首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Alteration in the surface membrane of endothelial cells (EC) is a feature of endothelial activation both at sites of inflammation in vivo and after stimulation with cytokines in vitro. The effects of stimulating EC with IL-1 or TNF include enhanced adhesiveness for polymorphonuclear leukocytes (PMN) and T cells, the induction of EC leukocyte adhesion molecule-1 (ELAM-1) expression, and the increased expression of intercellular adhesion molecule-1 (ICAM-1) and the 1.4C3 Ag. In contrast, IFN-gamma stimulation increases EC binding of T cells but not PMN and enhances ICAM-1 expression but not ELAM-1 or 1.4C3 Ag expression. Recently we have reported that the T cell-derived cytokine IL-4 also increases EC adhesiveness for T cells but not PMN. In this study we have examined the effect of IL-4 on the expression of several cytokine-inducible EC activation Ag, by using a previously described ELISA technique. IL-4 modulation of activation Ag expression was concentration dependent, optimal at around 100 U/ml, and exhibited a unique pattern compared to that seen with the other cytokines. Although, IL-4 stimulation increased 1.4C3 Ag expression (p less than 0.001), it significantly inhibited constitutive ICAM-1 expression (p less than 0.01) and did not induce ELAM-1. Furthermore, IL-4 exhibited significant synergy with IL-1 or TNF in inducing 1.4C3 Ag expression (p less than 0.001) but inhibited the increased expression of ICAM-1 produced by IL-1, TNF, or IFN-gamma (p less than 0.01) and inhibited the induction of ELAM-1 by IL-1 and TNF (p less than 0.001). In contrast, IL-4 had no effect on the expression of EC HLA-class I, -DR, -DP, or -DQ and neither enhanced nor inhibited the effect of IFN-gamma on the expression of these molecules. Finally, although IL-4 alone caused little if any shape change in EC monolayers, it strongly synergized with TNF or IFN-gamma in causing a change in shape to a more fibroblastic morphology. These observations indicate that IL-4 increases EC adhesiveness for T cells by the induction of a different adhesion molecule to ICAM-1. Furthermore, the ability of IL-4 to both enhance and inhibit the expression of activation Ag on EC already activated by IL-1, TNF, or IFN-gamma suggests that it may be important in altering the quality of inflammatory responses such as may occur during the development and maintenance of chronic or immune-mediated inflammation.  相似文献   

2.
The alteration in the surface of endothelial cells (EC) in response to cytokines is likely to be of great importance to the regulation of cell migration and thereby to the evolution of inflammatory processes. We have generated three mAb against cytokine inducible Ag on EC. Whereas mAb 1.2B6 and 6.5B5 were found to react with ELAM-1 and ICAM-1, respectively, mAb 1.4C3 reacted with a novel molecule that showed a different pattern of expression from ELAM-1 or ICAM-1 after stimulation of EC by TNF, IL-1, or LPS. Like ELAM-1, the 1.4C3 Ag was minimally expressed on resting EC, whereas ICAM-1 was moderately expressed. After stimulation with IL-1, TNF, or LPS, ELAM-1 expression was maximal after 4 to 6 h, 1.4C3 Ag after 6 to 10 h, and ICAM-1 after 10 to 24 h. The duration of 1.4C3 expression was intermediate between ELAM-1 and ICAM-1, and was more prolonged in response to TNF than IL-1 or LPS. Whereas the expression of the three Ag showed a similar dose response to varying concentrations of IL-1 or LPS, EC required a 10-fold higher concentration of TNF for half maximal expression of ELAM-1 than for half maximal expression of 1.4C3 Ag or ICAM-1 (5 ng/ml compared to 0.5 ng/ml). Of the three Ag, only ICAM-1 was enhanced by IFN-gamma. SDS-PAGE under reducing conditions showed the 1.4C3 Ag to migrate as a single band with a relative molecular mass of approximately 95 kDa. mAb 1.4C3 adds to our understanding of the kinetics of the EC response to different cytokines and will be useful in studying the regulation of EC activation. Furthermore, the 1.4C3 molecule may have an important role in leukocyte-EC interactions.  相似文献   

3.
Endothelial cells (EC) were cocultured with allogeneic PBL, CD4+ T cells, or CD8+ T cells, and the degrees of EC activation induced examined by determining patterns of endothelial class I and class II MHC and intercellular adhesion molecule-1 (ICAM-1) expression. Coculture with PBL or CD8+ T cells uniformly increases class I MHC and ICAM-1 expression on all EC within a culture, but induces class II MHC expression on only a subpopulation(s) of EC. This heterogeneous EC response to coculture contrasts with the uniform class II expression on all EC induced by IFN-gamma in replicate wells. CD4+ T cells, when compared to equal numbers of unfractionated PBL or CD8+ T cells, are more effective at increasing class I MHC and ICAM-1 but are unable to induce class II MHC expression. The failure of CD4+ T cells to induce EC class II MHC Ag is not due to insufficient activation of the T cells, as PHA-activated CD4+ T cells also do not induce significant class II expression. In addition, conditioned media (CM) from CD4+ T cell/EC contain greater levels of immunoreactive IFN-gamma than do CM from PBL/EC cocultures. Rather, CD4+ T cells appear to actively inhibit the induction of EC class II Ag but not class I or ICAM-1 by IFN-gamma. Inhibition occurs at the time of induction, as CD4+ T cells are not capable of down-regulating previously induced class II Ag. CM from CD4+/EC (but not PBL/EC) cocultures also inhibits IFN-gamma induction of EC class II MHC expression. The inhibitory activity is generated during CD4+ T cell-EC cell contact, and is enhanced by PHA. The inhibitory activity(ies) of the CD4+/EC-CM is as yet unidentified, and is only minimally reversible by cocktails of neutralizing antibodies directed against TNF-alpha, TNF-beta (lymphotoxin), IFN-alpha and IFN-beta. In conclusion, CD4+ and CD8+ T cells are each effective activators of EC, but the patterns of activation produced by these subsets are quite distinct, largely due to generation of a soluble inhibitor(s) of class II MHC induction during coculture of CD4+ T cells with EC.  相似文献   

4.
We have investigated whether TNF-induced changes in human endothelial cell (EC) surface Ag expression are mediated by protein kinase C (PKC). This suggestion arose from the observations that PMA, a potent PKC activator, can mimic TNF by inducing expression of endothelial leukocyte adhesion molecule 1, intercellular adhesion molecule 1 (ICAM-1), and class I MHC molecules on human EC. However, in contrast to the actions of PMA, TNF neither causes membrane translocation of PKC nor induces the phosphorylation of the myristoylated alanine-rich C kinase substrate, two measures of PKC activation. Moreover, the PKC inhibitor staurosporine can block PMA-induced endothelial leukocyte adhesion molecule 1 expression at 4 h, but does not inhibit the actions of TNF. At 24 h, staurosporine itself induces intercellular adhesion molecule 1 and class I MHC, and acts additively with TNF. Twenty four hour treatment with PMA causes loss of PKC. We propose that at 24 h, staurosporine and PMA share a mechanism of action, namely diminution of PKC activity. However, 24 h treatment with TNF does not reduce the amount of PKC nor does it prevent activation of PKC by PMA. We conclude that TNF effects in EC are not mediated by PKC activation or inactivation.  相似文献   

5.
Glomerular mesangial cells (MC) were isolated from rats and cultured for a prolonged period of time, resulting in a homogeneous cell population. MC were characterized as belonging to the smooth muscle type. They were negative for MHC class II expression. IFN-gamma and TNF alpha suppressed the proliferation of MC, demonstrating receptors for these cytokines on MC. IFN-gamma or TNF alpha, respectively, enhanced basal MHC class I Ag expression of proliferating cells in culture. The combination of the two cytokines yielded stronger effects. IL-1 beta was ineffective in enhancing MHC class I Ag expression, although MC possessed receptors for this cytokine. IFN-gamma dose dependently induced the expression of MHC class II Ag, while TNF alpha or IL-1 beta were ineffective alone. The combination of IFN-gamma with TNF alpha or IL-1 beta resulted in an enhanced induction of MHC class II Ag, compared to IFN-gamma administration alone. These findings suggest that proliferating mesangial cells of the smooth muscle type may participate in local inflammatory responses or substitute for macrophages by meeting the accessory cell requirement in the interaction with T lymphocytes. Furthermore, the data have important implications for the evaluation of the role of mesangial cells in autoimmune disease of the kidney.  相似文献   

6.
Hepatocyte growth factor (HGF) is one of the vital factors for wound healing. HGF expression markedly increases in wounded skin and is mainly localized in dermal fibroblasts. HGF expression level in human dermal fibroblasts in vitro, however, is low and thus may be stimulated by some factors in the process of wound healing. Candidates of the factors are inflammatory cytokines released by polymorphonuclear and mononuclear cells infiltrating the wounded area, but HGF production in human dermal fibroblasts is only slightly induced by interleukin (IL)-1, tumor necrosis factor (TNF)-alpha or interferon (IFN)-gamma. We here report that a combination of IL-1beta and IFN-gamma or a combination of TNF-alpha and IFN-gamma very markedly induced HGF production. The synergistic effect of the former was more marked than that of the latter. Synergistic effects of IL-1beta and IFN-gamma were observed at more than 10 pg/ml and 10 IU/ml, respectively, and were detectable as early as 12 h after addition. Neither IFN-alpha nor IFN-beta was able to replace IFN-gamma. HGF mRNA expression was also synergistically upregulated by IL-1beta and IFN-gamma. IL-1beta plus IFN-gamma-induced synergistic production of HGF was potently inhibited by treatment of cells with the extracellular signal-regulated kinase (ERK) kinase inhibitor PD98059 and the p38 inhibitor SB203580 but not by the c-Jun N-terminal kinase (JNK) inhibitor SP600125. Taken together, our results indicate that a combination of IL-1beta and IFN-gamma synergistically induced HGF production in human dermal fibroblasts and suggest that activation of ERK and p38 but not of JNK is involved in the synergistic effect.  相似文献   

7.
In this study two new in vitro effects of IFN-gamma on human umbilical vein endothelial (HUVE) cells were described. First, it was shown that the expression of the adhesion molecule ELAM-1 on activated HUVE cells can be modulated by IFN-gamma. ELAM-1 is normally not expressed by HUVE cells, but its expression can rapidly be induced by TNF, IL-1, or LPS. Maximal expression is reached after 4 to 6 h of activation, and after 24 h the expression disappeared. Whereas IFN-gamma per se did not induce expression of ELAM-1, it enhanced and prolonged the expression of ELAM-1. This enhancement occurred when IFN-gamma was added before activation as well as when added simultaneously with activation. When IFN-gamma was added 6 or 9 h after the activation, the normally ongoing reduction of expression was not only retarded, but the expression increased for at least 3 h. Moreover, IFN-gamma abrogated the refractory period for restimulation. Neither IFN-beta nor IL-6 had any effect on the expression of ELAM-1. The second effect of IFN-gamma on HUVE cells is the capacity to enhance the IL-6 production by these cells. Prestimulation as well as coincubation of IFN-gamma with TNF, IL-1, or LPS resulted in a strongly augmented production of IL-6. The effects of IFN-gamma may in vivo play a role in the regulation of an inflammatory reaction, because ELAM-1 is an adhesion molecule for neutrophils, and IL-6 has an enhancing effect on the cytotoxicity of neutrophils.  相似文献   

8.
Adhesion of lymphocytes to endothelial cells (EC) is the requisite first element in the multistep process of transmigration from blood across the postcapillary venules. Selective expression of cell adhesion molecules (CM) by microvascular EC in lymphoid organs (e.g., lymph nodes) and during tissue inflammation modulates this traffic in a site-directed manner. CAM synthesis by EC is regulated in turn by cytokines released in the local microenvironment. Studies done largely with human umbilical vein EC have implicated IL-1, IFN-gamma, and TNF-alpha as cytokines which promote leukocyte adhesion to EC. In the work reported here, the responses of cultured microvascular EC derived from macaque lymph nodes to IL-1beta, IL-2, IFN-gamma, and IL-4 were examined. Increases in lymphocyte adhesion after preculture of microvascular EC in IL-1beta or IFN-gamma were typically 2-to 4-fold above controls and comparable to those reported for human umbilical vein EC. IL-2 had no effect. In contrast, IL-4 markedly enhanced adhesion to microvascular EC. IL-4-induced adhesion was observed as early as 4 h after induction, plateaued by 24 h, was stable through 72 h of culture, but decayed to basal levels within 72 h after removal of IL-4 from the cultures. IL-1beta, but not IL-2 or IFN-gamma, synergistically enhanced the action of IL-4 on cultured microvascular EC to promote lymphocyte binding. Adhesion triggered in this manner required de novo protein synthesis. However, the avidity of IL-4-activated microvascular EC for lymphocytes, and analyses of kinetics, cation and temperature dependence, and/or lack of blockade with mAb to endothelial leukocyte adhesion molecule-1, intra-cellular adhesion molecule-1, and MECA-79 indicated that these CAM were not central to the phenomenon. To aid identification of the relevant CAM, mAb specific to IL-4-induced microvascular EC were produced. One of these, 6G10, blocked up to 90% of lymphocyte adhesion to IL-4-induced microvascular EC, immunoprecipitated an IL-4-induced cell-surface molecule of 110-kDa molecular mass, and reacted specifically with Chinese hamster ovary cells transfected with human vascular cell adhesion molecule-1. Our results suggest that IL-4 may have potent effects on lymphocyte recirculation in vivo.  相似文献   

9.
Pretreatment of the human melanoma cell line, A375, and the human colon carcinoma cell line, HT-29, with certain cytokines was found to increase the vulnerability of these cells to monocyte-mediated killing. This activity was found to correlate with increased expression of intercellular adhesion molecule-1 (ICAM-1) on the tumor cells and was blocked by anti-ICAM-1 antibodies. Both IFN-gamma and TNF induced large increases in the ICAM-1 expression on both cell lines and increased the susceptibility of the tumor cells to monocyte-mediated killing. IFN-alpha and IL-1 beta, however, induced only small increases in ICAM-1 expression and enhanced the lysis of the A375 cells but not the HT-29 cells by monocytes. These differences may be the result of a higher basal expression of ICAM-1 found on the A375 cells when compared with the HT-29 cells. These data indicate that regulation of ICAM-1 expression on tumor cells can alter the vulnerability of these cells to lysis by monocytes.  相似文献   

10.
rIL-1 beta treatment of cultured human endothelial cells (HEC) promotes polymorphonuclear leukocyte (PMN) adhesion and transmigration. Using in vitro quantitative monolayer adhesion and videomicroscopic transmigration assays, we have examined the contributions of endothelial-leukocyte adhesion molecule-1 (ELAM-1), intercellular adhesion molecule-1 (ICAM-1), and the leukocyte adhesion complex, CD11/CD18, to these processes. Maximal enhancement of PMN adhesion and transmigration were observed after 4 h of rIL-1 beta treatment, when surface expression of ELAM-1 had peaked and ICAM-1 was modestly increased. Blocking mAb directed to either ELAM-1 or ICAM-1 inhibited greater than 90% of the up-regulated PMN transmigration. Blocking mAb directed to either CD11a/CD18 (LFA-1, a ICAM-1 counter-receptor), CD11b/CD18 (Mo-1), or CD18 (common beta 2-integrin) also blocked greater than 90% of PMN transmigration. At later time points (24 or 48 h), ELAM-1 surface expression was markedly decreased, whereas ICAM-1 expression was increased over the 4-h level; PMN adhesion remained elevated (approximately 50 to 60% of 4 h level), but transmigration returned to levels seen with unactivated HEC. These data indicate that PMN interaction with at least two distinct HEC adhesion molecules is necessary for transendothelial migration and suggests that PMN adhesion and transmigration, although interrelated, are mechanistically distinct processes.  相似文献   

11.
We have studied the effects of IL-4 (B cell stimulatory factor 1) on the expression of MHC gene products in normal bone marrow-derived macrophages, peritoneal macrophages, and the myelomonocytic cell line WEHI-3. Using both IL-4-containing T cell supernatant and rIL-4, we have observed significant induction of both class I and class II MHC surface expression (about 1.5- to 4-fold increase) in 2-, 3-, and 4-day cultures of bone marrow-derived macrophages. This induction was also apparent at the mRNA level as assessed by Northern blot analysis using A beta, E alpha, and class I probes. Kinetic analysis revealed that induction of class II mRNA by IL-4 was slower than induction by IFN-gamma, requiring 48 h before a significant increase was noted. The magnitude of MHC induction by IL-4 was not as great as that seen with IFN-gamma, which was found to increase surface expression of MHC antigens two- to eightfold. IL-4 also differs from IFN-gamma in the repertoire of macrophages responsive to it. IL-4 was unable to induce class I or class II expression in either thioglycolate-elicited peritoneal macrophages or WEHI-3 cells whereas IFN-gamma induced MHC antigen expression on both cell types under the same conditions. These data demonstrate that IL-4 is capable of inducing both class I and class II MHC gene products in some, but not all, macrophages.  相似文献   

12.
Due to their unique capacity for self-renewal in addition to their ability to differentiate into cells of all neuronal lineages, neuronal stem cells (NSCs) are promising candidates for cell replacement therapy in neuronal injury and neurodegenerative diseases. However, there are few studies on immune rejection, which is one of the main problems facing successful stem cell therapy. In order to determine if human NSC might be rejected after transplantation the MHC expression level was examined in the HB1.F3 cell line, which has previously been shown to exhibit NSC properties. The results showed low expression levels of the MHC class I molecules on the surfaces of these cells. A dramatic increase in the MHC class I expression level was observed when the cells were treated with IFN-gamma, TNF-alpha, and IL-1beta, alone or in combination. The maximum induction of MHC class I protein expression was observed at above 20ng/ml IFN-gamma 48h after the treatment. The apparent additive effects of TNF-alpha and IL-1beta in combination on the maximum induction of MHC class I expression exerted by IFN-gamma treatment were not observed. The MHC class I levels elevated by IFN-gamma were sustained for 72h after withdrawing the IFN-gamma. Therefore, this study introduced human cytomegalovirus (hCMV) US genes, which are known to be able to reduce the MHC class I expression level on the cell surface after infection, into HB1.F3 cells. The cells transfected with the hCMV US2, US3, US6 or US11 genes showed 20-50% reduction in the MHC class I expression level compared with the mock-transfected cells. These results suggest that NSC expresses high levels of the MHC class I proteins, and unless they are modified, might be rejected upon transplantation. In addition, the various viral stealth mechanisms can be exploited for stem cell transplantation.  相似文献   

13.
14.
Diabetes mellitus is associated with an increased prevalence of endothelial dysfunction and development of atherosclerotic vascular diseases. We demonstrate here that hyperglycemia results in the expression of adhesion molecules on endothelial cells in vitro. Incubation of human umbilical vein endothelial cells (HUVEC) in a culture medium with 11.0 mM, 16.5 mM and 22.0 mM glucose concentrations induced the expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and endothelial-leukocyte adhesion molecule-1 (ELAM-1). This effect was detectable after 24 h incubation of HUVEC with a high glucose concentration. The effect of high glucose concentration on TNF-alpha induced expression of ELAM-1, VCAM-1 and ICAM-1 was negligible, if at all. These results show that even a short-term exposure of endothelial cells (ECs) to high glucose concentration leads to their activation associated with increased expression of adhesion molecules such as ELAM-1, VCAM-1 and ICAM-1.  相似文献   

15.
16.
Transporter in Ag processing-1 (TAP-1, previously called PSF-1 or Ring-4) is an MHC-encoded gene product that is required for efficient association of intracellular peptide Ag with nascent HLA class I H chain and beta 2-microglobulin, thereby permitting assembly and normal surface expression of the class I molecules. TAP-1 is thought to function as a component of a transmembrane pump, that transports cytoplasmically-derived peptides into the lumen of the endoplasmic reticulum where class I molecules assemble. Synthesis and expression of HLA class I molecules is increased in human endothelial cells by IFN-beta, IFN-gamma, and TNF. We report these same cytokines increase TAP-1 expression. As with class I, TAP-1 is also synergistically increased by combinations of TNF with IFN. Interestingly, cytokine-induced increases in TAP-1 mRNA are markedly more rapid than increases in class I mRNA. This rapid increase in TAP-1 mRNA is reflected in a rapid increase in TAP-1 protein. These results demonstrate that TAP-1 synthesis and class I synthesis are regulated in parallel. The rapidity of the cytokine response of TAP-1 compared to class I further suggests that the constitutive level of TAP-1 expression in endothelial cells is not sufficient to support inducible increases in class I expression.  相似文献   

17.
We investigated the response of purified and cloned human thymic epithelial cells (TEC) to IL-1, IL-4, and IFN-gamma stimulation in vitro. IL-1 alpha strongly up-regulated the production of granulocyte-macrophage CSF (GM-CSF), granulocyte CSF (G-CSF), IL-6, and IL-8, as measured by specific immunoenzymetric assays and by increased steady state mRNA levels. IL-4 or IFN-gamma did not induce these cytokines in TEC but in a sustained and dose-dependent manner down-regulated the IL-1-induced GM-CSF protein and mRNA levels. Only IFN-gamma, and not IL-4, suppressed the IL-1-induced G-CSF and IL-8 production, as shown at both the protein and mRNA levels. The inhibition was dose dependent, sustained for at least 96 h, and more pronounced for G-CSF than for IL-8. In contrast, both IL-4 and IFN-gamma enhanced the IL-1-induced IL-6 production. IL-4 and IFN-gamma had additive effects to increase IL-6 secretion and to more completely suppress the IL-1-induced GM-CSF. Analyses of cell surface molecules showed that intercellular adhesion molecule 1 (ICAM-1) expression on TEC was increased by IL-1 or IFN-gamma. IL-4 slightly down-regulated constitutive ICAM-1 levels but did not significantly modify the levels of expression induced by either IL-1 or IFN-gamma. MHC class II expression was induced by IFN-gamma but not by IL-1 or IL-4. The combination of IL-1 and IL-4 with IFN-gamma did not alter the levels of class II MHC Ag induced by IFN-gamma. In conclusion, TEC cytokine production and cell surface molecule expression are differentially regulated via a complex cytokine network. Our data suggest that developing T cells provide, in part, the signals controlling the function of their supporting stroma.  相似文献   

18.
Recent studies suggest that tumor necrosis factor (TNF) family members such as TNFalpha and lymphotoxin alphabeta (LTalpha1beta2) are important in the development of follicular dendritic cells (FDCs) and maintenance of FDC function. In this study we used FDC-like cells (FDC-LC) cultured from normal human tonsil and investigated the effects of TNF and LTalpha1beta2 on expression of adhesion molecules and the production of cytokines and chemokines. TNF and LTalpha1beta2 both increased the expression of VCAM-1 and ICAM-1 on FDC-LC. In addition, IL-4 with LTalpha1beta2 synergistically increased the expression of VCAM-1, but not ICAM-1. Cytokine IL-6 and IL-15 mRNAs were induced following stimulation with TNF and LTalpha1beta2. These two cytokines were present in FDC-LC supernatants by ELISA and increased following TNF and LTalpha1beta2 stimulation. We also examined FDC-LC for chemokines, which affect B cells, including IL-8, SDF-1, MIP3beta/ELC, and BCA-1/BLC. SDF-1 mRNA and protein were expressed by FDC-LC, and following stimulation with TNF and LTalpha1beta2, decreases in both were observed. Therefore, TNF and LTalpha1beta2, which are produced by activated B cells, increased the expression of adhesion molecules and cytokines from FDC-LC, potentially providing key signals to support germinal center B cell survival and differentiation.  相似文献   

19.
We have compared the adhesion of 51Cr-labeled eosinophils and neutrophils to cultured human umbilical vein endothelial cell (EC) monolayers that have been stimulated with IL-1, TNF, or LPS. Each agent stimulated the adhesion to EC of both eosinophils and neutrophils in a similar dose- and time-dependent manner. F(ab')2 fragments of mAb 1.2B6 (anti-endothelial leukocyte adhesion molecule (ELAM)-1) and mAb 6.5B5 (anti-intercellular adhesion molecule (ICAM)-1) each inhibited partially, and to a similar extent, eosinophil and neutrophil adhesion to EC monolayers prestimulated with TNF (10 ng/ml) for 6 h. Greater inhibition of both eosinophil and neutrophil adhesion was achieved by combining the effects of mAb 1.2B6 with either mAb 6.5B5 or mAb TS1/18 (anti-CD18). These observations indicate that both ELAM-1 and ICAM-1 are involved in the adhesion of eosinophils and neutrophils to EC stimulated with TNF. In order to determine whether these molecules are expressed in vivo during allergen-induced late phase allergic responses in the skin, human skin biopsies were examined at 6 h after Ag or saline challenge with the use of an alkaline phosphatase-staining technique. Both ELAM-1 and ICAM-1 were expressed with greater intensities in Ag-challenged biopsies, suggesting that these molecules may be involved in granulocyte recruitment in vivo. The similarities we have established between mechanisms of eosinophil and neutrophil adhesion to cytokine-stimulated EC suggests that factors other than differential leukocyte-EC adhesion may be responsible for the selective accumulation of eosinophils at sites of allergic inflammation.  相似文献   

20.
Major histocompatibility complex (MHC) class II antigen expression has been implicated in the pathogenesis of autoimmune type 1 diabetes. In this study we examined the role of various cytoldnes that may induce MHC class II surface antigen expression, using the rat insulinoma line RIN-5AH as a pertinent model system. As in another study, the ability of IFN-gamma to amplify MHC class II antigen expression 4-fold is demonstrated. At the same time we noted a 5-fold increase of these histocompatibility antigens by IL-6. Signal transduction analysis reveals that IL-6-induced MHC class II expression is specifically mediated by the G-protein system (activation of p21(ras) by IL-6) since mevalonic acid lactone (a Gprotein inhibitor) abolishes the action of IL-6. In contrast, IFN-gamma, which does not activate p21(ras), is not inhibited by protein kinase C (PKC) inhibitors but by those of the G-protein pathway. This finding raises the possibility that IFN-gamma induces RIN cells to secrete IL-6 (as shown previously, as well as in this paper) which, in turn, increases class II antigen expression via the G-protein pathway. This action may be unique to IL-6 or in synergy with IFN-gamma. Other cytokines such as IL-1alpha and beta, and TNF-alpha induce a smaller increase in MHC class II antigens on RIN cells, and appear to activate both the G-protein and the PKC signal transduction pathways to varying degrees. Therefore, injury of pancreatic beta-cells and possible induction of autoimmune type 1 diabetes via various cytokines may be caused by IL-6 or IFN-gamma, or by their ability to induce MHC class II antigen upregulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号