首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this work was to construct a dynamic model of hepatic amino acid metabolism in the lactating dairy cow that could be parameterized using net flow data from in vivo experiments. The model considers 22 amino acids, ammonia, urea, and 13 energetic metabolites, and was parameterized using a steady-state balance model and two in vivo, net flow experiments conducted with mid-lactation dairy cows. Extracellular flows were derived directly from the observed data. An optimization routine was used to derive nine intracellular flows. The resulting dynamic model was found to be stable across a range of inputs suggesting that it can be perturbed and applied to other physiological states. Although nitrogen was generally in balance, leucine was in slight deficit compared to predicted needs for export protein synthesis, suggesting that an alternative source of leucine (e.g. peptides) was utilized. Simulations of varying glucagon concentrations indicated that an additional 5 mol/d of glucose could be synthesized at the reference substrate concentrations and blood flows. The increased glucose production was supported by increased removal from blood of lactate, glutamate, aspartate, alanine, asparagine, and glutamine. As glucose output increased, ketone body and acetate release increased while CO(2) release declined. The pattern of amino acids appearing in hepatic vein blood was affected by changes in amino acid concentration in portal vein blood, portal blood flow rate and glucagon concentration, with methionine and phenylalanine being the most affected of essential amino acids. Experimental evidence is insufficient to determine whether essential amino acids are affected by varying gluconeogenic demands.  相似文献   

2.
The hepatic balance for valine, leucine and isoleucine has been measured in anaesthetized virgin controls and 9 and 12-day pregnant rats. The liver of non gravid animals show fractional extraction rates of over 11.6% for valine, 17.6% for leucine and 16.8% for isoleucine. Fed mid-pregnant rats do not show either a significant net uptake nor a release of these amino acids. It is proposed that higher intestinal amino acid requirements for protein synthesis during mid pregnancy than before impregnation may be, in part, the cause of a decreased hepatic uptake and, thus, a different role for the liver in the amino acid inter-organ relationships during this period is suggested.  相似文献   

3.
The concentrations of free and total (free plus albumin bound) tryptophan were measured in plasma of blood taken from the portal vein, hepatic vein and abdominal aorta of male rats, fed, and starved for one and three days. Liver and brain tryptophan concentrations were measured in similar groups of rats.On starvation, there was an increase in arterial plasma free tryptophan concentration which took place peripherally and was paralleled by an increase in brain tryptophan. In both the fed and starved rats, the portal vein concentrations of free tryptophan were high and as the blood flowed through the liver they were reduced to relatively low levels not directly related to the arterial values. All these changes were due to alterations in degree of binding of tryptophan to plasma albumin.The measurements of plasma total tryptophan concentrations showed that postabsorptively and during starvation there was a net uptake of tryptophan by the peripheral tissues (which included brain), but no overall fall in plasma concentration. At the same time, there was a net release from the liver, and to a lesser extent from the portal-drained tissues. The released tryptophan largely entered the albumin bound plasma pool. Accompanying the hepatic output was a fall in tryptophan concentration in the liver which was apparently caused by altered cell membrane transport.The results suggest (1) that the liver protects the brain from the high free tryptophan level in portal blood, (2) that the availability of tryptophan to the brain is maintained postabsorptively and during starvation by hepatic output into the albumin bound pool and (3) that this release of tryptophan from the liver and the fall in intracellular tryptophan concentration are initiated by altered membrane transport. The pattern of changes is consistent with a role for tryptophan in the mediation of changes in liver protein synthesis and gluconeogenesis and cerebral serotonin turnover on starvation.  相似文献   

4.
Three preruminant calves were fitted with catheters in portal and hepatic veins and in a mesenteric artery. Two electromagnetic flowmeter probes were clipped around the portal vein and the hepatic artery. The calves were fed either a diet with a low (L) or a high (R) abomasal emptying rate for dietary proteins. Blood flow and free amino acid levels in plasma (P) and blood (S) were determined before the morning meal and during the following 7 h. In the portal vein, for most amino acids P/S ratios were correlated to the net amino acid balance of the digestive tract measured in plasma. By contrast in the hepatic vein, these ratios were mainly correlated to hepatic balance measured in whole blood. Correlations between digestive tract and hepatic balance calculated using either plasma or whole blood pool were different for some amino acids. This suggests that amino acid exchange between plasma and blood cells is low and absorbed amino acids are mainly transported to the liver by plasma, whereas whole blood rather than plasma is concerned in amino acid exchanges in the liver.  相似文献   

5.
Parameters of branched-chain amino acids (BCAA; leucine, isoleucine and valine) and protein metabolism were evaluated using L-[1-(14)C]leucine and alpha-keto[1-(14)C]isocaproate (KIC) in the whole body and in isolated perfused liver (IPL) of rats fed ad libitum or starved for 3 days. Starvation caused a significant increase in plasma BCAA levels and a decrease in leucine appearance from proteolysis, leucine incorporation into body proteins, leucine oxidation, leucine-oxidized fraction, and leucine clearance. Protein synthesis decreased significantly in skeletal muscle and the liver. There were no significant differences in leucine and KIC oxidation by IPL. In starved animals, a significant increase in net release of BCAA and tyrosine by IPL was observed, while the effect on other amino acids was non-significant. We conclude that the protein-sparing phase of uncomplicated starvation is associated with decreased whole-body proteolysis, protein synthesis, branched-chain amino acid (BCAA) oxidation, and BCAA clearance. The increase in plasma BCAA levels in starved animals results in part from decreased BCAA catabolism, particularly in heart and skeletal muscles, and from a net release of BCAA by the hepatic tissue.  相似文献   

6.
1. Total α-amino N and the amounts of 24 ninhydrin-positive substances were determined in several samples of plasma and lymph from the cow's udder. The arteriovenous differences of these substances across the mammary glands were measured in several experiments performed on lactating cows and in one experiment on a `dry' cow. Udder lymph obtained from live lactating cows by a lymph fistula and taken after killing lactating cows was analysed. 2. The concentrations of the individual free amino acids in udder lymph obtained from the live cow were similar to those found in cow's plasma. The concentrations of many amino acids in udder lymph taken immediately after death were two- to four-fold higher than those of the corresponding amino acids in udder lymph obtained from the live cow. 3. Most amino acids of the blood showed a considerable decrease in concentration by passage across the lactating mammary gland. Ornithine, a non-casein amino acid, showed arteriovenous differences of up to 60% of the arterial plasma concentration. No substantial amino acid uptake by the udder could be demonstrated in the experiment on the non-lactating cow. 4. The arteriovenous differences obtained for arginine, glutamine, isoleucine, leucine, lysine, valine, threonine and histidine were probably large enough to provide all the respective amino acid residues in milk protein. 5. The uptake of aspartic acid, asparagine, glutamic acid, serine and proline by the lactating cow's udder was not sufficient to account for all these respective amino acid residues found in milk protein.  相似文献   

7.
1. Administration of cycloheximide (an inhibitor of protein synthesis) to lactating rats raised the concentrations of amino acids, and in particular, the branched-chain amino acids (valine, leucine and isoleucine) in blood, liver and mammary gland. 2. Inhibition of protein synthesis increased the incorporation in vivo of L-[U-14C]leucine into lipids of mammary gland and liver. 3. Cycloheximide treatment caused no immediate change in the overall rate of lipogenesis in vivo (measured with 3H2O) in mammary gland but increased the rate in liver 3-fold; this latter effect also occurred in livers of virgin rats. 4. The increased rate of hepatic lipogenesis was not accompanied by significant changes in the plasma insulin concentration or the activity of acetyl-CoA carboxylase. 5. Although cycloheximide decreased the entry of total triacylglycerol into the circulation it did not alter the rate of secretion of newly synthesized saponifiable lipid. 6. Cycloheximide slightly stimulated lipogenesis from endogenous substrates in isolated hepatocytes, but this effect was abolished when lactate was the exogenous substrate. 7. Administration of cycloheximide to virgin rats decreased liver glycogen and increased the hepatic content of glucose 6-phosphate, pyruvate and lactate. 8. It is concluded that (a) there is no short-term link between the rate of protein synthesis and lipogenesis in the lactating mammary gland and (b) the increased rate of hepatic lipogenesis in cycloheximide-treated rats is mainly due to stimulation of glycogenolysis, glycolytic flux and consequent increased availability of pyruvate.  相似文献   

8.
In isolated perfused rat liver, addition of the oxoanalogues of leucine, isoleucine, methionine and phenylalanine is followed by a rapid and reversible stimulation of glutamate release. This is not observed with the corresponding amino acids or 2-oxoisovalerate, 2-oxoglutarate or oxaloacetate. The increased glutamate release by the liver is accompanied by a decrease in the tissue contents of 2-oxoglutarate and glutamate by about 25% and 50%, respectively. During the metabolism of glutamine, i.e. conditions with elevated tissue glutamate concentrations, 2-oxoacid-induced glutamate release is stimulated. In the presence of glutamine (5 mM), 2-oxoisocaproate, 2-oxo-4-methylvalerate and 2-oxo-4-methylthiobutyrate were found to be most effective and glutamate release by the liver increased linearly from about 80 nmol g-1 min-1 to 600 nmol g-1 min-1 at increasing 2-oxoacid concentrations up to 1 mM. When glutamate tissue levels were decreased by phenylephrine, stimulation of glutamate release by 2-oxoisocaproate was markedly diminished. 2-Oxoacid-stimulated glutamate release is independent of oxoacid metabolism, indicating that the effect is probably not explained by a 2-oxoacid/glutamate exchange across the liver plasma membrane. 2-Oxoacid-induced glutamate export predominantly occurs in a sodium-independent way. At low concentrations of 2-oxoisocaproate (below 0.2 mM), the increased glutamate release was accompanied by a slight inhibition of 14CO2 production from added [14C]glutamate, indicating a simultaneous glutamate uptake and release also under these conditions. Stimulation of glutamate release by 2-oxoisocaproate is followed by a decreased rate of urea and glutamine synthesis from portal ammonia, as a consequence of an increased glutamate release.  相似文献   

9.
Measurements of total body oxygen consumption, visceral and hepatic blood flow, oxygen consumption, exchanges of amino acids, lactate, pyruvate and glucose were made on sheep fed 3--6 h or 21 h before the experiment and exposed for 3 h to a neutral environment (15 degrees C) or a cold environment (0.5 to 4 degrees C with clipped coat and wind speed 2 m.s-1). Recent feeding significantly increasedd the total oxygen consumption and the oxygen consumption of the viscera and liver. No general release of amino acids from the viscera or uptake by the liver after feeding was detected although the arterial plasma concentration of essential amino acids did increase significantly after feeding. The plasma concentration of most non-essential amino acids also increased except that of glycine, which decreased significantly. Cold exposure increased the total oxygen consumption and reduced the respiratory quotient significantly. Release of amino acids from the viscera was stimulated by cold exposure. There was a variable increase in the hepatic uptake of lactate and alanine when the sheep were fasted and cold-exposed. The liver's glucose output doubled and the blood (arterial) glucose concentration significantly increased in the cold.  相似文献   

10.
Five sows, five cows, five hens, six guinea pigs, six rabbits, and six rats were used in a study to determine if hepatic microsomal triglyceride transfer protein activity differed among species that varied in site of fatty acid synthesis and rate of hepatic triglyceride export. No differences in plasma nonesterified fatty acids were seen among species. Plasma concentrations of glucose were highest in the hen, intermediate in the rat, guinea pig, and rabbit and lowest in the sow and cow. Liver triglyceride was low in all species with the only significant difference being between the hen and the guinea pig (4.7 and 1.1%, DM basis, respectively). No microsomal triglyceride transfer protein activity was found in muscle. The cow, rat, and guinea pig had the lowest levels and the hen and rabbit the highest levels of duodenal microsomal triglyceride transfer protein activity. Hepatic microsomal triglyceride transfer protein activity was significantly higher in the sow than the other species. Hepatic microsomal triglyceride transfer protein activity was 1.51, 1.63, 2.36, 2.72, 2.95, and 6.70 nmole triolein transferred/h/mg microsomal protein for the guinea pig, rabbit, cow, rat, hen, and sow, respectively. Microsomal triglyceride transfer protein activity in duodenal tissue was 18.0, 18.6, 19.2, 33.4, 113, and 161% of hepatic microsomal triglyceride transfer protein activity for the sow, cow, rat, guinea pig, hen, and rabbit, respectively. Hepatic microsomal triglyceride transfer protein activity scaled to liver weight and metabolic body size was 2.69, 3.36, 4.58, 5.83, 7.49, and 22.3 nmole triolein transferred in the liver/min/kg body weight0.75 for the rabbit, guinea pig, rat, hen, cow, and sow, respectively. There was little relationship between previously published rates for triglyceride export and hepatic microsomal triglyceride transfer protein activity measured in this experiment.  相似文献   

11.
The effects of increasing blood ethanol levels on hepatic metabolism were studied in anesthetized cats whose prior fluid intake contained ethanol for 24 days. A hepatic venous long-circuit technique with an extracorporeal reservoir was used to allow hemodynamic measurements and repeated sampling of arterial, portal, and hepatic venous blood without depletion of blood volume. For ethanol, Vmax was 106 +/- 15 mumol.min-1.100 g-1 liver and Km was 164 +/- 31 microM. A previous study showed that there were no changes in O2 uptake by the liver, suggesting other oxidative processes were suppressed during ethanol metabolism. In this study, proton nuclear magnetic resonance spectroscopy was used to simultaneously screen several plasma metabolites to elucidate other metabolic processes that may be perturbed in the liver during ethanol infusion. Hepatic lactate uptake remained unaltered when ethanol metabolism was less than 0.5 Vmax but was suppressed on an equimolar basis with ethanol metabolism when ethanol metabolism rose above 0.5 Vmax. Thus, lactate oxidation is one process that can be suppressed to allow ethanol oxidation without additional O2 uptake by the liver. In addition, no release of acetate from the liver occurred during ethanol metabolism in these experiments. This surprising finding suggests ethanol metabolism may, under some conditions or in some species, result in fatty acid synthesis rather than acetate release. Eight other major metabolites remained unchanged during ethanol infusion.  相似文献   

12.
Lysine is usually taken up in excess by the mammary gland (MG) relative to milk protein output, allowing for mammary synthesis of non-essential (NE) amino acids (AA) from Lys-N. It is unclear whether this NEAA synthesis from Lys is obligate or whether more efficient use of Lys can be made under limiting conditions. Six multi-catheterized dairy cows received a basal diet low in protein plus an abomasal infusion of AA (560 g/day) with or without Lys (50.3 g/day), in a crossover design with 7-day periods. On day 7, all cows received a 7.5-h jugular infusion of [2-15N]lysine. Six blood samples were collected from arterial, portal, hepatic and mammary vessels at 45 min intervals. In addition, cows were milked at 6 and 7 h with the milk casein plus arterial and mammary plasma collected at 7 h analyzed for AA enrichment. Milk protein concentration and casein yield tended (P < 0.10) to decrease with Lys deletion, while Lys secretion in milk protein was lowered (P < 0.05). The addition of Lys in the AA mixture increased the net portal absorption of Lys by the amount infused, suggesting limited oxidation of this extra supply by the gut. Net liver flux of Lys was unaltered by treatment and, therefore, net splanchnic release of Lys reflected closely the amounts absorbed. For both treatments, however, post-liver supply was greater than mammary uptake, which exceeded milk output. Nonetheless, while Lys deletion decreased mammary uptake by 10.1 mmol/h, Lys in milk protein secretion was reduced by only 3.9 mmol/h. On a net basis, there was no evidence of the additional uptake of any other measured AA during the Lys deletion. The mammary uptake to output ratio of Lys decreased from 1.37 to 1.12, but still showed an excess with Lys deletion. The total amount of 15N in milk protein did not change with treatment but the distribution into AA was altered. In conditions that simulated normal feeding (Lys infused), 83% of the 15N was present as Lys, with Glx, Asx, Ser and Ala harvesting, respectively, 6.8%, 2.4%, 2.1% and 1.0%. With Lys depletion, N-transfers from Lys to other AA within the MG were still present, but rates were considerably lower. This would suggest that part, at least, of Lys catabolism in the MG is either needed or cannot be prevented completely, even at low supply of Lys. Such catabolism will provide N to support the synthesis of NEAA.  相似文献   

13.
1. Measurement of unesterified choline in blood samples taken from five conscious multi-cannulated sheep indicated a significant production of unesterified choline by the alimentary tract, as judged by the portal venous minus arterial difference and significant uptake by the liver, as judged from the portal venous minus hepatic venous and arterial minus hepatic venous differences. 2. A mean liver blood flow rate of 1.68 +/- 0.22 1/min for the five sheep was determined by bromosulphophthalein clearance and, combined with the differences in unesterified choline across organs, gave a production rate of free choline of 9.1 mmol/day by the alimentary tract and an uptake by the liver of 13.2 mmol/day. 3. Infusion of [methyl-3H]choline chloride into the portal vein of a sheep over 1 hr and subsequent isolation of the bile for several days showed over 70% cumulative recovery of the radioactivity in the choline moiety of bile phosphatidylcholine over a 120 hr period. 4. Subsequent infusion 17 days later of bile lipid [3H]choline via a duodenal fistula also gave approx. 70% cumulative recovery of radioactivity in the choline moiety of newly secreted bile phosphatidylcholine in 120 hr. 5. These results show a very extensive enterohepatic recirculation of bile choline in the sheep, which is in contrast to the situation in monogastric animals.  相似文献   

14.
Scutella from ungerminated grains of barley (Hordeum vulgare L. cv Pirkka) take up leucine at a slow rate, which increases rapidly during germination. When endosperms were removed from the grains after imbibition for 4 hours or after germination for 12 or 72 hours, the increase in the rate of leucine uptake was greatly accelerated during subsequent incubation of the embryos or scutella. These increases were rapidly inhibited by cordycepin and cycloheximide, suggesting that protein synthesis, probably synthesis of the carrier protein, was required for the development of the uptake activity.

In separated embryos or scutella, the increases in the leucine uptake activity were inhibited by glutamine. The inhibitions caused by glutamine and cycloheximide were not additive, suggesting that glutamine did not interfere with the function of the carrier but repressed its synthesis. Glutamine did not inhibit the simultaneous increase in peptide uptake; in this respect, its effect was specific for leucine uptake, which appears to be due to a general amino acid uptake system.

Some other protein amino acids also inhibited the increase in leucine uptake without inhibiting the increase in peptide uptake. However, these effects were smaller than that of glutamine.

These results suggest that the transfer of leucine (and other amino acids) from the endosperm to the seedling in a germinating barley grain is regulated at the uptake step by repression of the synthesis of the amino acid carrier protein by glutamine and—possibly to a lesser extent—by some other amino acids taken up from the endosperm.

  相似文献   

15.
We assessed basal glucose metabolism in 16 female nonpregnant (NP) and 16 late-pregnant (P) conscious, 18-h-fasted dogs that had catheters inserted into the hepatic and portal veins and femoral artery approximately 17 days before the experiment. Pregnancy resulted in lower arterial plasma insulin (11 +/- 1 and 4 +/- 1 microU/ml in NP and P, respectively, P < 0.05), but plasma glucose (5.9 +/- 0.1 and 5.6 +/- 0.1 mg/dl in NP and P, respectively) and glucagon (39 +/- 3 and 36 +/- 2 pg/ml in NP and P, respectively) were not different. Net hepatic glucose output was greater in pregnancy (42.1 +/- 3.1 and 56.7 +/- 4.0 micromol. 100 g liver(-1).min(-1) in NP and P, respectively, P < 0.05). Total net hepatic gluconeogenic substrate uptake (lactate, alanine, glycerol, and amino acids), a close estimate of the gluconeogenic rate, was not different between the groups (20.6 +/- 2.8 and 21.2 +/- 1.8 micromol. 100 g liver(-1). min(-1) in NP and P, respectively), indicating that the increment in net hepatic glucose output resulted from an increase in the contribution of glycogenolytically derived glucose. However, total glycogenolysis was not altered in pregnancy. Ketogenesis was enhanced nearly threefold by pregnancy (6.9 +/- 1.2 and 18.2 +/- 3.4 micromol. 100 g liver(-1).min(-1) in NP and P, respectively), despite equivalent net hepatic nonesterified fatty acid uptake. Thus late pregnancy in the dog is not accompanied by changes in the absolute rates of gluconeogenesis or glycogenolysis. Rather, repartitioning of the glucose released from glycogen is responsible for the increase in hepatic glucose production.  相似文献   

16.
Use of an ion-exchange resin assay has shown that leucine is bound to a component of a dialyzed extract of yeast. Leucine binding may be related to in vivo uptake of the amino acid. A yeast strain with a 30-fold lower affinity for leucine uptake in vivo has a parallel reduction in affinity for in vitro leucine binding; the rate of leucine uptake in wild-type yeast can be increased four- to fivefold by growth on leucine as a sole nitrogen source. Under these conditions, the specific activity of the leucine-binding component also increases over threefold. Regulation of leucine uptake was studied by using wild-type strain 60615 and a mutant 60615/fl(2) with a constitutively elevated leucine uptake system. Leucine pool formation in the mutant was accompanied by an overshoot, leading to a loss of leucine from the pool. The phenomenon could be observed in the wild type under certain conditions. The mechanism of this process was examined. The leucine uptake system was found to be stable in the absence of protein synthesis. The rate of leucine uptake increased on reduction of the pool of amino acids, and in strain 60615/fl(2) the ability to overshoot was rapidly recovered on depletion of the leucine pool. The results suggest a control of leucine uptake by feedback inhibition, in which leucine or other amino acids, e.g., isoleucine, inhibit leucine uptake. The results do not exclude control by a rapidly activated-inactivated system.  相似文献   

17.
The uptake of L-leucine and L-lysine into vascular smooth muscle cells cultured from the aortas of rats has been investigated. Both amino acids are taken up by saturable systems that are independent of the presence of a ·Na+ gradient and can be stimulated in trans by neutral bulky amino acids for leucine and cationic amino acids for lysine. Leucine uptake is inhibited competitively in cis by several neutral amino acids, whereas lysine uptake is inhibited strongly by other cationic amino acids but also significantly by neutral amino acids such as leucine. The leucine inhibition is noncompetitive. Cells preloaded with leucine and lysine could also export these amino acids and the rate of efflux was stimulated by the presence of appropriate amino acids in trans. These data are all consistent with leucine being transported largely if not entirely by System L and lysine by the System y+ transporter. © 1993 Wiley-Liss, Inc.  相似文献   

18.
These studies were carried out in order to examine the relationship between the rate of uptake of low-density lipoproteins (LDL) by the liver and the rates of hepatic and extrahepatic cholesterol synthesis and biliary cholesterol content. Female hamsters fed a regular chow diet manifested a rate of hepatic sterol synthesis that was several-fold higher than that in age-matched males maintained on the same diet. Synthesis in the small intestine did not show a corresponding sex difference, but the overall rate in the remaining tissues of the carcass was significantly lower in the females than in the males. Thus, although the proportion of newly synthesized sterol produced by the liver was substantially greater in the females, this was balanced by a smaller contribution from the extrahepatic compartment so that whole-body sterol synthesis was similar in the females and males. Sterol synthesis in the whole animal declined markedly with age in both the females and males, and this was due principally to a reduction in extrahepatic synthesis. Despite the higher rate of hepatic synthesis in females, the rate of uptake of [14C]sucrose-labeled, homologous LDL by the liver was similar in females and males. In males, the adrenal gland transported the labeled LDL at a much higher rate than in females, but in the other extrahepatic tissues the rate of LDL uptake was similar in both groups. The level of cholesterol carried in the various plasma lipoprotein fractions and the relative cholesterol content of gallbladder bile were also similar in females and males. Thus, in this experimental model, the rate of LDL transport by the liver and extrahepatic tissues, the amount of cholesterol carried in plasma lipoproteins and the degree of biliary cholesterol saturation were not directly related to the rates of endogenous hepatic and extrahepatic sterol synthesis.  相似文献   

19.
The hepatic balances of amino acids, ammonia and urea have been measured in rats for three hours after receiving a protein load. The liver took up practically all of the portal ammonium. Alanine was retained to a large extent during all three hours. Other portal amino acids, mainly essential amino acids, were largely retained in about one hour after the gavage, to be released in a similar proportion thereafter. The other amino acids were also retained and then released, but to a lower extent. These amino acids were used in part by the liver for the synthesis and release of urea, which appearance in hepatic vein peaked at two hours after the protein administration.  相似文献   

20.
Starch digestion in the small intestines of the dairy cow is low, to a large extent, due to a shortage of syntheses of α-amylase. One strategy to improve the situation is to enhance the synthesis of α-amylase. The mammalian target of rapamycin (mTOR) signalling pathway, which acts as a central regulator of protein synthesis, can be activated by leucine. Our objectives were to investigate the effects of leucine on the mTOR signalling pathway and to define the associations between these signalling activities and the synthesis of pancreatic enzymes using an in vitro model of cultured Holstein dairy calf pancreatic tissue. The pancreatic tissue was incubated in culture medium containing l-leucine for 3 h, and samples were collected hourly, with the control being included but not containing l-leucine. The leucine supplementation increased α-amylase and trypsin activities and the messenger RNA expression of their coding genes (P <0.05), and it enhanced the mTOR synthesis and the phosphorylation of mTOR, ribosomal protein S6 kinase 1 and eukaryotic initiation factor 4E-binding protein 1 (P <0.05). In addition, rapamycin inhibited the mTOR signal pathway factors during leucine treatment. In sum, the leucine regulates α-amylase and trypsin synthesis in dairy calves through the regulation of the mTOR signal pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号