首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several G protein-coupled receptors (GPCRs) serve as co-receptors for entry of human immunodeficiency virus type 1 (HIV-1) into target cells. Here we report that a synthetic peptide derived from the NH2-terminal extracellular region of an orphan GPCR, GPR1 (GPR1ntP-(1-27); MEDLEETLFEEFENYSYDLDYYSLESC), inhibited infection of not only an HIV-1 variant that uses GPR1 as a co-receptor, but also X4, R5, and R5X4 viruses. Among these HIV-1 strains tested, viruses that can utilize CXCR4 as their co-receptors were preferentially inhibited. Inhibition of early steps in X4 virus replication was also detected in the primary human peripheral blood lymphocytes. GPR1ntP-(1-27) directly interacted with recombinant X4 envelope glycoprotein (rgp120). This interaction was neither inhibited nor enhanced by the soluble CD4 (sCD4) but inhibited by the anti-third variable (V3) loop-specific monoclonal antibody and heparin known to bind to the V3 loop. Although the conformational changes in gp120, including the V3 loop, have been reported to be required for its interaction with a co-receptor after binding of gp120 to CD4, it has also been reported that the V3 loop is already exposed on the surface of virions before interaction with CD4. We found that GPR1ntP-(1-27) blocked binding of virus to the cells, and this peptide equally bound to rgp120 in the presence or absence of sCD4. Because we detected the binding of GPR1ntP-(1-27) to the highly purified virions even in the absence of sCD4, GPR1ntP-(1-27) probably recognized the V3 loop exposed on the virions, and this interaction was responsible for the anti-HIV-1 activity of GPR1ntP-(1-27).  相似文献   

2.
Several porphyrin derivatives were reported to have anti-HIV-1 activity. Among them, meso-teta(4-carboxyphenyl)porphine (MYCPP) and other carboxyphenyl derivatives were the most potent inhibitors (EC50 < 0.7 μM). MTCPP bound to the HIV-1 enveloope glycoprotein gp120 and to full-length V3 loop peptides corresponding to several HIV-1 isolates but not to other peptides from gp120+gp41. However, it remained possible that MTCPP bound to HIV-1 envelop glycoprotein gp120 and to full-length V3 loop peptides corresponding to several HIV-1 isolates but not to other peptides from gp120+gp41. However, it remained possible that MTCPP bound to regions on gp120 which cannot be mimicked by peptides. Further characterization of the binding domain for MTCPP is important for understanding the antiviral activity of porphyrins and for the design of anit-HIV-1 drugs interfering with functions of the virus envelope. Results presented here show that: (i) deletion of the V3 loop from the gp120 sequence resulted in drastically diminished MTCPP binding, suggesting that the V3 loop is the dominant if not the only target site on gp120; (ii) this site was only partially mimicked by full-length V3 loop peptides; (iii) MTCPP binding to the gp120 V3 loop elicited allosteric effects resulting in decreased accessibility of the CD4 receptor binding site; (iv) the binding site for MTCPP lies within the central portion of the V3 loop (KSIHIGPGRAFY for the HIV-1 subtype B consensus sequence) and does not involve directly the GPG apex of the loop. These results may help in designing antiviral compounds with improved activity.  相似文献   

3.
One strategy for the generation of broadly reactive neutralizing antibodies (NA) against human immunodeficiency virus type 1 (HIV-1) primary isolates is to use immunogens that have constrained HIV-1 envelope gp120 conformations reflective of triggered envelope on the surface of virions. A major change in gp120 following binding to CD4 is the enhanced exposure of the CCR5 binding site. One inducer of CCR5 binding site epitopes on gp120 is the human anti-gp120 monoclonal antibody, A32. We have made cross-linked A32-rgp120(89.6) and A32-rgp120(BaL) complexes and have compared their immunogenicities to those of uncomplexed recombinant gp120(BaL) (rgp120(BaL)) and rgp120(89.6). A32-rgp120(89.6) and A32-rgp120(BaL) complexes had stable induced CCR5 binding site expression compared to that of uncomplexed rgp120s. However, the A32-rgp120 complexes had similar capacities in guinea pigs for induction of NA against HIV-1 primary isolates versus that of rgp120 alone. A32-rgp120(89.6) induced antibodies that neutralized 6 out of 11 HIV-1 isolates, while rgp120(89.6) alone induced antibodies that neutralized 4 out of 11 HIV-1 isolates. A32-rgp120(BaL) complexes induced antibodies that neutralized 4 out of 14 HIV-1 isolates while, surprisingly, non-cross-linked rgp120(BaL) induced antibodies that neutralized 9 out of 14 (64%) HIV-1 isolates. Thus, stable enhanced expression of the coreceptor binding site on constrained gp120 is not sufficient for inducing broadly neutralizing anti-HIV-1 NA. Moreover, the ability of HIV-1 rgp120(BaL) to induce antibodies that neutralized approximately 60% of subtype B HIV-1 isolates warrants consideration of using HIV-1 BaL as a starting point for immunogen design for subtype B HIV-1 experimental immunogens.  相似文献   

4.
The mechanism of the antiviral activity of sulfated polysaccharides on human immunodeficiency virus type 1 (HIV-1) was investigated by determining the effect of dextran sulfate on the binding of CD4 and several anti-gp120 monoclonal antibodies to both recombinant and cell surface gp120. Dextran sulfate did not interfere with the binding of sCD4 to rgp120 on enzyme-linked immunosorbent assay (ELISA) plates or in solution and did not block sCD4 binding to HIV-1-infected cells expressing gp120 on the cell surface. Dextran sulfate had minimal effects on rgp120 binding to CD4+ cells at concentrations which effectively prevent HIV replication. In contrast, it potently inhibited the binding of both rgp120 and cell surface gp120 to several monoclonal antibodies directed against the principal neutralizing domain of gp120 (V3). In an ELISA format, dextran sulfate enhanced the binding of monoclonal antibodies against amino-terminal regions of gp120 and had no effect on antibodies directed to other regions of gp120, including the carboxy terminus. The inhibitory effects of polyanionic polysaccharides on viral binding, viral replication, and formation of syncytia therefore appear mediated by interactions with positively charged amino acids concentrated in the V3 region. This high local positive charge density, unique to the V3 loop, leads us to propose that this property is critical to the function of the V3 region in mediating envelope binding and subsequent fusion between viral and cell membranes. The specific interaction of dextran sulfate with this domain suggests that structurally related molecules on the cell surface, such as heparan sulfate, may be additional targets for HIV binding and infection.  相似文献   

5.
To identify structural constraints and amino acid sequences important for antibody recognition of the third variable domain (V3) of HIV-1 gp120, we have studied the solution conformation of three 35-mer circular V3 loop peptides derived from HIV-1 strains which differ in syncytium- (SI) and non-syncytium-inducing (NSI) capacity. In addition to 2D NMR and CD analyses, fluid- and solid-phase immunoassays were performed using V3-specific antibodies to V3 peptides and gp120 derived from different strains of HIV-1. NMR and CD spectroscopy indicated that circular and linear V3 loops exist in water as a dynamic ensemble of multiple conformations. Amino acid substitutions and biochemical modifications of the V3 loop were found to affect antibody binding depending on the presentation of the antigens. From NMR observations and immunological experiments, we provide evidence for a V3 loop specific monoclonal antibody interaction which is directed predominantly against linear epitopes rather than against discontinuous epitopes. The absence of a single defined solution conformation of 35-mer circular V3 peptides should be taken into account when using V3-related peptides to investigate structural elements in the V3 domain of the gp120 envelope protein of HIV-1 involved in biological processes of the virus.  相似文献   

6.
The sequential interaction of the envelope glycoprotein of the human immunodeficiency virus type 1 (HIV-1) with CD4 and certain chemokine coreceptors initiates host cell entry of the virus. The appropriate chemokines have been shown to inhibit viral replication by blocking interaction of the gp120 envelope protein with the coreceptors. We considered the possibility that this interaction involves a motif of the gp120 that may be structurally homologous to the chemokines. In the amino acid sequences of most chemokines there is a Trp residue located at the beginning of the C-terminal α-helix, which is separated by six residues from the fourth Cys residue. The gp120 of all HIV-1 isolates have a similar motif, which includes the C-terminal part of a variable loop 3 (V3) and N-terminal part of a conserved region 3 (C3). Two synthetic peptides, derived from the relevant gp120 sequence inhibited HIV-1 replication in macrophages and T lymphocytes in sequence-dependent manner. The peptides also prevented binding of anti-CXCR4 antibodies to CXCR4, and inhibited the intracellular Ca(2+) influx in response to CXCL12/SDF-1α. Thus these peptides can be used to dissect gp120 interactions with chemokine receptors and could serve as leads for the design of new inhibitors of HIV-1.  相似文献   

7.
We demonstrate in vitro the occurrence of a specific but low-affinity interaction between soluble tetrameric rgp160 or soluble monomeric or tetrameric rgp120 and heparin-agarose (HA). This interaction is saturable, pH and temperature-dependent, and can be inhibited by soluble heparin, but not by soluble dextran. In buffer supplemented with 10 mM CaCl2, the C50 of soluble heparin, i.e., the concentration of soluble heparin which leads to 50% inhibition of the binding of [125I]rgp160 or of [125I]rgp120 to HA, is 1.1 x 10(-4) disaccharidic molar concentration for rgp160 and 3.2 x 10(-4) dissacharidic molar concentration for rgp120, which indicates low-affinity interactions. Upon chromatography on HA, [125I]rgp160 is repeatedly eluted as a retarded fraction when compared to the elution volume of [125I]rgp160-soluble heparin complex. Under the same experimental conditions, [125I]rgp120 is also eluted, but as a less retarded fraction than [125I]rgp160. Taken together, these results suggest that, at least part of the described anti HIV-1 activity of heparin might be mediated by interaction with HIV-1 major envelope glycoprotein.  相似文献   

8.
The role of carbohydrates in the immunogenicity of human immunodeficiency virus type 1 (HIV-1) glycoproteins (gp160 and gp120) remains poorly understood. We have analyzed the specificity and neutralizing capacity of antibodies raised against native gp160 or against gp160 deglycosylated by either endo F-N glycanase, neuraminidase, or alpha-mannosidase. Rabbits immunized with these immunogens produced antibodies that recognized recombinant gp160 (rgp160) from HIV-1 in a radioimmunoassay and in an enzyme-linked immunosorbent assay. Antibodies elicited by the different forms of deglycosylated gp160 were analyzed for their reactivity against a panel of synthetic peptides. Compared with anti-native gp160 antisera, serum reactivity to most peptides remained unchanged, or it could increase (peptide P41) or decrease. Only antibodies raised against mannosidase-treated gp160 failed to react with a synthetic peptide (peptide P29) within the V3 loop of gp120. Rabbits immunized with desialylated rgp160 generated antibodies which recognized not only rgp160 from HIV-1 but also rgp140 from HIV-2 at high titers. Although all antisera produced against glycosylated or deglycosylated rgp160 could prevent HIV-1 binding to CD4-positive cells in vitro, only antibodies raised against native or desialylated gp160 neutralized HIV-1 infectivity and inhibited syncytium formation between HIV-1-infected cells and noninfected CD4-positive cells, whereas antibodies raised against alpha-mannosidase-treated gp160 inhibited neither virus replication nor syncytium formation. These findings indicate that the carbohydrate moieties of gp160 can modulate the specificity and the protective efficiency of the antibody response to the molecule.  相似文献   

9.
HIV-1 cell entry is initiated by the interaction of the viral envelope glycoprotein gp120 with CD4, and chemokine coreceptors CXCR4 and CCR5. The molecular recognition of CXCR4 or CCR5 by the HIV-1 gp120 is mediated through the V3 loop, a fragment of gp120. The binding of the V3 loop to CXCR4 or CCR5 determines the cell tropism of HIV-1 and constitutes a key step before HIV-1 cell entry. Thus, elucidating the molecular recognition of CXCR4 by the V3 loop is important for understanding HIV-1 viral infectivity and tropism, and for the design of HIV-1 inhibitors. We employed a comprehensive set of computational tools, predominantly based on free energy calculations and molecular-dynamics simulations, to investigate the molecular recognition of CXCR4 by a dual tropic V3 loop. We report what is, to our knowledge, the first HIV-1 gp120 V3 loop:CXCR4 complex structure. The computationally derived structure reveals an abundance of polar and nonpolar intermolecular interactions contributing to the HIV-1 gp120:CXCR4 binding. Our results are in remarkable agreement with previous experimental findings. Therefore, this work sheds light on the functional role of HIV-1 gp120 V3 loop and CXCR4 residues associated with HIV-1 coreceptor activity.  相似文献   

10.
HIV-1 cell entry is initiated by the interaction of the viral envelope glycoprotein gp120 with CD4, and chemokine coreceptors CXCR4 and CCR5. The molecular recognition of CXCR4 or CCR5 by the HIV-1 gp120 is mediated through the V3 loop, a fragment of gp120. The binding of the V3 loop to CXCR4 or CCR5 determines the cell tropism of HIV-1 and constitutes a key step before HIV-1 cell entry. Thus, elucidating the molecular recognition of CXCR4 by the V3 loop is important for understanding HIV-1 viral infectivity and tropism, and for the design of HIV-1 inhibitors. We employed a comprehensive set of computational tools, predominantly based on free energy calculations and molecular-dynamics simulations, to investigate the molecular recognition of CXCR4 by a dual tropic V3 loop. We report what is, to our knowledge, the first HIV-1 gp120 V3 loop:CXCR4 complex structure. The computationally derived structure reveals an abundance of polar and nonpolar intermolecular interactions contributing to the HIV-1 gp120:CXCR4 binding. Our results are in remarkable agreement with previous experimental findings. Therefore, this work sheds light on the functional role of HIV-1 gp120 V3 loop and CXCR4 residues associated with HIV-1 coreceptor activity.  相似文献   

11.
gp120 is the envelope glycoprotein found on the surface of human immunodeficiency virus type 1 (HIV-1), and it binds to human cell surface CD4 receptors to initiate the HIV-1 infection process. It is now well-established that synthetic peptides from the V3 region on gp120 elicit antibodies that block HIV-1 infection and HIV-1-mediated cell fusion. Here we show that synthetic peptides derived from similar V3 regions of several isolates of HIV-1 bind [3H]heparin, and we also demonstrate that [3H]heparin binds to recombinant gp120 IIIB. The binding could be blocked by unlabeled heparin, dextran sulfate, and by a highly anionic benzylated synthetic peptide derived from human CD4 (amino acids 81-92). The nonbenzylated peptides from the same region were considerably less active. Unlabeled heparin, dextran sulfate, and the CD4-derived peptides were able to compete with the binding of soluble gp120 to immobilized antibodies against fragments of the V3 from isolate IIIB, but they had no effect on the binding of gp120 to anti-peptide antibodies targeted against another unrelated region of gp120. Biotin conjugated to the benzylated CD4-peptide bound to gp120 and was blocked from this binding by anti-V3 antibodies. These results indicate that the three materials that have been demonstrated by others to block HIV-1 infection in vitro, sulfated polysaccharides, certain CD4-derived synthetic peptides, and anti-V3 antibodies, may be acting through a common mechanism that includes binding to the V3 region of gp120 on HIV-1.  相似文献   

12.
The binding of protein HIV-1 gp120 to coreceptors CCR5 or CXCR4 is a key step of the HIV-1 entry to the host cell, and is predominantly mediated through the V3 loop fragment of HIV-1 gp120. In the present work, we delineate the molecular recognition of chemokine receptor CCR5 by a dual tropic HIV-1 gp120 V3 loop, using a comprehensive set of computational tools predominantly based on molecular dynamics simulations and free energy calculations. We report, what is to our knowledge, the first complete HIV-1 gp120 V3 loop : CCR5 complex structure, which includes the whole V3 loop and the N-terminus of CCR5, and exhibits exceptional agreement with previous experimental findings. The computationally derived structure sheds light into the functional role of HIV-1 gp120 V3 loop and CCR5 residues associated with the HIV-1 coreceptor activity, and provides insights into the HIV-1 coreceptor selectivity and the blocking mechanism of HIV-1 gp120 by maraviroc. By comparing the binding of the specific dual tropic HIV-1 gp120 V3 loop with CCR5 and CXCR4, we observe that the HIV-1 gp120 V3 loop residues 13–21, which include the tip, share nearly identical structural and energetic properties in complex with both coreceptors. This result paves the way for the design of dual CCR5/CXCR4 targeted peptides as novel potential anti-AIDS therapeutics.  相似文献   

13.
Cole AM  Liao HI  Ganz T  Yang OO 《FEBS letters》2003,535(1-3):195-199
Recent reports have highlighted the anti-HIV-1 activities of defensins, whose structure and charge resemble portions of the HIV-1 transmembrane envelope glycoprotein gp41. The current report explores the obverse, whether peptides derived from HIV-1 envelope glycoproteins can exert antimicrobial activity. Fifteen-residue peptides spanning the entire sequence of HIV-1(MN) gp120 and gp41 were subjected to radial diffusion assays against laboratory strains of Escherichia coli and Listeria monocytogenes. Twenty-four active peptides corresponded predominantly to membrane-active domains of gp120 and gp41. Several peptides retained significant activity in higher ionic conditions and may serve as templates for the development of novel peptide antibiotics. The strategies employed herein could uncover additional antimicrobial peptides from envelope proteins of other lytic viruses.  相似文献   

14.
Human Immunodeficiency Virus (HIV-1) poses a serious threat to the developing world and sexual transmission continues to be the major source of new infections. Therefore, the development of molecules, which prevent new HIV-1 infections, is highly warranted. In the present study, a panel of human hemoglobin (Hb)-α subunit derived peptides and their analogues, with an ability to bind gp120, were designed in-silico and their anti-HIV-1 activity was evaluated. Of these peptides, HbAHP-25, an analogue of Hb-α derived peptide, demonstrated significant anti-HIV-1 activity. HbAHP-25 was found to be active against CCR5-tropic HIV-1 strains (ADA5 and BaL) and CXCR4-tropic HIV-1 strains (IIIB and NL4-3). Surface plasmon resonance (SPR) and ELISA revealed direct interaction between HbAHP-25 and HIV-1 envelope protein, gp120. The peptide prevented binding of CD4 to gp120 and blocked subsequent steps leading to entry and/or fusion or both. Anti-HIV activity of HbAHP-25 appeared to be specific as it failed to inhibit the entry of HIV-1 pseudotyped virus (HIV-1 VSV). Further, HbAHP-25 was found to be non-cytotoxic to TZM-bl cells, VK2/E6E7 cells, CEM-GFP cells and PBMCs, even at higher concentrations. Moreover, HbAHP-25 retained its anti-HIV activity in presence of seminal plasma and vaginal fluid. In brief, the study identified HbAHP-25, a novel anti-HIV peptide, which directly interacts with gp120 and thus has a potential to inhibit early stages of HIV-1 infection.  相似文献   

15.
It is well established that the human immunodeficiency virus-1 envelope glycoprotein surface unit, gp120, binds to cell-associated heparan sulfate (HS). Virus infectivity is increased by such interaction, and a variety of soluble polyanions efficiently neutralize immunodeficiency virus-1 in vitro. This interaction has been mainly attributed to the gp120 V3 loop. However, although evidence suggested that this particular domain does not fully recapitulate the binding activity of the protein, the ability of HS to bind to other regions of gp120 has not been completely addressed, and the exact localizations of the polysaccharide binding sites are not known. To investigate in more detail the structural basis of the HS-gp120 interaction, we used a mapping strategy and compared the heparin binding activity of wild type and mutant gp120 using surface plasmon resonance-based binding assays. Four heparin binding domains (1-4) were identified in the V2 and V3 loops, in the C-terminal domain, and within the CD4-induced bridging sheet. Interestingly, three of them were found in domains of the protein that undergo structural changes upon binding to CD4 and are involved in co-receptor recognition. In particular, Arg(419), Lys(421), and Lys(432), which directly interact with the co-receptor, are targeted by heparin. This study provides a complete account of the gp120 residues involved in heparin binding and identified several binding surfaces that constitute potential target for viral entry inhibition.  相似文献   

16.
Preventing cell entry of human immunodeficiency virus 1 (HIV-1) is of interest for the development of innovative therapies. We previously reported a specific interaction between HIV-1 envelope glycoprotein 120 (gp120) and Tat at the cell surface, which enhances virus attachment and entry. We also identified a gp120-mimicking peptide, CT319, that competes with gp120 for Tat binding, thus inhibiting HIV-1 infection. Here we report a molecular dissection of gp120 regions involved in this mechanism. Our findings identify the V1/V2 loop of gp120 as involved in Tat binding, and define this interaction as functionally relevant for HIV-1 entry into host cells.  相似文献   

17.
We demonstrate in vitro the occurence of a specific but low-affinity interaction between soluble tetrameric rgp160 or soluble monomeric or tetrameric rgp120 and heparin-agarose (HA). This interaction is saturable, pH and temperature-dependent, and can be inhibited by soluble heparin, but not by soluble dextran. In buffer supplemented with 10 mM CaCl2, the C50 of soluble heparin, i.e., the concentration of soluble heparin which leads to 50% inhibition of the binding of [125I]rgp160 or [125I]rgp120 to HA, is 1.1. · 10?4 disaccharidic molar concentration for rgp160 and 3.2 · 10?4 disaccharidic molar concentration for rgp120, which indicates low-affinity interactions. Upon chromatography on HA, [125I]rgp160 is repeatedly eluted as a retarded fraction when compared to the elutions volume of [125I]rgp160-soluble heparin complex. Under the same experimental conditions, [125I]rgp120 is also eluted, but as a less retarded fraction than [125I]rgp160. Taken together, these results suggest that, at least part of the described anti HIV-1 activity of heparin might be mediated by interaction with HIV-1 major envelope glycoprotein.  相似文献   

18.
The glycosphingolipid galactosylceramide (GalCer), which binds gp120 with high affinity and specificity, is a potential alternative receptor for human immunodeficiency virus type 1 (HIV-1) in some CD4-negative neural and epithelial human cells, including the human colonic epithelial cell line HT-29. In the present study, we demonstrate that synthetic multibranched peptides derived from the consensus sequence of the HIV-1 V3 loop block HIV-1 infection in HT-29 cells. The most active peptide was an eight-branched multimer of the motif Gly-Pro-Gly-Arg-Ala-Phe which at a concentration of 1.8 microM induced a 50% inhibition of HIV-1 infection in competition experiments. This peptide was not toxic to HT-29 cells, and preincubation with HIV-1 did not affect viral infectivity, indicating that the antiviral activity was not due to a nonspecific virucidal effect. Using a high-performance thin-layer chromatography binding assay, we found that multibranched V3 peptides recognized GalCer and inhibited binding of recombinant gp120 to the glycosphingolipid. In addition, these peptides abolished the binding of an anti-GalCer monoclonal antibody to GalCer on the surface of live HT-29 cells. These data provide additional evidence that the V3 loop is involved in the binding of gp120 to the GalCer receptor and show that multibranched V3 peptides are potent inhibitors of the GalCer-dependent pathway of HIV-1 infection in CD4-negative mucosal epithelial cells.  相似文献   

19.
It is well established that the gp120 V3 loop of T-cell-line-adapted human immunodeficiency virus type 1 (HIV-1) binds both cell-associated and soluble polyanions. Virus infectivity is increased by interactions between HIV-1 and heparan sulfate proteoglycans on some cell types, and soluble polyanions such as heparin and dextran sulfate neutralize HIV-1 in vitro. However, the analysis of gp120-polyanion interactions has been limited to T-cell-line-adapted, CXCR4-using virus and virus-derived gp120, and the polyanion binding ability of gp120 regions other than the V3 loop has not been addressed. Here we demonstrate by monoclonal-antibody inhibition, labeled heparin binding, and surface plasmon resonance studies that a second site, most probably corresponding to the newly defined, highly conserved coreceptor binding region on gp120, forms part of the polyanion binding surface. Consistent with the binding of polyanions to the coreceptor binding surface, dextran sulfate interfered with the gp120-CXCR4 association while having no detectable effect on the gp120-CD4 interaction. The interaction between polyanions and X4 or R5X4 gp120 was readily detectable, whereas weak or undetectable binding was observed with R5 gp120. Analysis of mutated forms of X4 gp120 demonstrated that the V3 loop is the major determinant for polyanion binding whereas other regions, including the V1/V2 loop structure and the NH(2) and COOH termini, exert a more subtle influence. A molecular model of the electrostatic potential of the conserved coreceptor binding region confirmed that it is basic but that the overall charge on this surface is dominated by the V3 loop. These results demonstrate a selective interaction of gp120 with polyanions and suggest that the conserved coreceptor binding surface may present a novel and conserved target for therapeutic intervention.  相似文献   

20.
Through an integrated study of the reactivity of a monoclonal antibody, 803-15.6, with synthetic peptides and native recombinant HIV-1 envelope glycoprotein gp120, we have obtained structure-functional information on a region of rgp120 not yet elucidated by X-ray crystallography. mAb 803-15.6 binds with high affinity and broad cross-clade specificity to the conserved C-terminal region (amino acids 502-516) of HIV-1 rgp120. Phage display selection from a random peptide library identified the core binding motif as AXXKXRH, homologous to residues 502-508. Using quantitative binding analyses, the affinity of mAb 803-15.6 for native, monomeric recombinant gp120HXB2 (rgp120) was found to be similar to that for the synthetic gp120 peptide (502-516). Circular dichroism studies indicate that the synthetic peptide largely has a random coil conformation in solution. The results therefore suggest that the 803-15.6 epitope is fully accessible on rgp120 and that this region of rgp120 is as flexible as the synthetic peptide. Residues 502-504 are on the edge of a putative gp41 binding site that has been postulated to change conformation on CD4 binding. However, the affinity of mAb 803-15.6 for rgp120 is not affected by binding of CD4 and vice-versa. These results suggest either that the 502-504 region does not change conformation upon CD4 binding, or that recombinant gp120 does not undergo the same changes as occur in the native viral gp120-gp41 oligomer. The detailed characterization of the 803-15.6 epitope may be useful for further study of the role of the C5 region of gp120 in the viral attachment and fusion process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号