首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 686 毫秒
1.
Vitamin K-dependent protein S is shown to contain four very high affinity Ca2(+)-binding sites. The number of sites and their affinities were determined from Ca2+ titration in the presence of the chromophoric chelator Quin 2. In 0.15 M NaCl, pH 7.5, the four macroscopic binding constants are K1 greater than or equal to 1 x 10(8) M-1, K2 = 3 +/- 2 x 10(7) M-1, K3 = 4 +/- 2 x 10(6) M-1, and K4 = 9 +/- 4 x 10(5) M-1. At low ionic strength, the corresponding values are K1 greater than or equal to 2 x 10(9) M-1, K2 = 9 +/- 4 x 10(8) M-1, K3 = 2 +/- 1 x 10(8) M-1, and K4 = 9 +/- 4 x 10(7) M-1. To localize the Ca2(+)-binding sites, protein S was subjected to proteolysis using lysyl endopeptidase. This yielded a 20-21-kDa fragment which comprised the third and fourth epidermal growth factor (EGF)-like domains and remained high affinity Ca2(+)-binding site(s). The susceptibility of the EGF-like domains to proteolysis increased when Ca2+ was removed from protein S indicating that the Ca2+ binding is important for the stability and/or conformation of the EGF domains. Three of the four EGF-like domains in protein S contain beta-hydroxyasparagine. In each of these domains there is a cluster of three or four negatively charged amino acid residues which are likely to contribute to the extraordinary high Ca2+ affinity. From sequence homology it is suggested that this novel type of high affinity Ca2(+)-binding site is present in several other proteins, e.g. in the EGF-like domains in the low sensity lipoproteins receptor, thrombomodulin, the Notch protein of Drosophila melanogaster, and transforming growth factor beta 1-binding protein.  相似文献   

2.
Crayfish tail muscle troponin C (TnC) has been fractionated into its five components and the Ca2+-binding properties of the two major isoforms (alpha and gamma) determined by equilibrium dialysis. alpha-TnC contains one Ca2+-binding site with a binding constant of 1 x 10(6) M-1 and one Ca2+ site with a binding constant of 1 x 10(4) M-1. In the complex of alpha-TnC with troponin I (TnI) or with TnI and troponin T (TnT), both sites bind Ca2+ with a single affinity constant of 2-4 x 10(6) M-1. gamma-TnC contains two Ca2+-binding sites with a binding constant of 2 x 10(4) M-1. In the gamma-TnC.TnI and gamma-TnC.TnI.TnT complexes, the binding constant of one of the sites is increased to 4-5 x 10(6) M-1, while Ca2+ binding to the second site is hardly affected (KCa = 4-7 x 10(4) M-1). In the presence of 10 mM MgCl2, the two Ca2+-binding sites of both TnC isoforms exhibit a 2-3-fold lower affinity. Assuming competition between Ca2+ and Mg2+ for these sites, their binding constants for Mg2+ were 120-230 M-1. In the absence of Ca2+, however, alpha-TnC and gamma-TnC bind 4-5 mol of Mg2+/mol with a binding constant of 1 x 10(3) M-1. These results suggest that the effect of Mg2+ on Ca2+ binding at the two Ca2+ sites is noncompetitive, i.e. Mg2+ does not bind directly to these sites (Ca2+-specific sites). Since the formation of the complex of crayfish TnI with alpha-TnC or gamma-TnC increases significantly the affinity of one of their two Ca2+-specific sites, I conclude that the binding of Ca2+ to only one site (regulatory Ca2+-specific site) controls the Ca2+-dependent interaction between crayfish TnCs and TnI.  相似文献   

3.
The effect of Mg2+ on the Ca2+ binding to rabbit fast skeletal troponin C and the CA2+ dependence of myofibrillar ATPase activity was studied in the physiological state where troponin C was incorporated into myofibrils. The Ca2+ binding to troponin C in myofibrils was measured directly by 45Ca using the CDTA-treated myofibrils as previously reported (Morimoto, S. and Ohtsuki, I. (1989) J. Biochem. 105, 435-439). It was found that the Ca2+ binding to the low and high affinity sites of troponin C in myofibrils was affected by Mg2+ competitively and the Ca2(+)- and Mg2(+)-binding constants were 6.20 x 10(6) and 1.94 x 10(2) M-1, respectively, for the low affinity sites, and 1.58 x 10(8) and 1.33 x 10(3) M-1, respectively, for the high affinity sites. The Ca2+ dependence of myofibrillar ATPase was also affected by Mg2+, with the apparent Ca2(+)- and Mg2(+)-binding constants of 1.46 x 10(6) and 276 x 10(2) M-1, respectively, suggesting that the myofibrillar ATPase was modulated through a competitive action of Mg2+ on Ca2+ binding to the low affinity sites, though the Ca2+ binding to the low affinity sites was not simply related to the myofibrillar ATPase.  相似文献   

4.
Ca2+-binding of S-100 protein was studied using a Ca2+ electrode at pH 6.80. In the presence of 0.1 M KCl and 10 mM MgCl2 (ionic strength 0.13), Ca2+-binding to S-100 protein occurred in three steps with positive cooperativity. The numbers of bound Ca2+ ions in the three steps were 2, 2, and 4. The Ca2+-binding constants were 6.9 x 10(3) M-1, 2.9 x 10(3) M-1, and 3.7 x 10(2) M-1, respectively. The Ca2+-binding constants of the first and second steps obtained in the presence of 33.3 mM MgCl2 or 0.1 M KCl (ionic strength 0.10) were 1.4 times larger than those described above. This suggests that Mg2+ does not inhibit Ca2+-binding of S-100 protein. The increase of KCl concentration from 0.1 to 0.2 M caused a decrease of the Ca2+-binding constants to ca. 50%.  相似文献   

5.
Henzl MT  Agah S  Larson JD 《Biochemistry》2004,43(34):10906-10917
Association of the parvalbumin AB and CD-EF domains was examined in Hepes-buffered saline, pH 7.4, employing fragments from rat alpha and beta. All of the interactions require Ca(2+). In saturating Ca(2+), the alpha AB/alpha CD-EF (alpha/alpha) complex displays an association constant of (7.6 +/- 0.4) x 10(7) M(-1). Ca(2+)-binding data for a mixture of the alpha fragments are compatible with an identical two-site model, yielding an average binding constant of (8.5 +/- 0.2) x 10(5) M(-1). The beta/beta interaction is significantly weaker, exhibiting an association constant of (3.0 +/- 0.6) x 10(6) M(-1). The Ca(2+)-binding constants for beta/beta are likewise diminished, at (1.0 +/- 0.1) x 10(5) and (2.3 +/- 0.2) x 10(4) M(-1). The magnitude of the apparent DeltaDeltaG(degree)' for Ca(2+) binding by alpha/alpha and beta/beta, at 3.4 kcal/mol, approaches that measured for the intact proteins (3.6 kcal/mol) and is substantially larger than the 1.5 kcal/mol value previously measured for the isolated CD-EF domains. This result suggests that the AB domain can modulate the Ca(2+) affinities of the CD and EF sites. Interestingly, the heterologous alpha/beta complex displays a larger association constant [(6.6 +/- 0.4) x 10(6) M(-1)] than the homologous beta/beta complex and heightened Ca(2+) affinity [binding constants of (1.3 +/- 0.1) x 10(6) and (8.8 +/- 0.2) x 10(4) M(-1)]. By contrast, beta/alpha associates more weakly than alpha/alpha and exhibits sharply reduced affinity for Ca(2+). Thus, the interaction between the beta AB domain and beta CD-EF domain may act to attenuate Ca(2+) affinity in the intact protein.  相似文献   

6.
Porcine left ventricular cardiac myosin and rabbit white skeletal myosin were phosphorylated by rabbit skeletal myosin light chain kinase and their Ca2+ binding properties were examined by equilibrium dialysis techniques. No significant effect of phosphorylation on the Ca2+ binding properties of these myosins was observed. Both types of striated muscle myosins bound approximately 2 mol of Ca2+/mol of myosin with similar affinities of 3 x 10(7) M-1. In the presence of 3 x 10(-4) M Mg2+ the myosins bound Ca2+ with a reduced affinity of 3 to 4 x 10(5) M-1. Assuming competition between Mg2+ and Ca2+ for the binding sites on myosin, the changes in Ca2+ binding can be accounted for by a Mg2+ affinity of 2.5 to 3.0 x 10(5) M-1.  相似文献   

7.
Apparent Ca(2+)-binding constant (K(app)) of Caenorhabditis elegans troponin C (CeTnC) was determined by a fluorescence titration method. The K(app) of the N-domain Ca(2+)-binding site of CeTnC was 7.9+/-1.6 x 10(5) M(-1) and that of the C-domain site was 1.2+/-0.6 x 10(6) M(-1), respectively. Mg(2+)-dependence of the K(app) showed that both Ca(2+)-binding sites did not bind competitively Mg(2+). The Ca(2+) dissociation rate constant (k(off)) of CeTnC was determined by the fluorescence stopped-flow method. The k(off) of the N-domain Ca(2+)-binding site of CeTnC was 703+/-208 s(-1) and that of the C-domain site was 286+/-33 s(-1), respectively. From these values we could calculate the Ca(2+)-binding rate constant (k(on)) as to be 5.6+/-2.8 x 10(8) M(-1) s(-1) for the N-domain site and 3.4+/-2.1 x 10(8) M(-1) s(-1) for the C-domain site, respectively. These results mean that all Ca(2+)-binding sites of CeTnC are low affinity, fast dissociating and Ca(2+)-specific sites. Evolutional function of TnC between vertebrate and invertebrate and biological functions of wild type and mutant CeTnCs are discussed.  相似文献   

8.
Secretagogin is a hexa EF-hand protein, which has been identified as a novel potential tumour marker. In the present study, we show that secretagogin binds four Ca2+ ions (log K1=7.1+/-0.4, log K2=4.7+/-0.6, log K3=3.6+/-0.7 and log K4=4.6+/-0.6 in physiological salt buffers) with a [Ca2+](0.5) of approx. 25 microM. The tertiary structure of secretagogin changes significantly upon Ca2+ binding, but not upon Mg2+ binding, and the amount of exposed hydrophobic surface in secretagogin increases upon Ca2+ binding, but not upon Mg2+ binding. These properties suggest that secretagogin belongs to the 'sensor' family of Ca2+-binding proteins. However, in contrast with the prototypical Ca2+ sensor calmodulin, which interacts with a very large number of proteins, secretagogin is significantly less promiscuous. Only one secretagogin-interacting protein was reproducibly identified from insulinoma cell lysates and from bovine and mouse brain homogenates. This protein was identified as SNAP-25 (25 kDa synaptosome-associated protein), a protein involved in Ca2+-induced exocytosis in neurons and in neuroendocrine cells. K(d) was determined to be 1.2x10(-7) M in the presence of Ca2+ and 1.5x10(-6) M in the absence of Ca2+. The comparatively low Ca2+ affinity for secretagogin and the fact that it undergoes Ca2+-induced conformational changes and interacts with SNAP-25 raise the possibility that secretagogin may link Ca2+ signalling to exocytotic processes.  相似文献   

9.
Calcium-dependent control of caldesmon-actin interaction by S100 protein   总被引:3,自引:0,他引:3  
Caldesmon from chicken gizzard muscle has been examined for ability to interact with S100 protein using sedimentation, low-shear viscosity, and affinity chromatography. Ca2+/S100 protein, like Ca2+/calmodulin, inhibited the binding of caldesmon to F-actin in a concentration-dependent manner and the inhibition was not observed in the absence of Ca2+. Caldesmon was bound to S100 protein-Sepharose in the presence of Ca2+ and released with EGTA, indicating that there is a direct interaction between caldesmon and S100 protein. The binding of S100 protein to caldesmon also relieved actomyosin Mg2(+)-ATPase inhibition by caldesmon. The molar ratio of S100 protein to caldesmon required for half-maximal restoration was about 0.3, a value less than that in the case of calmodulin. S100 protein, however, was less effective in terms of the maximal extent of the restoration. With respect to Ca2(+)-sensitivity, the restoration profiles were monophasic with a midpoint at 3 x 10(-5) M for S100 protein and 8 x 10(-6) M for calmodulin. The restoration by S100 protein was almost wholly inhibited by TFP, but not by W-7. Taken together, our results suggest that a Ca2(+)-binding protein other than calmodulin may regulate caldesmon-dependent cellular functions.  相似文献   

10.
Ca2+ binding to pig cardiac myosin, subfragment-1 (S-1), and g2 light chain were investigated by the equilibrium dialysis method. Two different S-1s, one of which can bind Ca2+ and another which cannot, were prepared. In order to calculate the free Ca2+ concentrations adequately, the amounts of Ca2+ included in various chemicals and proteins were measured by atomic absorption spectroscopy. Ca2+ contamination was greatest in KCl among the chemicals tested. In addition, the Ca2+ strongly bound to myosin and S-1 was released in the presence of Mg2+. When Mg2+ was not added, the Ca2+-binding constant of myosin was 4 x 10(5) M-1 and the maximum binding number was 1.8 mol per mol of myosin. Cooperativity between the 2 Ca2+ bindings could not be demonstrated. Mg2+ strongly inhibited the Ca2+ binding: at a free Ca2+ concentration of 1 x 10(-5) M, 1.3 mol Ca2+ was bound to myosin in the absence of Mg2+, but 0.6 and 0.2 mol were bound in the presence of 0.3 and 4.5 mM Mg2+, respectively. The Ca2+-binding constant of S-1, which contained a 15,000 dalton component, was 8.6 x 10(5) M-1, and the maximum binding number was 0.7 mol per mol of S-1. The 15,000 dalton component could be exchanged with extraneous g2. S-1 which lacked the 15,000 component could not bind Ca2+ at free Ca2+ concentrations less than 0.1 mM. The Ca2+ binding to free g2 light chain was about 100 times weaker than the binding to myosin, as indicated previously for skeletal myosin (Okamoto, Y. & Yagi, K. (1976) J. Biochem. 80, 111--120). The Ca2+-binding constant was obtained as 4.1 x 10(3) M-1 in the absence of added Mg2+. Phosphorylation of g2 light chain did not affect the Ca2+ binding to the free g2 light chain or to myosin. Ca2+ binding to cardiac native tropomyosin was also measured.  相似文献   

11.
The Ca(2+)-binding epidermal growth factor (cbEGF)-like module is a structural component of numerous diverse proteins and occurs almost exclusively within repeated motifs. Notch-1, a fundamental receptor for cell fate decisions, contains 36 extracellular EGF modules in tandem, of which 21 are potentially Ca(2+)-binding. We report the Ca(2+)-binding properties of EGF11-12 and EGF10-13 from human Notch-1 (hNEGF11-12 and hNEGF10-13), modules previously shown to support Ca(2+)-dependent interactions with the ligands Delta and Serrate. Ca2+ titrations in the presence of chromophoric chelators, 5,5''-Br2BAPTA and 5-NBAPTA, gave two binding constants for hNEGF11-12, Kd1 = 3.4 x 10(-5) M and Kd2 > 2.5 x 10(-4) M. The high-affinity site was found to be localized to hNEGF12. Titration of hNEGF10-13 gave three binding constants, Kd1 = 3.1 x 10(-6) M, Kd2 = 1.6 x 10(-4) M, and Kd3 > 2.5 x 10(-4) M, demonstrating that assembly of EGF modules in tandem can increase Ca2+ affinity. The highest affinity sites in hNEGF11-12 and hNEGF10-13 had 10 to 100-fold higher affinity than reported for EGF32-33 and EGF25-31, respectively, from fibrillin-1, a connective tissue protein with 43 cbEGF modules. A model of hNEGF11-12 based on fibrillin-1 EGF32-33 demonstrates electronegative potential that could contribute to the higher affinity of the Ca(2+)-binding site in hNEGF12. These data demonstrate that the Ca2+ affinity of cbEGF repeats can be highly variable among different classes of cbEGF containing proteins.  相似文献   

12.
Henzl MT  Tanner JJ  Tan A 《Proteins》2011,79(3):752-764
Birds express two β-parvalbumin isoforms, parvalbumin 3 and avian thymic hormone (ATH). Parvalbumin 3 from chicken (CPV3) is identical to rat β-parvalbumin (β-PV) at 75 of 108 residues. CPV3 displays intermediate Ca(2+) affinity--higher than that of rat β-parvalbumin, but lower than that of ATH. As in rat β-PV, the attenuation of affinity is associated primarily with the CD site (residues 41-70), rather than the EF site (residues 80-108). Structural data for rat α- and β-parvalbumins suggest that divalent ion affinity is correlated with the similarity of the unliganded and Ca(2+)-bound conformations. We herein present a comparison of the solution structures of Ca(2+)-free and Ca(2+)-bound CPV3. Although the structures are generally similar, the conformations of residues 47 to 50 differ markedly in the two protein forms. These residues are located in the C helix, proximal to the CD binding loop. In response to Ca(2+) removal, F47 experiences much greater solvent accessibility. The side-chain of R48 assumes a position between the C and D helices, adjacent to R69. Significantly, I49 adopts an interior position in the unliganded protein that allows association with the side-chain of L50. Concomitantly, the realignment of F66 and F70 facilitates their interaction with I49 and reduces their contact with residues in the N-terminal AB domain. This reorganization of the hydrophobic core, although less profound, is nevertheless reminiscent of that observed in rat β-PV. The results lend further support to the idea that Ca(2+) affinity correlates with the structural similarity of the apo- and bound parvalbumin conformations.  相似文献   

13.
The cardiac troponin (Tn) complex, consisting of a Ca2+-binding subunit (TnC), an inhibitory subunit (TnI), and a tropomyosin-binding subunit (TnT), has been reconstituted from purified troponin subunits isolated from bovine heart muscle. The Ca2+-binding properties of cardiac Tn were determined by equilibrium dialysis using either EGTA or EDTA to regulate the free Ca2+ concentration. Cardiac Tn binds 3 mol Ca2+/mol and contains two Ca2+-binding sites with a binding constant of 3 X 10(8) M-1 and one binding site with a binding constant of 2 X 10(6) M-1. In the presence of 4 mM MgC12, the binding constant of the sites of higher affinity is reduced to 3 X 10(7) M-1, while Ca2+ binding to the site at the lower affinity is unaffected. The two high affinity Ca2+-binding sites of cardiac Tn are analogous to the two Ca2+-Mg2+ sites of skeletal Tn, while the single low affinity site is similar to the two Ca2+-specific sites of skeletal Tn (Potter, J. D., and Gergely, J. (1975) J. Biol. Chem. 250, 4625-5633). The Ca2+-binding properties of the complex of TnC and TnI (1:1 molar ratio) were similar to those of Tn. Cardiac TnC also binds 3 mol of Ca2+/mol and contains two sites with a binding constant of 1 X 10(7) M-1 and a single site with a binding constant of 2 X 10(5) M-1. Assuming competition between Mg2+ and Ca2+ for the high affinity sites of TnC and Tn, the binding constants for Mg2+ were 0.7 and 3.0 X 10(3) M-1, respectively. The Ca2+ dependence of cardiac myofibrillar ATPase activity was similar to that of an actomyosin preparation regulated by the reconstituted troponin complex. Comparison by the Ca2+-binding properties of cardiac Tn and the cardiac myofibrillar ATPase activity as a function of [Ca2+] and at millimolar [Mg2+] suggests that activation of the ATPase occurs over the same range of [Ca2+] where the Ca2+-specific site of cardiac Tn binds Ca2+.  相似文献   

14.
Ca2+ binding to the wild type recombinant oncomodulin was studied by equilibrium flow dialysis in the absence and presence of 1, 2, and 10 mM Mg2+. Direct Mg2(+)-binding experiments were carried out by the Hummel-Dryer gel filtration technique. These studies revealed that in the absence of Mg2+ oncomodulin binds two Ca2+ with KCa = 2.2 x 10(7) and 1.7 x 10(6) M-1, respectively. In the absence of Ca2+ the protein binds only one Mg2+ with KMg = 4.0 x 10(3) M-1.Mg2+ antagonizes Ca2+ binding at the high affinity site according to the rule of direct competition. Ca2+ binding to the low affinity site is only slightly affected by Mg2+, so that in the presence of 2-3 mM Mg2+ the two sites have apparently an equal affinity for Ca2+. Microcalorimetry showed that, in spite of the different affinities of the two Ca2(+)-binding sites, delta H0 for the binding of each Ca2+ is identical and exothermic for -18.9 kJ/site. It follows that the entropy gain upon binding of Ca2+ is +77.1 J K-1 site-1 for the high affinity Ca2(+)-Mg2+ site and +56.0 J K-1 site-1 for the low affinity Ca2(+)-specific site. Mg2+ binding is endothermic for +13 kJ/site with an entropy change of +111 J K-1 site-1. The thermodynamic characteristics of the Ca2(+)-Mg2+ site resemble most those of site II (the so-called EF domain) of toad alpha-parvalbumin. The characteristics of Ca2+ binding to the specific site (likely the CD domain) are different from those of the Ca2+ specific sites in troponin C and in calmodulin and suggest that in oncomodulin hydrophobic forces do not play a predominant role in the binding process at the specific site.  相似文献   

15.
Calcium binding by the vesiculate fraction of rabbit small intestine myocyte plasma membranes was studied. It was shown that the membrane fraction as well as the muscle tissue contain two types of Ca2(+)-binding sites with binding constants of 2.3-2.5 x 10(4) and 2.1-1.25 x 10(3) M-1. The number of binding sites and their affinity for Ca2+ depend on the presence in the incubation medium of Mg2+, Na+ and ATP.  相似文献   

16.
Xu XL  Liu QL  Wu B  Xie YS 《Biopolymers》2002,67(6):387-393
Anticoagulation factor II (ACF II) isolated from the venom of Agkistrodon acutus is an activated coagulation factor X-binding protein with marked anticoagulant activity. Present studies show that the pH has a marked effect on the fluorescence intensity of holo-ACF II; however, no appreciable shift of the emission maximum of holo-ACF II was observed in the pH range of 3-10. It was deduced from a relatively weak fluorescence emission of holo-ACF II at a neutral pH (6-7) that native holo-ACF II assumes a compactly folded structure in which the most interior Trp residues and quenchers are adjacent. Terbium ions can completely replace both Ca2+ ions in holo-ACF II as determined by equilibrium dialysis. Two Tb3+-binding sites with different apparent Tb3+ association constant values, (2.1 +/- 0.2) and (1.0 +/- 0.1) x 10(7) M(-1), were identified through Tb3+ fluorescence titration. In addition, it was confirmed from the titration of holo-ACF II and Tb3+-ACF II with N-bromosuccinimide (NBS) that only interior Trp residues are involved in the energy transfer to Tb3+ ions and all accessible Trp residues located in the surface of holo-ACF II have a similar affinity to NBS while those located in the surface of Tb3+-ACF II have two different kinds of affinity to NBS, which suggests a conformational change of holo-ACF II on the substitution of Tb3+ for Ca2+.  相似文献   

17.
Calcium-binding epidermal growth factor (EGF)-like modules are found in numerous extracellular and membrane proteins involved in such diverse processes as blood coagulation, lipoprotein metabolism, determination of cell fate, and cell adhesion. Vitamin K-dependent protein S, a cofactor of the anticoagulant enzyme activated protein C, has four EGF-like modules in tandem with the three C-terminal modules each harbouring a Ca(2+)-binding consensus sequence. Recombinant fragments containing EGF modules 1-4 and 2-4 have two Ca(2+)-binding sites with dissociation constants ranging from 10(-8) to 10(-5) M. Module-module interactions that greatly influence the Ca(2+) affinity of individual modules have been identified. As a step towards an analysis of the structural basis of the high Ca(2+) affinity, we expressed the Ca(2+)-binding EGF pair 3-4 from human protein S. Correct folding was shown by (1)H NMR spectroscopy. Calcium-binding properties of the C-terminal module were determined by titration with chromophoric chelators; binding to the low-affinity N-terminal site was monitored by (1)H-(15)N NMR spectroscopy. At physiological pH and ionic strength, the dissociation constants for Ca(2+) binding were 1.0x10(-6) M and 4. 8x10(-3) M for modules 4 and 3, respectively, i.e. the calcium affinity of the C-terminal site was about 5000-fold higher than that of the N-terminal site. Moreover, the Ca(2+) affinity of EGF 4, in the pair 3-4, was about 9000-fold higher than that of synthetic EGF 4. The EGF modules in protein S are known to mediate the interaction with factor Xa. We have now found modules 3-4 to be involved in this interaction. However, the individual modules 3 and 4 manifested no measurable activity.  相似文献   

18.
Bombesin-like neuropeptides, including mammalian gastrin-releasing peptide (GRP), are potent mitogens for Swiss 3T3 cells. In this study, we have characterized the bombesin receptor in membrane preparations from these cells. Addition of Mg2+ during cell homogenization was essential to preserve 125I-GRP binding activity in the resulting membrane preparation. The effect of Mg2+ was concentration dependent, with a maximum at 5 mM. Specific binding of 125I-GRP was saturable; Scatchard analysis indicated a single class of high-affinity sites of Kd = (2.1 +/- 0.3) x 10(-10) M at 15 degrees C and Kd = (1.9 +/- 0.4) x 10(-10) M at 37 degrees C, and a maximum binding capacity of 580 +/- 50 fmol/mg of protein (15 degrees C) or 604 +/- 40 fmol/mg of protein (37 degrees C). The kinetically derived dissociation constant was 1.5 x 10(-10) M. 125I-GRP binding was inhibited in a concentration-dependent manner by various peptides containing the highly conserved C-terminal heptapeptide of the bombesin family, including bombesin, GRP, neuromedin B and the 8-14 fragment of bombesin. In contrast, a variety of structurally unrelated mitogens and neuropeptides had no effect. The cross-linking agent ethyleneglycolbis(succinimidylsuccinate) covalently linked 125I-GRP to a single Mr 75 000-85 000 protein in membrane preparations of 3T3 cells. Affinity labelling of this molecule was specific and dependent on the presence of Mg2+ during membrane preparation. Finally, the non-hydrolysable GTP analogue guanosine-5'-[gamma-thio]triphosphate (GTP[S]) caused a concentration-dependent inhibition of 125I-GRP binding and cross-linking to 3T3 cell membranes [concentration giving half-maximal inhibition (IC50) approximately 0.2 microM]. The inhibitory effect was specific (GMP, ATP or ATP[S] had no effect at 10 microM) and was due to an increase in Kd from (1.7 +/- 0.2) x 10(-10) M to (4.3 +/- 0.6) x 10(-10) M in the presence of 10 microM-GTP[S]. This modulation of ligand affinity and cross-linking implies that the bombesin receptors that mediate mitogenesis in Swiss 3T3 cells are coupled to a guanine-nucleotide-binding-protein signal-transduction pathway.  相似文献   

19.
Calbindin-D28K is a 1 alpha,25-dihydroxyvitamin D3-dependent protein that belongs to the superfamily of high affinity calcium-binding proteins which includes parvalbumin, calmodulin, and troponin C. All of these proteins bind Ca2+ ligands by an alpha-helix-loop-alpha-helix domain that is termed an EF-hand. Calbindin-D28K has been reported previously to have four high affinity Ca2(+)-binding sites (KD less than 10(-7)) as quantitated by equilibrium dialysis. With the determination of the amino acid sequence, it was clear that there are in fact six apparent EF-hand domains, although the Ca2(+)-binding functionality of the two additional domains was unclear. It was of interest to quantitate the Ca2(+)-binding ability of chick intestinal calbindin-D28K utilizing several different Ca2+ titration methods that cover a range of macroscopic binding constants for weak or strong Ca2+ sites. Titrations with the Ca2+ chelator dibromo-1,2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (5,5'-Br2BAPTA), a Ca2+ selective electrode, and as followed by 1H NMR, which measure KD values of 10(-6)-10(-8) M, 10(-4)-10(-7) and 10(-3)-10(-5) M, respectively, gave no evidence for the presence of weak Ca2(+)-binding sites. However, Ca2+ titration of the fluorescent Ca2+ chelator Quin 2 in the presence of calbindin-D28K yielded a least squares fit optimal for 5.7 +/- 0.8 Ca2(+)-binding sites with macroscopic dissociation constants around 10(-8) M. The binding of Ca2+ by calbindin was found to be cooperative with at least two of the sites exhibiting positive cooperativity.  相似文献   

20.
The rate constant of the conformational change of skeletal troponin C (TnC) induced by the Ca2+ binding reaction with the high-affinity Ca2+-binding sites was determined in the presence of Mg2+ by the fluorescence stopped-flow method in 0.1 M KCl, 50 mM Na-cacodylate-HCl pH 7.0 at 20 degrees C. The [MgCl2] dependence of the rate constants of the observed biphasic conformational change leveled off at the high [MgCl2] region: the rate constants were 60 +/- 9 s-1 and 8 +/- 2 s-1, respectively. These values are larger than the rate constants of the biphasic fluorescence intensity change of TnC induced by Mg2+ removal reaction at the high-affinity Ca2+-binding sites (37 +/- 7 s-1 and 3.0 +/- 0.6 s-1) under the same experimental conditions. These results suggest that the Ca2+-Mg2+ exchange reaction at the high-affinity Ca2+-binding sites is faster than the resultant conformational change accompanying the fluorescence intensity change. Based on these results, we also reexamine the molecular kinetic mechanism of the conformational change of the protein induced by the Mg2+ binding or removal reaction with the high affinity Ca2+-binding sites of skeletal TnC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号