首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various aerobic Gram-negative bacteria were analysed for utilizing 4-hydroxyhexanoic acid (4HHx) as a carbon source for growth and for synthesis of polyhydroxyalkanoic acids (PHA). Although many wild types grew on 4HHx, only recombinant strains of the PHA-negative mutants Pseudomonas putida GPp104 and Alcaligenes eutrophus PHB4, which harboured plasmid pHP1014::E156 with the PHA-biosynthesis genes of Thiocapsa pfennigii, incorporated 4HHx up to a molar fraction of 47 or 1.4%, respectively, into PHA if the cells were cultivated in the presence of 4HHx as sole carbon source and under nitrogen starvation. A terpolyester consisting of 3-hydroxybutyric acid (3HB), 3-hydroxyhexanoic acid (3HHx) and 4HHx was synthesized, as revealed by gas chromatographic analysis of the accumulated polyester and as confirmed by nuclear magnetic resonance spectroscopic analysis of the isolated polyester. 4HHx was also detected in PHA accumulated by Rhodococcus ruber if 4HHx was used as a carbon source. However, it occurred at a molar fraction of maximally 1.3 mol% only beside 3HB, 3-hydroxyvaleric acid and 3HHx. Correspondence to: A. Steinbüchel  相似文献   

2.
Summary Twenty-four different strains of aerobic Gram-negative bacteria, mainly belonging to the genera Alcaligenes, Paracoccus, Pseudomonas and Methylobacterium, were examined with respect to their ability to utilize 4-hydroxyvaleric acid (4HV), 4-valerolactone (4VL) and 3-hydroxypropionic acid (3HP) as carbon sources for growth and for accumulation of polyhydroxyalkanoic acid (PHA). A gas chromatographic (GC) method for the detection of 3-hydroxyalkanoic acid methyl esters has been extended for the detection of derivatives obtained from the methanolysis of 4-hydroxybutyric acid (4HB) and 4HV. Most of the Alcaligenes species and P. oxalaticus Ox1 accumulated a terpolyester consisting of 3-hydroxybutyric acid (3HB), 3-hydroxyvaleric acid (3HV) and 4HV as constituents from 4HV or 4VL as sole carbon sources in batch, fed-batch or two-stage fed-batch cultures. Poly(3HB-co-3HV-co-4HV) accumulated from 4HV by A. eutrophus strain NCIB 11599 amounted to approximately 50% of the cell dry matter and was composed of 42.0 mol % 3HB, 52.2 mol % 3HV and 5.6 mol % 4HV, respectively. Pseudomonads, which belong to the rRNA homology group I, were not able to incorporate 4HV. With 3HP as carbon source, the GC analysis provided evidence for the presence of 3HP in the PHA of many bacteria. Nuclear magnetic resonance spectroscopic analysis confirmed that, for example, A. eutrophus strain TF93 accumulated poly(3HB-co-3HP) with 98 mol % 3HB and 2 mol % 3HP if the cells were cultivated in the presence of 0.5% (w/v) 3HP. Offprint requests to: A. Steinbüchel  相似文献   

3.
Screening experiments identified several bacteria which were able to use residual oil from biotechnological rhamnose production as a carbon source for growth. Ralstonia eutropha H16 and Pseudomonas oleovorans were able to use this waste material as the sole carbon source for growth and for the accumulation of polyhydroxyalkanoic acids (PHA). R. eutropha and P. oleovorans accumulated PHA amounting to 41.3% and 38.9%, respectively, of the cell dry mass, when these strains were cultivated in mineral salt medium with the oil from the rhamnose production as the sole carbon source. The accumulated PHA isolated from R. eutropha consisted of only 3-hydroxybutyric acid, whereas the PHA isolated from P. oleovorans consisted of 3-hydroxyhexanoic acid, 3-hydroxyoctanoic acid, 3-hydroxy decanoic acid, and 3-hydroxydodecanoic acid. The composition was confirmed by gas chromatography of the isolated polyesters. Batch and fed-batch cultivations in stirred-tank reactors were done. Received: 15 June 1999 / Received revision: 10 August 1999 / Accepted: 13 August 1999  相似文献   

4.
The methanolysis products of polyhydroxyalkanoic acids (PHAs) containing 4-hydroxybutyric acid (4HB), 4-hydroxyvaleric acid (4HV), and 4-hydroxyhexanoic acid (4HHx), when analyzed by GC-MS, showed two major chromatographic peaks with characteristic retention times of each methyl ester of 4-hydroxyalkanoic acid and the corresponding g-lactone (-butyrolactone, -valerolactone, -caprolactone, respectively). The method and results of GC-MS could be incorporated into an efficient screening procedure for isolation of bacterial strains which could accumulate a PHA containing 4-hydroxyalkanoic acid as the principal monomer from structurally related carbon substrates.  相似文献   

5.
6.
The generation and characterization of Pseudomonas putida KT2442 mutants affected in poly-3-hydroxyalkanoate (PHA) synthesis are reported. The mutants from P. putida KT2442 carrying several copies of the PHA-polymerase-encoding gene (phaC) were isolated via N-methyl-N′-nitro-N-nitrosoguanidine chemical mutagenesis and contained mutation(s) on genes that are involved in PHA accumulation other than the phaC genes. No PHA-free mutants were obtained, suggesting that there must be various routes for the synthesis of PHA polymerase precursors. One of the isolated mutants (GPp120) accumulated more PHA than the parental strain, and there was virtually no down-regulation of PHA formation by growth in non-limiting amounts of nitrogen, which normally block or reduce formation of PHA. Compared to the parental strain, GPp120 exhibited significant changes in physiology and morphology when grown in minimal medium: the growth rate was reduced more than twofold and cells formed filaments. The other four groups of isolated mutants, with P. putida strains GPp121 to GPp124 as characteristic type strains, exhibited morphological characteristics similar to those of the parental strain. However, they showed reduced PHA production compared to the parental PHA+ strain, and especially GPp121 and GPp122 showed PHA formation tightly controlled by nutrient conditions. All of these mutants provide starting points for genetically dissecting the biosynthesis and regulation of PHA precursors. Received: 10 November 1997 / Received revision: 6 February 1998 / Accepted: 6 February 1998  相似文献   

7.
This study describes a comparison of the polyhydroxyalkanoate (PHA) synthases PhaC1 and PhaC2 of Pseudomonas mendocina. The P mendocina pha gene locus, encoding two PHA synthase genes [phaC1Pm and phaC2pm flanking a PHA depolymerase gene (phaZ)], was cloned, and the nucleotide sequences of phaC1Pm (1,677 bp), phaZ (1,034 bp), and phaC2pm (1,680 bp) were determined. The amino acid sequences deduced from phaC1Pm and phaC2pm showed highest similarities to the corresponding PHA synthases from other pseudomonads sensu stricto. The two PHA synthase genes conferred PHA synthesis to the PHA-negative mutants P. putida GPp104 and Ralstonia eutropha PHB-4. In P. putida GPp 104, phaC1Pm and phaC2Pm mediated PHA synthesis of medium-chain-length hydroxyalkanoates (C6-C12) as often reported for other pseudomonads. In contrast, in R. eutropha PHB-4, either PHA synthase gene also led to the incorporation of 3-hydroxybutyrate (3HB) into PHA. Recombinant strains of R. eutropha PHB-4 harboring either P. mendocina phaC gene even accumulated a homopolyester of 3HB during cultivation with gluconate, with poly(3HB) amounting to more than 80% of the cell dry matter if phaC2 was expressed. Interestingly, recombinant cells harboring the phaC1 synthase gene accumulated higher amounts of PHA when cultivated with fatty acids as sole carbon source, whereas recombinant cells harboring PhaC2 synthase accumulated higher amounts when gluconate was used as carbon source in storage experiments in either host. Furthermore, isogenic phaC1 and phaC2 knock-out mutants of P. mendocina provided evidence that PhaC1 is the major enzyme for PHA synthesis in P. mendocina, whereas PhaC2 contributes to the accumulation of PHA in this bacterium to only a minor extent, and then only when cultivated on gluconate.  相似文献   

8.
Physiological–biochemical, genetic, and cultural properties of the glucose-utilizing mutant strain Ralstonia eutropha B8562 have been compared with those of its parent strain R. eutropha B5786. It has been shown that growth characteristics of the strain cultured on glucose as the sole carbon and energy source are comparable with those of the parent strain. Strain B8562 is characterized by high polyhydroxyalkanoate (PHA) yields on different carbon sources (CO2, fructose, and glucose). PHA accumulation in the strain batch cultured on glucose under nitrogen deficiency reaches 90 %. The major monomer in the PHA is β-hydroxybutyric acid (more than 99 mol %); the identified minor components are β-hydroxyvaleric acid (0.25–0.72 mol %) and β-hydroxyhexanoic acid (0.08–1.5 mol %). The strain is a promising PHA producer on available sugar-containing media with glucose.  相似文献   

9.
Chromobacterium violaceum DSM 30191 accumulated a homopolyester of 3-hydroxyvaleric acid (3HV) up to 65% of the cellular dry matter during cultivation in fed-batch cultures with valeric acid as sole carbon source and during cell starvation of the nitrogen source. From fructose, gluconate, propionate or hexanoate a homopolyester of 3-hydroxybutyrate (3HB) was accumulated. Poly(3HV) homopolyster was also accumulated by two different strains of C. violaceum, whereas two other strains of C. violaceum and three strains of Janthinobacterium lividum accumulated poly(3HB-co-3HV) copolyesters from valerate. The composition of the biosynthetic poly(3HV) was confirmed by various nuclear magnetic resonance spectroscopic methods. Differential scanning calorimetry analysis of four poly(3HV) samples that were isolated from different batches of cells revealed glass transition temperatures between –10 and –12°C and melting points between 107 and 112°C. Viscosity measurements gave intrinsic viscosities between 62.5 and 124.8 × 10–2 dl/g for these samples, indicating approximate relative molecular masses between 60 000 and 145 000 of the biosynthetic poly(3HV). Correspondence to: A. Steinbüchel  相似文献   

10.
Summary A citronellol-utilizing bacterium was isolated that accumulated a polyester consisting of 3-hydroxybutyric acid (3HB) and of medium-chain-length 3-hydroxyalkanoic acids (3HAMCL) from various carbon sources up to approximately 70% of the cellular dry matter if the cells were cultivated in ammineral salts medium under nitrogen limitation. In octanoate-grown cells, for instance, the polyester consisted of 87.5 mol% 3HB and 12.5 mol% 3-hydroxyoctanoic acid (3HO), whereas it consisted of 10.3 mol% 3HB, 16.7 mol% 3HO and 73.0 mol% 3-hydroxydecanoic acid (3HD) in gluconate-grown cells. However, the results of various experiments indicated that a blend rather than a copolyester was synthesized in the cell. It was the only strain among 45 different recently isolated citronellol-utilizing bacteria that accumulated such a polyester. All other citronellol-utilizing bacteria behaved like Pseudomonas aeruginosa with respect to their polyhydroxyalkanoic acid (PHA) biosynthetic capabilities and accumulated PHA consisting of 3HAMCL with 3HO and 3HD as the main constituents from octanoate or gluconate, respectively, whereas 3HB was never present. None of 232 different heavy-metal-resistant bacteria was able to accumulate PHA composed of 3HB plus, for example, 3HO. Only 20.3% did not accumulate any PHA at all, 44.8% accumulated PHB from gluconate, and 34.9% behaved like P. aeruginosa. Many bacteria belonging to the latter group were distinguished from the other by rapid growth in nutrient broth and in gluconate mineral salts medium and by their ability to grow in the presence of a high concentration (up to 1.5%, w/v) of octanoate. Correspondence to: A. Steinbüchel  相似文献   

11.
Pseudomonas sp. 61-3 accumulated a blend of poly(3-hydroxybutyrate) [P(3HB)] homopolymer and a random copolymer consisting of 3-hydroxyalkanoate (3HA) units of 4–12 carbon atoms. The genes encoding β-ketothiolase (PhbARe) and NADPH-dependent acetoacetyl-CoA reductase (PhbBRe) from Ralstoniaeutropha were expressed under the control of promoters for Pseudomonas sp. 61-3 pha locus or R. eutropha phb operon together with phaC1 Ps gene (PHA synthase 1 gene) from Pseudomonas sp. 61-3 in PHA-negative mutants P. putida GPp104 and R. eutropha PHB4 to produce copolyesters [P(3HB-co-3HA)] consisting of 3HB and medium-chain-length 3HA units of 6–12 carbon atoms. The introduction of the three genes into GPp104 strain conferred the ability to synthesize P(3HB-co-3HA) with relatively high 3HB compositions (up to 49 mol%) from gluconate and alkanoates, although 3HB units were not incorporated at all or at a very low fraction (3 mol%) into copolyesters by the strain carrying phaC1 Ps gene only. In addition, recombinant strains of R. eutropha PHB4 produced P(3HB-co-3HA) with higher 3HB fractions from alkanoates and plant oils than those from recombinant GPp104 strains. One of the recombinant strains, R. eutropha PHB4/pJKSc46-pha, in which all the genes introduced were expressed under the control of the native promoter for Pseudomonas sp. 61-3 pha locus, accumulated P(3HB-co-3HA) copolyester with a very high 3HB fraction (85 mol%) from palm oil. The nuclear magnetic resonance analyses showed that the copolyesters obtained here were random copolymers of 3HB and 3HA units. Received: 12 July 1999 / Received revision: 1 October 1999 / Accepted: 2 October 1999  相似文献   

12.
An efficient method to prepare enantiomerically pure (R)-3-hydroxycarboxylic acids from bacterial polyhydroxyalkanoates (PHAs) accumulated by Pseudomonas putida GPo1 is reported in this study. (R)-3-Hydroxycarboxylic acids from whole cells were obtained when conditions were provided to promote in vivo depolymerization of intracellular PHA. The monomers were secreted into the extracellular environment. They were separated and purified by acidic precipitation, preparative reversed-phase column chromatography, and subsequent solvent extraction. Eight (R)-3-hydroxycarboxylic acids were isolated: (R)-3-hydroxyoctanoic acid, (R)-3-hydroxyhexanoic acid, (R)-3-hydroxy-10-undecenoic acid, (R)-3-hydroxy-8-nonenoic acid, (R)-3-hydroxy-6-heptenoic acid, (R)-3-hydroxyundecanoic acid, (R)-3-hydroxynonanoic acid, and (R)-3-hydroxyheptanoic acid. The overall yield based on released monomers was around 78 wt % for (R)-3-hydroxyoctanoic acid. All obtained monomers had a purity of over 95 wt %. The physical properties of the purified monomers and their antimicrobial activities were also investigated.  相似文献   

13.
嗜水气单胞菌WQ中PHBHHx的合成及其分子基础研究   总被引:3,自引:0,他引:3  
聚羟基脂肪酸酯(Polyhydroxyalkanoate,PHA)是一系列生物合成的高分子材料,其单体可由多种3-羟基脂肪酸(3-hydroxyalkanoate,3HA)构成^[1]。PHA物理和机械性能的变化很大,从高脆性到弹性体,这跟它们的单体成分有很大关系^[2]。短链和中长链单体共聚的PHA比短链单体或中长链单体聚合得到的PHA有着更好的性能^[3]。在1994年,豚鼠气单胞菌(Aeromonas caviae)FA440被发现能以偶数碳原子数脂肪酸或植物油作为碳源在体内积累PHBHHx^[4]其PHA生物合成基因被成功克隆^[5]。根据亚基数目和底物特异性,PHA合成的关键酶,即PHA合酶或PhaC,被分成了3种类型。A.caviae的PHA合酶属于第1类PHA合酶^[6]。PHA合酶的一些类型含有一些保守的基因序列,该特征可被用于克隆,特别是第Ⅱ类PHA合酶^[2,8]。嗜水气单胞菌(Aeromonas hydrophila)WQ和A.hydrophila 4AK4是能够合成PHBHHx的另外两种菌株,其中A.hydrophila 4AK4已被用作大规模生产PHBHHx。就目前来说,不管生长条件怎么改变,其合成的PHBHHx中3羟基己酸单体(3-hydroxyhexanoate,3HHx)的含量始终在12%~17%之间变化^[9]。而A.hydrophila WQ合成的PHBHHx中则含有6%~14% 3HHx。本论文研究了A.hydrophila WQ的PHA生物合成及其分子基础。  相似文献   

14.
From a set of mixed carbon sources, 5-phenylvaleric acid (PV) and octanoic acid (OA), polyhydroxyalkanoic acid (PHA) was separately accumulated in the two pseudomonads Pseudomonas putida BM01 and Pseudomonas citronellolis (ATCC 13674) to investigate any structural difference between the two PHA accumulated under a similar culture condition using one-step culture technique. The resulting polymers were isolated by chloroform solvent extraction and characterized by fractional precipitation and differential scanning calorimetry. The solvent fractionation analysis showed that the PHA synthesized by P. putida was separated into two fractions, 3-hydroxy-5-phenylvalerate (3HPV))-rich PHA fraction in the precipitate phase and 3-hydroxyoctanoate (3HO)-rich PHA fraction in the solution phase whereas the PHA produced by P. citronellolis exhibited a rather little compositional separation into the two phases. According to the thermal analysis, the P. putida PHA exhibited two glass transitions indicative of the PHA not being homogeneous whereas the P. citronellolis PHA exhibited only one glass transition. It was found that the structural heterogeneity of the P. putida PHA was caused by a significant difference in the assimilation rate between PV and OA. The structural heterogeneity present in the P. putida PHA was also confirmed by a first order degradation kinetics analysis of the PHA in the cells. The two different first-order degradation rate constants (k1), 0.087 and 0.015/h for 3HO- and 3HPV-unit, respectively, were observed in a polymer system over the first 20 h of degradation. In the later degradation period, the disappearance rate of 3HO-unit was calculated to be 0.020 h. The k1 value of 0.083/h, almost the same as for the 3HO-unit in the P. putida PHA, was obtained for the P(3HO) accumulated in P. putida BM01 grown on OA as the only carbon source. In addition, the k1 value of 0.015/h for the 3HPV-unit in the P. putida PHA, was also close to 0.019/h for the P(3HPV) homopolymer accumulated in P. putida BM01 grown on PV plus butyric acid. On the contrary, the k1 values for the P. citronellolis PHA were determined to be 0.035 and 0.029/h for 3HO- and 3HPV-unit, respectively, thus these two relatively close values implying a random copolymer nature of the P. citronellolis PHA. In addition, the faster degradation of P(3HO) than P(3HPV) by the intracellular P. putida PHA depolymerase indicates that the enzyme is more specific against the aliphatic PHA than the aromatic PHA.  相似文献   

15.
Twenty-five gram-negative bacteria and one gram-positive bacterium capable of growing on poly(3-hydroxyoctanoic acid) [P(3HO)] as the sole source of carbon and energy were isolated from various soils, lake water, and activated sludge. Most of the isolates degraded only P(3HO) and copolymers of medium-chain-length (MCL) hydroxyalkanoic acids (HA). Except for the gram-positive strain, which was able to hydrolyze P(3HO) and poly(3-hydroxybutyric acid) [P(3HB)], no isolate was able to degrade polymers of short-chain-length HA, such as P(3HB) or poly(3-hydroxyvalerate) [P(3HV)]. All strains utilized a large variety of monomeric substrates for growth. All gram-negative strains, but not the gram-positive strain, accumulated poly(hydroxyalkanoic acids) (PHA), consisting of MCL HA, if they were cultivated under accumulation conditions. One strain, which was identified as Pseudomonas fluorescens GK13 (biovar V), was selected and the extracellular P(3HO) depolymerase of this strain was purified from the culture medium of P(3HO)-grown cells by chromatography with Octyl-Sepharose CL4B and by gel filtration with Superose 12. The relative molecular weights of the native and sodium dodecyl sulfate-treated enzymes were 48,000 and 25,000, respectively. The purified enzyme hydrolyzed P(3HO), copolymers of MCL HA, and para-nitrophenyl esters of fatty acids. P(3HB), P(3HV), and characteristic substrates for lipases, such as Tween 80 or triolein, were not hydrolyzed. The P(3HO) depolymerase of P. fluorescens GK13 was insensitive to phenylmethylsulfonyl fluoride and dithioerythritol, unlike other PHA depolymerases. The dimeric ester of 3-hydroxyoctanoic acid was identified as the main product of enzymatic hydrolysis of P(3HO).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Polyhydroxyalkanoate (PHA) synthase genes (phaC) were cloned from two Aeromonas hydrophila strains named WQ and 4AK5, respectively. Both strains are able to produce PHBHHx copolyesters consisting of 3-hydroxybutyrate (3HB) and 3-hydroxyhexanoate (3HHx). Sequence analysis showed that there was only 2 bp difference between these two PHA synthase genes, corresponding to two-amino acid difference at positions of 437 and 458 of the two synthases. PHA productivity and its monomer content produced by A. hydrophila WQ and A. hydrophila 4AK5 were quite different. A. hydrophila WQ accumulated 33% PHBHHx of its cell dry weight (CDW) with 5 mol% 3HHx in the copolyester when cultured in lauric acid for 48 h. Yet A. hydrophila 4AK5 was able to produce 43% PHBHHx of the CDW with 14 mol% 3HHx under the same condition. Hetero-expression of PHA synthase genes of A. hydrophila WQ and A. hydrophila 4AK5, respectively, in Escherichia coli XL1-Blue led to PHBHHx accumulation of 24% and 39% of the CDW and the 3HHx content in PHBHHx were 6 and 15 mol%, respectively. This indicated that the function of these two PHA synthases were different due to these two different residues at positions of 437 and 458. Site specific mutation was carried out to change these two amino acid residues. Results showed that the changes on either of the two amino acids negatively affected the PHA productivity.  相似文献   

17.
Using a 30-mer oligonucleotide probe highly specific for polyhydroxyalkanoic acid (PHA) synthase genes, the respective genes of Pseudomonas citronellolis, P. mendocina, Pseudomonas sp. DSM 1650 and Pseudomonas sp. GP4BH1 were cloned from genomic libraries in the cosmid pHC79. A 19.5-kbp and a 22.0-kbp EcoRI restriction fragment of P. citronellolis or Pseudomonas sp. DSM 1650, respectively, conferred the ability to accumulate PHA of medium-chain-length 3-hydroxyalkanoic acids (HA mcl ) from octanoate as well as from gluconate to the PHA-negative mutant P. putida GPp104. An 11.0-kbp EcoRI fragment was cloned from P. mendocina, which restored in GPp104 the ability to synthesize PHA from octanoate but not from gluconate. From Pseudomonas sp. GP4BH1 three different genomic fragments encoding PHA synthases were cloned. This indicated that strain GP4BH1 possesses three different functionally active PHA synthases. Two of these fragments (6.4 kbp and 3.8 kbp) encoded for a PHA synthase, preferentially incorporating hydroxyalkanoic acids of short chain length (HA scl ), and the synthases were expressed in either GPp104 and Alcaligenes eutrophus H16-PHB4, respectively. The PHA synthase encoded by the third fragment (6.5 kbp) led to the incorporation of HA mcl and was expressed in GPp104 but not in PHB4. Correspondence to: A. Steinbüchel  相似文献   

18.
Sodium terephthalate (TA) produced from a PET pyrolysis product and waste glycerol (WG) from biodiesel manufacture were supplied to Pseudomonas putida GO16 in a fed-batch bioreactor. Six feeding strategies were employed by altering the sequence of TA and WG feeding. P. putida GO16 reached 8.70 g/l cell dry weight (CDW) and 2.61 g/l PHA in 48 h when grown on TA alone. When TA and WG were supplied in combination, biomass productivity (g/l/h) was increased between 1.3- and 1.7-fold and PHA productivity (g/l/h) was increased 1.8- to 2.2-fold compared to TA supplied alone. The monomer composition of the PHA accumulated from TA or WG was predominantly composed of 3-hydroxydecanoic acid. PHA monomers 3-hydroxytetradeeanoic acid and 3-hydroxytetradecenoic acid were not present in PHA accumulated from TA alone but were present when WG was supplied to the fermentation. When WG was either the sole carbon source or the predominant carbon source supplied to the fermentation the molecular weight of PHA accumulated was lower compared to PHA accumulated when TA was supplied as the sole substrate. Despite similarities in data for the properties of the polymers, PHAs produced with WG present in the PHA accumulation phase were tacky while PHA produced where TA was the sole carbon substrate in the polymer accumulation phase exhibited little or no tackiness at room temperature. The co-feeding of WG to fermentations allows for increased utilisation of TA. The order of feeding of WG and TA has an effect on TA utilisation and polymer properties.  相似文献   

19.
AIMS: Burkholderia sp. USM (JCM15050) isolated from oil-polluted wastewater is capable of utilizing palm oil products and glycerol to synthesize poly(3-hydroxybutyrate) [P(3HB)]. To confer the ability to produce polymer containing 3-hydroxyhexanoate (3HHx), plasmid (pBBREE32d13) harbouring the polyhydroxyalkanoate (PHA) synthase gene of Aeromonas caviae (phaC(Ac)) was transformed into this strain. Methods and Results: The resulting transformant incorporated approximately 1 ± 0·3 mol% of 3HHx in the polymer when crude palm kernel oil (CPKO) or palm kernel acid oil was used as the sole carbon source. In addition, when the transformed strain was cultivated in the mixtures of CPKO and sodium valerate, PHA containing 69 mol% 3HB, 30 mol% 3-hydroxyvalerate and 1 mol% 3HHx monomers was produced. Batch feeding of carbon sources with 0·5% (v/v) CPKO at 0 h and 0·25% (w/v) sodium valerate at 36 h yielded 6 mol% of 3HHx monomer by controlled-feeding strategies. CONCLUSIONS: Burkholderia sp. USM (JCM15050) has the metabolic pathways to supply both the short-chain length (SCL) and medium-chain length (MCL) PHA monomers. By transforming the strain with the Aer. caviae PHA synthase with broader substrate specificity, SCL-MCL PHA was produced. Significance and Impact of the Study: This is the first study demonstrating the ability of transformant Burkholderia to produce P(3HB-co-3HHx) from a single carbon source.  相似文献   

20.
Summary Production of poly(3-hydroxybutyric acid) [P(3HB)] by Rhodopseudomonas palustris SP5212 isolated in this laboratory has been optimized under phototrophic microaerophilic conditions. Cells grown in malate medium accumulated 7.7% (w/w) P(3HB) of cellular dry weight at the early stationary phase of growth. The accumulated P(3HB) however, attained 15% (w/w) of cellular dry weight when acetate (1.0%, w/v) was used as the sole carbon source under nitrogen-limiting conditions. Synthesis and accumulation of polymer was favoured by sulphate-free conditions and at a phosphate concentration sub-optimal for growth. The polymer content of cells was increased drastically (34% of cellular dry weight) when the acetate containing medium was supplemented with n-alkanoic acids. Compositional analysis by H1 NMR revealed that these accumulated polymers were composed of 3-hydroxybutyric acid and 3-hydroxyvaleric acid (3HV). The contents of 3HV in these copolymers ranged from 14 to 38 mol%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号