of GST was expressed, whereas cornea expressed alpha and pi classes and retina expressed mu and pi classes of GST isozymes.  相似文献   

3.
Five glutathione S-transferase (GST, EC 2.5.1.18) forms were purified from human liver by S-hexylglutathione affinity chromatography followed by chromatofocusing, and their subunit structures and immunological relationships to rat liver glutathione S-transferase forms were investigated. They were tentatively named GSTs I, II, III, IV and V in order of decreasing apparent isoelectric points (pI) on chromatofocusing. Their subunit molecular weights assessed on SDS-polyacrylamide gel electrophoresis were 27 (Mr X 10(-3)), 27, 27.7,27 and 26, respectively, (26, 26, 27, 26, and 24.5 on the assumption of rat GST subunit Ya, Yb and Yc as 25, 26.5 and 28, respectively), indicating that all forms are composed of two subunits identical in size. However, it was suggested by gel-isoelectric focusing in the presence of urea that GSTs I and IV are different homodimers, consisting of Y1 and Y4 subunits, respectively, which are of identical Mr but different pI, while GST II is a heterodimer composed of Y1 and Y4 subunits. This was confirmed by subunit recombination after guanidine hydrochloride treatment. GST III seemed to be identical with GST-mu with regard to Mr and pI. GST V was immunologically identical with the placental GST-pi. On double immunodiffusion or Western blotting using specific antibodies to rat glutathione S-transferases, GST I, II and IV were related to rat GST 1-1 (ligandin), GST III(mu) to rat GST 4-4 (D), and GST V (pi) to rat GST 7-7 (P), respectively. GST V (pi) was increased in hepatic tumors.  相似文献   

4.
Glutathione S-transferase (GST) subunits in rat liver cytosol were separated by reverse-phase h.p.l.c.; five major proteins were isolated and identified as subunits 1, 2, 3, 4 and 8. F.p.l.c. chromatofocusing resolved the affinity-purified GST pool into nine different isoenzymes. The five basic (Alpha class) dimeric peaks of GST activity were 1-1, 1-2a, 1-2b, 2-2a and 2-2b. Reverse-phase h.p.l.c. analysis revealed that subunit 8 was also present in the protein peaks designated 1-1, 1-2a and 1-2b. The four neutral (Mu class) isoenzymes were 3-3, 3-4, 3-6 and 4-4. The GST pool was methylated in vitro before reverse-phase h.p.l.c. or f.p.l.c. chromatofocusing. Chromatofocusing indicated that the Mu class isoforms (3-3, 3-4 and 4-4) were the primary GSTs methylated, and h.p.l.c. analysis confirmed that subunits 3 and 4 were the major methyl-accepting GST subunits. The addition of calmodulin stimulated the methylation in vitro of GST isoenzymes 3-3, 3-4 and 4-4 by 3.0-, 7.5- and 9.9-fold respectively. Reverse-phase h.p.l.c. also indicated that only the methylation of GST subunits 3 and 4 was stimulated by calmodulin. Basic GST isoenzymes were minimally methylated and the methylation was not enhanced by calmodulin. Investigation of the time course of methylation of GST subunits 3 and 4 indicated that at incubation times less than 4 h the methylation of both Mu class subunits was stimulated by calmodulin, and that under such conditions subunit 4 was the preferred substrate. In contrast, there was essentially no calmodulin-stimulated methylation at incubation times of 4 or 6 h, and the methylation of subunit 3 was predominant. Kinetic parameters at 2 h of incubation were determined in the presence and in the absence of calmodulin. The addition of calmodulin doubled the Vmax. for methylation of both subunits 3 and 4 and decreased the Km of subunit 4 for S-adenosyl-L-methionine 3.6-fold. Finally, methylation was substoichiometric and after 6 h of incubation ranged from 2.8 to 7.6% on a mole-to-mole basis for subunits 4 and 3 respectively.  相似文献   

5.
Glutathione transferase isoenzymes from human prostate.   总被引:1,自引:0,他引:1       下载免费PDF全文
By using affinity-chromatography and isoelectric-focusing techniques, several forms of glutathione transferase (GSTs) were resolved from human prostate cytosol. All the three major classes of GST, i.e. Alpha, Mu and Pi, are present in human prostate. However, large inter-individual variation in the qualitative and quantitative expression of different isoenzymes resulted in the samples investigated. The most abundant group of prostate isoenzymes showed acid (pI 4.3-4.7) behaviour and were classified as Pi class GSTs on the basis of their immunological and structural properties. Immunohistochemical staining of Pi class GSTs was prevalently distributed in the epithelial cells surrounding the alveolar lumen. Class Mu GSTs are also expressed, although in small amounts and in a limited number of samples, by human prostate. The major cationic isoenzyme purified from prostate, GST-9.6; (pI 9.6; apparent subunit molecular mass of 28 kDa), appears to be different from the cationic GST alpha-epsilon forms isolated from human liver and kidney as evidenced by its structural, kinetical and immunological properties. This enzyme, which accounts for about 20-30% (on protein basis) of total amount of GSTs, is expressed by only 40% of samples. GST-9.6 has the ability to cross-react in immunoblotting analysis with antisera raised against rat liver GST 2-2, rather than with antisera raised against members of human Alpha, Mu and Pi class GSTs. Although prostate GST-9.6 shows close relationship with the human skin GST pI 9.9, it does not correspond to any other known human GST.  相似文献   

6.
A novel cytosolic Alpha class glutathione S-transferase (GST) that is not normally expressed in mouse liver was found to be markedly induced (at least 20-fold) by the anti-carcinogenic compound butylated hydroxyanisole. This enzyme (designated GST Ya1 Ya1) did not bind to either the S-hexylglutathione-Sepharose or the glutathione-Sepharose affinity matrices, and purification was achieved by using bromosulphophthalein-glutathione-Sepharose. The purified isoenzyme, which comprises subunits of Mr 25,600, was characterized, and its catalytic, electrophoretic, immunochemical and structural properties are documented. GST Ya1 Ya1 was shown to be distinct from the Alpha class GST that is expressed in normal mouse liver and is composed of 25,800-Mr subunits; the Alpha class isoenzyme that is constitutively expressed in the liver is now designated GST Ya3 Ya3. Hepatic concentrations of GST Ya3 Ya3 were not significantly affected when mice were treated with butylated hydroxyanisole. Both Pi class GST (subunit Mr 24,800) and Mu class GST (subunit Mr 26,400) from female mouse liver were induced by dietary butylated hydroxyanisole. By contrast, hepatic concentrations of microsomal GST (subunit Mr 17,300) were unaffected.  相似文献   

7.
The cytosolic glutathione transferases (GSTs) with basic pI values have been studied in mouse liver after treatment with 2,3-t-butylhydroxyanisole (BHA), cafestol palmitate (CAF), phenobarbital (PB), 3-methylcholanthrene (3-MC) and trans-stilbene oxide (t-SBO). The cytosolic GST activity was induced by all compounds except for 3-MC. Three forms of GST were isolated by means of affinity chromatography and f.p.l.c. The examination of protein profiles and enzymic activities with specific substrates showed that the three GSTs correspond to those found in control animals, i.e. GSTs MI, MII and MIII. The class Mu GST MIII accounted for the major effect of induction, whereas the class Alpha GST MI and the class Pi GST MII were unchanged or somewhat down-regulated. The greatest induction was obtained with BHA, PB and CAF. The activities of other glutathione-dependent enzymes were also studied. An increase in glutathione reductase and thioltransferase activities was observed after BHA, PB or CAF treatment; glyoxalase I and Se-dependent glutathione peroxidase were depressed in comparison with the control group in all cases studied.  相似文献   

8.
1. By using affinity chromatography and chromatofocusing analysis at least two major glutathione transferases, named GST II and GST III can be isolated from Gammarus italicus. 2. GST II has an isoelectric point at pH 5.0 and is composed of two subunits with an apparent molecular mass of 28 KDa. 3. GST III which has an isoelectric point at pH 4.6 was found to be an heterodimer of 27 KDa and 28 KDa. 4. The 28 KDa subunit cross-reacted in immunoblotting analysis with antisera raised against pi class GST, whereas none of the antisera raised against alpha, mu and pi class GSTs cross-reacted with the 27 KDa subunit.  相似文献   

9.
The Alpha class glutathione S-transferases (GSTs) in human liver are composed of polypeptides of Mr 25,900. These enzymes are dimeric, and two immunochemically distinct subunits, B1 and B2, have been described that combine to form GSTs B1B1, B1B2 and B2B2 [Stockman, Beckett & Hayes (1985) Biochem. J. 227, 457-465]. Gradient affinity elution from GSH-Sepharose has been used to resolve the three Alpha class GSTs, and this method has been applied to demonstrate marked inter-individual differences in the hepatic content of GSTs B1B1, B1B2 and B2B2. The B1 and B2 subunits can be resolved by reverse-phase h.p.l.c., and their elution positions suggest that they are equivalent to the alpha chi and alpha y h.p.l.c. peaks described by Ketterer and his colleagues [Ostlund Farrants, Meyer, Coles, Southan, Aitken, Johnson & Ketterer (1987) Biochem. J. 245, 423-428]. The B1 and B2 subunits have now been cleaved with CNBr and the fragments subjected to automated amino acid sequence analysis. The sequence data show that B1 and B2 subunits do not arise from post-translational modification, as had been previously believed for the hepatic Alpha class GSTs, but are instead the products of separate genes; B1 and B2 subunits were found to contain different amino acid residues at positions 88, 110, 111, 112, 116, 124 and 127. The relationship between the B1 and B2 subunits and the cloned GTH1 and GTH2 cDNA sequences [Rhoads, Zarlengo & Tu (1987) Biochem. Biophys. Res. Commun. 145, 474-481] is discussed.  相似文献   

10.
This study describes immunohistochemical localization, purification and characterization of glutathione S-transferase (GST) of human urinary bladder. Even though all the three major classes of isoenzymes (alpha, mu, and pi) were expressed in human bladder, more than 90% of total GST activity was accounted for by a pi class anionic form. Human bladder alpha, mu, and pi class GSTs were immunologically related to respective isoenzymes of other human tissues. GST pi was present in all 13 samples analyzed, whereas GST alpha and mu were detected in nine and eleven samples, respectively. GST alpha of human bladder appeared to be unique, because unlike this class of GSTs of other human tissues, bladder enzyme had lower affinity for GSH linked to epoxy-activated Sepharose 6B affinity resin. Immunohistochemical staining indicated localization of GST alpha in epithelial surface cells, underlying submucosa and smooth muscle, whereas mu and pi class isoenzymes were predominantly distributed in epithelial surface cells. These results suggest that human bladder GSTs may play an important role in providing protection against xenobiotics because epithelium is considered a target for several carcinogens and all the three classes of isoenzymes are expressed in these cells.  相似文献   

11.
We have developed chromatographic and mathematical protocols that allowed the high resolution of glutathione S-transferase (GST) subunits, and the identification of a previously unresolved GST monomer in rat kidney cytosol; the monomer was identified tentatively as subunit 6. Also, an aberrant form of GST 7-7 dimer appeared to be present in the kidney. This development was utilized to illustrate the response of rat kidney GST following cis-platinum treatment in vivo. Rat kidney cytosol was separated into three 'affinity families' of GST activity after elution from a GSH-agarose matrix. The affinity peaks were characterized by quantitative differences in their subunit and dimeric compositions as determined by subsequent chromatography on a cation-exchange matrix and specific activity towards substrates. By use of these criteria, the major GST dimers of affinity peaks were tentatively identified. The major GST dimers in peak I were GST 1-1 and 1-2, in affinity peak II it was GST 2-2, and in peak III they were GST 3-3 and 7-7. GST 3-6 and/or 4-6, which have not been previously resolved in kidney cytosol, were also present in peak II. Alterations in the kidney cytosolic GST composition of male rats were detected subsequent to the administration of cis-platinum (7.0 mg/kg subcutaneously, 6 days). This treatment caused a pronounced alteration in the GST profile, and the pattern of alteration was markedly different from that reported for other chemicals in the kidney or in the liver. In general, the cellular contents of the GSTs of the Alpha and the Mu classes decreased and increased respectively. It is postulated that the decrease in the Alpha class of GSTs by cis-platinum treatment may be related to renal cortical damage and the loss of GSTs in the urine. The increase in the Mu class of GSTs could potentially stem from a lowered serum concentration of testosterone; the latter is a known effect of cis-platinum treatment.  相似文献   

12.
Amino acid sequence of glutathione S-transferase b from guinea pig liver   总被引:1,自引:0,他引:1  
The amino acid sequence of glutathione S-transferase b (GST b) from guinea pig liver was determined by conventional methods. GST b was composed of two identical subunits, each with 217 amino acid residues. As GSTs are generally classified into three classes, alpha, mu, and pi, GST b belonged to class mu and the amino acid sequence of GST b showed about 80% homology with that of rat GST Yb.  相似文献   

13.
The activities of rat glutathione transferases (GSTs) 3-3, 3-4, 4-4 in Class mu towards 1-chloro-2,4-dinitrobenzene (CDNB) but not 1,2-dichloro-4-nitrobenzene were increased up to 5-fold during preincubation with 0.4 mM xanthine and xanthine oxidase in 50 mM potassium phosphate, pH 7.8, containing 0.1 mM EDTA. The activated GST 3-4, purified by S-hexylglutathione affinity chromatography after the treatment, had a higher specific activity (130 units/mg) than that of the nontreated (35 units/mg), the Km and Vmax values for glutathione or CDNB also were increased. Other rat GSTs in Class alpha and pi were inactivated by the same treatment. In the presence of superoxide dismutase, the activation of GST 3-4 did not occur.  相似文献   

14.
The human glutathione S-transferases are products of a gene superfamily which consists of at least four gene families. The various glutathione S-transferase genes are located on different human chromosomes, and new gene(s) are still being added to the gene superfamily. We have characterized a cDNA in pGTH4 encoding human glutathione S-transferase subunit 4 (GST mu) and mapped its gene (or a homologous family member) on chromosome 1 at p31 by in situ hybridization. Genomic Southern analysis with the 3' noncoding region of the cDNA revealed at least four human DNA fragments with highly homologous sequences. Using a panel of DNAs from mouse-human somatic cell hybrids in genomic DNA hybridization we show that the Hb (or B) genes of human glutathione S-transferases are on three separate chromosomes: 1, 6, and 13. Therefore, the glutathione S-transferase B gene family, which encodes the Hb (mu) class subunits, is a dispersed gene family. The GST mu (psi) gene, whose expression is polymorphic in the human population, is probably located on chromosome 13. We propose that the GST mu (psi) gene was created by a transposition or recombination event during evolution. The null phenotype may have resulted from a lack of DNA transposition just as much as from the deletion of an inserted gene.  相似文献   

15.
Glutathione S-transferases in normal and malignant human colon tissue   总被引:1,自引:0,他引:1  
This study focuses on the GST composition of a tissue intrinsically resistant to chemotherapy, the human colon. GSTs were purified from matched pairs of colon tissue (normal and tumor) using glutathione affinity chromatography. The mean GST activity of colon tumors was 1.5-fold higher than that of normal tissue, with tumors of the sigmoid colon showing the greatest increase (2.3-fold). Two-dimensional gel electrophoresis and Western blot analysis of purified enzymes demonstrated the presence of all three GST classes (alpha, mu and pi) in colon, with GST pi being both the predominant isozyme in normal and malignant tissues. The level of alpha class subunits was the same in normal and tumor tissues, while the mu class subunits were decreased in tumors. A protein copurifying with GSTs from both normal and tumor tissue did not crossreact with GST antibodies, but instead reacted with a polyclonal antibody to glyoxylase I. This enzyme existed as a dimer in its native state. Upon boiling, monomeric subunits were produced with a molecular mass of 22.6 kDa and an isoelectric point more acidic than GST pi. Increased amounts of glyoxylase I were also found in tumor vs. normal colon. The apparent elevated levels of these glutathione-associated detoxifying enzymes in colon tumors may contribute to their intrinsic drug resistance.  相似文献   

16.
The expression of three classes of glutathione S-transferases (GSTs), Alpha, Mu, and Pi was investigated in the nasal mucosae of rats during development using immunohistochemical methods. GST Alpha and Mu were first detected in the supranuclear region of sustentacular cells on embryonic days 16. The Bowman's glands expressed differential patterns of immunoreactivity during development, beginning at postnatal day (P) 2 and P6 for Alpha and Mu classes, respectively and being greatest at P11 for both. The acinar cells of vomeronasal glands in the vomeronasal organ expressed Alpha and Mu classes of GSTs from P11 onwards. In the septal organ of Masera, the supranuclear region of sustentacular cells expressed GSTs from P11 with little or no variation during development. In the respiratory mucosa, Alpha and Mu classes of GSTs were detected at the brush borders of ciliated cells and in the acinar cells of posterior septal glands, but not in anterior septal or respiratory glands located on the turbinates. Compared to olfactory mucosa, the changes in immunoreactivity for GSTs were less pronounced in the respiratory mucosa during development. Specific GST Pi immunoreactivity was not detected in the nasal mucosae at any stage of development studied. The occurrence of GSTs in the nasal mucosa, including olfactory, vomeronasal, septal, and respiratory epithelia, suggests that the GSTs are actively involved in the biotransformation of xenobiotics including odorants and pheromones, and may also participate in perireceptor processes such as odorant clearance. In addition, we have developed a working model describing the cellular localization of certain phase I (e.g., cytochrome P-450s) and phase II (e.g., GSTs, -glutamyl transpeptidase) biotransformation enzymes in the olfactory mucosa and their proposed roles in xenobiotic metabolism.  相似文献   

17.
The expression of different isoenzymes of glutathione transferase (GST), i.e. the cytosolic subunits GSTA1/A2, A3, A4, A5, M1/2, M2 and P1, T2, and the microsomal GST in follicles of different sizes and in corpora lutea from porcine ovary, was investigated by Western blotting. No immunoreactivity was obtained with anti-rat GSTT2 or anti-rat microsomal GST polyclonal antibodies. In contrast, GSTA1/A2, A3, A4, A5, M1/2, M2 and P1 are all expressed in the cytosol from porcine ovaries. In general, the highest levels of these GST isoenzymes were present in the cytosol from corpora lutea, in agreement with measurements of activity towards 1-chloro-2,4-dinitrobenzene. Immunoreactivity with anti-rat GSTP1 was only obtained with follicles. The cytosolic GSTs from follicles and corpora lutea were affinity purified on glutathione-Sepharose and separated by reversed-phase high-performance liquid chromatography in order to quantitate the different subunits. A peak corresponding to the class pi subunit was present in follicles. This peak was also seen with corpora lutea, although at very low level. There were four peaks containing class mu subunits. The remaining peaks were concluded to contain the class alpha subunits, except for two peaks which are suggested to contain proteins other than GSTs. The levels of the different subunits were quantitated on the basis of the areas under the peaks and the relative amounts in follicles of different sizes and in corpora lutea corresponded well with the Western blot analysis.  相似文献   

18.
The effects of a standardized extract of Ginkgo biloba L. leaves (EGb) and its terpene constituents, bilobalide and ginkgolides, on the activities of detoxification enzymes, i.e., glutathione S-transferases (GSTs) and DT-diaphorase, and glutathione contents, were investigated in the mouse liver. Oral treatment with EGb (100-1,000 mg/kg) and bilobalide (10-30 mg/kg) once a day for 4 days caused a dose-dependent elevation in GST activity. Ginkgolide A (30 mg/kg, for 4 days) also significantly elevated GST activity, whereas ginkgolide B and ginkgolide C at the same dose had no effects. EGb significantly increased the protein level of GST pi, and bilobalide significantly increased those of GST alpha and GST mu Moreover, EGb-treatment and bilobalide-treatment caused significant elevations in DT-diaphorase activity and in hepatic glutathione contents.  相似文献   

19.
Cytosolic glutathione S-transferase (GST) activities toward 1-chloro-2,4-dinitro-benzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB), ethacrynic acid (EA), 1,2-epoxy-3-(p-nitrophenoxyl)propane (EPNP), trans-4-phenyl-3-buten-2-one (t-PBO), δ3-androstene-3,17-dione (ASD) and trans-stilbene oxide (t-SO); cytosolic glutathione peroxidase activity toward cumene hydroperoxide (CuOOH); and microsomal GST activity toward CDNB were examined in liver, kidney, brain, and lung of adult male and female Japanese quail. In all cases, the renal specific activity per milligram protein was higher than the hepatic activity and was the highest among the four tissues examined. No consistent sex differences in GST activity were observed. The GSTs were purified from quail liver cytosol by S-hexylglutathione and glutathione affinity chromatography. Total GSTs eluted from the S-hexylglutathione affinity column were further separated by chromatofocusing, and the microheterogeneity of the GST isozymes was shown by high-resolution native isoelectrofocusing (IEF) in polyacrylamide slab gels and by SDS-PAGE. Five subunits were identified: QL1 (30.5 kDa), QL2 (27.2 kDa), QL3a (26.8 kDa), QL3b (26.5 kDa), and QL4 (25.5 kDa). Western blot analysis revealed that QL1 and QL2 reacted with antibodies raised against the rat Mu class GSTs (Yb1 and Yb2), and QL3a and QL3b reacted with those raised against the Alpha class (rat Ya and mouse a). Substrate specific activity of each isoform was determined with CDNB, DCNB, CuOOH, EA, t-PBO, ASD, and t-SO. QL3a and QL3b have high reactivity toward CuOOH, while QL1 and QL2 showed high activity toward t-SO. The N-terminal amino acid sequence of QL2 was identical to that of the chicken Mu class GST subunit CL2. However, no sequence was obtained with QL1 due to possible N-terminal blockage. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
Normal rat liver expresses Ya (Mr 25,500), Yc (Mr 27,500) and Yk (Mr 25,000) Class Alpha glutathione S-transferase (GST) subunits. The Ya-type subunit can be resolved into two separate polypeptides, designated Ya1 and Ya2, by reverse-phase h.p.l.c. In rat livers that possess aflatoxin B1-induced pre-neoplastic nodules, a marked increase is observed in the expression of Ya1, Ya2, Yc and Yk; of these subunits, Ya2 exhibited the greatest increase in concentration. The Ya1 and Ya2 subunits isolated from nodule-bearing livers were cleaved with CNBr, and the purified peptides were subjected to automated amino-acid-sequence analysis. Differences in the primary structures of the two Ya GST subunits were found at positions 31, 34, 107 and 117. These data demonstrate that Ya1 and Ya2 are distinct polypeptides and are the products of separate genes. The amino acid sequences obtained from Ya1 and Ya2 were compared with the cloned cDNAs pGTB 38 [Pickett, Telakowski-Hopkins, Ding, Argenbright & Lu (1984) J. Biol. Chem. 259, 4112-4115] and pGTR 261 [Lai, Li, Weiss, Reddy & Tu (1984) J. Biol. Chem. 259, 5182-5188], which encode rat Ya-type subunits. From these comparisons it appears probable that Ya1 represents the GST subunit encoded by pGTR 261, whereas Ya2 represents the subunit encoded by pGTB 38. It is likely that the over-expression of Ya1 and Ya2 in nodule-bearing livers is of major significance in the acquired resistance of nodules to aflatoxin B1, since previous work [Coles, Meyer, Ketterer, Stanton & Garner (1985) Carcinogenesis 6, 693-697] has shown that the Ya-type GST subunit has high activity towards aflatoxin B1 8,9-epoxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号