首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
A series of 1',1'-dimethylalkyl-Delta(8)-tetrahydrocannabinol analogues with C-3 side chains of 2-12 carbon atoms has been synthesized and their in vitro and in vivo pharmacology has been evaluated. The lowest member of the series, 1',1'-dimethylethyl-Delta(8)-THC (8, n=0) has good affinity for the CB(1) receptor, but is inactive in vivo. The dimethylpropyl (8, n=1) through dimethyldecyl (8, n=8) all have high affinity for the CB(1) receptor and are full agonists in vivo. 1',1'-Dimethylundecyl-Delta(8)-THC (8, n=9) has significant affinity for the receptor (K(i)=25.8+/-5.8 nM), but has reduced potency in vivo. The dodecyl analogue (8, n=10) has little affinity for the CB(1) receptor and is inactive in vivo. A quantitative structure-activity relationship study of the side chain region of these compounds is consistent with the concept that for optimum affinity and potency the side chain must be of a length which will permit its terminus to loop back in proximity to the phenolic ring of the cannabinoid.  相似文献   

2.
Fourteen novel CB2 receptor selective cannabinoids were synthesized via initial Lewis acid catalyzed rearrangement of resorcinol precursors to obtain the cannabinoid moiety. These are the 1-methoxy-9-hydroxyhexahydrocannabinols and the 1-deoxy-9-hydroxyhexahydrocannabinols, with 1',1'-dimethylalkyl side chains of four to seven carbon atoms at C-3 of the cannabinoid nucleus. The cannabinols synthesized and described in this paper all exhibit greater affinity for the CB2 receptor than for the CB1 receptor. Exceptionally high CB2 affinity was observed for 1-deoxy-9beta-hydroxy-dimethylhexylhexahydrocannabinol (JWH-361, 9, n = 3) K(i) = 2.7 nM and 1-deoxy-9beta-hydroxydimethylpentylhexahydrocannabinol (JWH-300, 9, n = 2) K(i) = 5.3 nM. In general, the stereochemistry of the 9-hydroxy group is important and the beta-orientation enhances both CB2 receptor affinity and selectivity.  相似文献   

3.
Two new series of cannabinoids were prepared and their affinities for the CB1 and CB2 receptors were determined. These series are the (2'R)- and (2'S)-1-methoxy- and 1-deoxy-3-(2'-methylalkyl)-delta8-tetrahydrocannabinols, with alkyl side chains of three to seven carbon atoms. These compounds were prepared by a route that employed the enantioselective synthesis of the resorcinol precursors to the cannabinoid ring system. All of these compounds have greater affinity for the CB2 receptor than the CB1 receptor and four of them, (2'R)-1-methoxy-3-(2'-methylbutyl)-delta8-THC (JWH-359), (2'S)-1-deoxy-3-(2'-methylbutyl)-delta8-THC (JWH-352), (2'S)-1-deoxy-3-(2'-methylpentyl)-delta8-THC (JWH-255), and (2'R)-1-deoxy-3-(2'-methylpentyl)-delta8-THC (JWH-255), have good affinity (K(i) = 13-47 nM) for the CB2 receptor and little affinity (K(i) = 1493 to >10,000 nM) for the CB1 receptor. In the 1-deoxy-3-(2'-methylalkyl)-delta8-THC series, the 2'S-methyl compounds in general have greater affinity for the CB2 receptor than the corresponding 2'R isomers.  相似文献   

4.
The compounds reported in this study are Delta(8)-THC analogues in which the C3 five-carbon linear side chain of Delta(8)-THC was replaced with aryl and 1',1'-cycloalkyl substituents. Of the compounds described here analogues 2d (CB(1), K(i)=11.7 nM. CB(2), K(i)=9.39 nM) and 2f (CB(1), K(i)=8.26 nM. CB(2), K(i)=3.86 nM) exhibited enhanced binding affinities for CB(1) and CB(2), exceeding that of Delta(8)-THC. Efficient procedures for the synthesis of these novel cannabinoid analogues are described.  相似文献   

5.
The synthesis and pharmacology of 15 1-deoxy-Δ8-THC analogues, several of which have high affinity for the CB2 receptor, are described. The deoxy cannabinoids include 1-deoxy-11-hydroxy-Δ8-THC (5), 1-deoxy-Δ8-THC (6), 1-deoxy-3-butyl-Δ8-THC (7), 1-deoxy-3-hexyl-Δ8-THC (8) and a series of 3-(1′,1′-dimethylalkyl)-1-deoxy-Δ8-THC analogues (2, n=0–4, 6, 7, where n=the number of carbon atoms in the side chain−2). Three derivatives (1719) of deoxynabilone (16) were also prepared. The affinities of each compound for the CB1 and CB2 receptors were determined employing previously described procedures. Five of the 3-(1′,1′-dimethylalkyl)-1-deoxy-Δ8-THC analogues (2, n=1–5) have high affinity (Ki=<20 nM) for the CB2 receptor. Four of them (2, n=1–4) also have little affinity for the CB1 receptor (Ki=>295 nM). 3-(1′,1′-Dimethylbutyl)-1-deoxy-Δ8-THC (2, n=2) has very high affinity for the CB2 receptor (Ki=3.4±1.0 nM) and little affinity for the CB1 receptor (Ki=677±132 nM).
Scheme 3. (a) (C6H5)3PCH3+ Br, n-BuLi/THF, 65°C; (b) LiAlH4/THF, 25°C; (c) KBH(sec-Bu)3/THF, −78 to 25°C then H2O2/NaOH.  相似文献   

6.
Δ(8)-Tetrahydrocannabinol (26), 3-(1',1'-dimethylbutyl)- (12), 3-(1',1'-dimethylpentyl)- (13), 3-(1',1'-dimethylhexyl)- (14) and 3-(1',1'-dimethylheptyl)-Δ(8)-tetrahydrocannabinol (15) have been converted into the corresponding 1-bromo-1-deoxy-Δ(8)-tetrahydrocannabinols (25, 8-11). This was accomplished using a protocol developed in our laboratory in which the trifluoromethanesulfonate of a phenol undergoes palladium mediated coupling with pinacolborane. Reaction of this dioxaborolane with aqueous-methanolic copper(II) bromide provides the aryl bromide. The affinities of these bromo cannabinoids for the cannabinoid CB(1) and CB(2) receptors were determined. All of these compounds showed selectivity for the CB(2) receptor and one of them, 1-bromo-1-deoxy-3-(1',1'-dimethylhexyl)-Δ(8)-tetrahydrocannabinol (10), exhibits 52-fold selectivity for this receptor with good (28nM) affinity.  相似文献   

7.
Synthesis and pharmacology of a hybrid cannabinoid   总被引:1,自引:0,他引:1  
A pentacyclic hybrid cannabinoid (4) has been synthesized, which combines structural elements of traditional cannabinoids and cannabmimetic indoles. Cannabinoid 4 contains a 1-pentylindole structure fused to the 2,3-positions of the partially reduced hydroxydibenzopyran system of THC. The successful approach to 4 employed 9-benzoyl-5,7-dimethoxy-1,2,3,4-tetrahydrocarbazole (17) as the starting material. Dehydrogenation to carbazole 18, followed by demethylation and condensation with trans-p-menthadienol gave N-benzoyl hybrid cannabinoid 22, N-alkylation of which afforded target cannabinoid 4. The hybrid cannabinoid had affinity for the CB1 receptor approximately equal to that of delta8-THC (Ki = 19.3+/-3 nM), and shows comparable potency in vivo.  相似文献   

8.
Several chiral, analogues of the endogenous cannabinoid receptor ligand, arachidonylethanolamide (anandamide), methylated at the 2,1' and 2' positions using asymmetric synthesis were evaluated in order to study (a) stereoselectivity of binding to CB1 and CB2 cannabinoid receptors; and (b) metabolic stability with regard to anandamide amidase. Enantiomerically pure 2-methyl arachidonic acids were synthesized through diastereoselective methylation of the respective chiral 2-oxazolidinone enolate derivatives and CB1 and CB2 receptor affinities of the resulting chiral anandamides were evaluated using a standard receptor binding assay. Introduction of a single 2-methyl group increased affinity for CB1, led to limited enantioselectivity and only modestly improved metabolic stability. However, a high degree of enantio- and diastereoselectivity was observed for the 2,1'-dimethyl analogues. (R)-N-(1-methyl-2-hydroxyethyl)-2-(R)-methyl-arachidonamide (4) exhibited the highest CB1 receptor affinity in this series with a K(i) of 7.42 nM, an at least 10-fold improvement on anandamide (K(i)=78.2 nM). The introduction of two methyl groups at the 2-position of anandamide led to no change in affinity for CB1 but somewhat enhanced metabolic stability. Conversely, chiral headgroup methylation in the 2-gem-dimethyl series led to chiral analogues possessing a wide range of CB1 affinities. Of these the (S)-2,2,2'-trimethyl analogue (12) had the highest affinity for CB1 almost equal to that of anandamide. In agreement with our previous anandamide structure-activity relationship work, the analogues in this study showed high selectivity for the CB1 receptor over CB2. The results are evaluated in terms of stereochemical factors affecting the ligand's affinity for CB1 using receptor-essential volume mapping as an aid. Based on the results, a partial CB1 receptor site model is proposed, that bears two hydrophobic pockets capable of accommodating 1'- and 2-methyl groups  相似文献   

9.
In order to develop radioligands of human NK-3 receptor (hNK-3r) for imaging studies by positron emission tomography (PET) or single photon emission computed tomography (SPECT), a new series of fluoro- and iodo-quinoline carboxamides were synthesized and evaluated in a target receptor binding assay. Compared to the unsubstituted parent compound SB 223 412 (Ki=27 nM +/- 9), affinity was not altered for the analogues 1c and 2c bearing a fluorine in position 8 (Ki approximately 24-27 nM), and was only slightly reduced for compounds 1b, 2b, 1e and 2e fluorinated or iodinated at the position 7 (Ki approximately 49-67 nM). A drastic reduction in binding (Ki > 115 nM) was observed for all other halogenated compounds 1a, 2a, 1d, 2d, 1f and 2f.  相似文献   

10.
The development of potent and selective adenosine receptor ligands as potential drugs is an active area of research. Xanthines are one of the most important classes of adenosine receptor antagonists and have been widely developed in terms of affinity and selectivity for adenosine receptors. We recently developed new original pathways for the synthesis of xanthine analogues starting from 5-substituted-2-amino-2-oxazoline 5 as a synthon. These procedures allowed us to selectively introduce a large, functionalized and beta-adrenergic 2-hydroxy-3-phenoxypropyl pharmacophore at the 1- and 3-position of the xanthine moiety which allowed further structural modifications. In this study, we present a new synthetic access to racemic xanthine derivatives 1-4 from 5, and their evaluation as adenosine A1, A2A and A3 receptor ligands in radioligand binding studies. The 2-hydroxy-3-phenoxypropyl moiety was well tolerated in the 3-position of the xanthine core, while its introduction in the 1-position of the xanthine moiety led to a large decrease in adenosine receptor affinity. 1,7-Dimethyl-3-[1-(2-chloro-3-phenoxypropyl)]-8-(3,4,5-trimethoxystyryl)xanthine (2n) was the most potent and selective A2A antagonist of the present series (Ki=44 nM, >200-fold selective vs A1). 1-Propyl-3-[1-(2-hydroxy-3-phenoxypropyl)]-8-noradamantylxanthine (3f) was identified as a potent (KiA1=21 nM) and highly selective (>350-fold vs A2A and A3 receptor) adenosine A1 receptor antagonist.  相似文献   

11.
We investigated the binding characteristics of a (+)-enantiomer of radioiodinated 2-[4-(4-iodophenyl)piperidino]cyclohexanol [(+)-[125I]pIV], radioiodinated at the para-position of the 4-phenylpiperidine moiety, to sigma receptors (sigma-1, sigma-2) and to vesicular acetylcholine transporters (VAChT) in membranes of the rat brain and liver. In competitive inhibition studies, (+)-pIV (Ki=1.30 nM) had more than 10 times higher affinity to the sigma-1 (sigma-1) receptor than (+)-pentazocine (Ki=19.9 nM) or haloperidol (Ki=13.5 nM) known as sigma ligands. Also, the binding affinity of (+)-pIV for the sigma-1 receptor (Ki=1.30 nM), was about 16 times higher than the sigma-2 (sigma-2) receptor (Ki=20.4 nM). (+)-pIV (Ki=1260 nM) had a much lower affinity for VAChT than (-)-vesamicol (Ki=13.0 nM) or (-)-pIV (Ki=412 nM). (+)-[125I]pIV had low affinity for the dopamine, serotonin, adrenaline, and acetylcholine receptors. Furthermore, in a saturation binding study, (+)-[125I]pIV exhibited a K) of 6.96 nM with a Bmax of 799 fmol/mg of protein. These results showed that (+)-pIV binds to the sigma-1 receptor with greater affinity than sigma receptor ligands such as (+)-pentazocine or haloperidol, and that radioiodinated (+)-pIV is suitable as radiotracer for sigma-1 receptor studies in vitro.  相似文献   

12.
A series of C3 cyclic side-chain analogues of classical cannabinoids were synthesized to probe the ligand binding pocket of the CB1 and CB2 receptors. The analogues were evaluated for CB1 and CB2 receptor binding affinities relative to delta(8)-THC. The C3 side-chain geometries of the analogues were studied using high field NMR spectroscopy and quantum mechanical calculations. The results of these studies provide insights into the geometry of the ligand binding pocket of the CB1 and CB2 receptors.  相似文献   

13.
Three series of new cannabinoids were prepared and their affinities for the CB1 and CB2 cannabinoid recptors were determined. These are the 1-methoxy-3-(1′,1′-dimethylalkyl)-, 1-deoxy-11-hydroxy-3-(1′,1′-dimethylalkyl)- and 11-hydroxy-1-methoxy-3-(1′,1′-dimethylalkyl)-Δ8-tetrahydrocannabinols, which contain alkyl chains from dimethylethyl to dimethylheptyl appended to C-3 of the cannabinoid. All of these compounds have greater affinity for the CB2 receptor than for the CB1 receptor, however only 1-methoxy-3-(1′,1′-dimethylhexyl)-Δ8-THC (JWH-229, 6e) has effectively no affinity for the CB1 receptor (Ki=3134±110 nM) and high affinity for CB2 (Ki=18±2 nM).  相似文献   

14.
Enantiomeric separation of the racemic 4-{3-(4-chlorophenyl)-3-hydroxypyrrolidin-1-yl}-1-(4-fluorophenyl)butan-1-one, a pyrrolidine analog of haloperidol, {(+/-)-SYA 09}, and subsequent binding studies revealed that most of the binding affinity at dopamine and serotonin receptors resides in the (+)-isomer {(+)-SYA 09} or the eutomer. Further pharmacological evaluation of the eutomer revealed that it has a higher affinity for the dopamine D4 (DAD4) receptor subtype (Ki = 3.6 nM) than for the DAD2 subtype (Ki = 51.1 nM) with a ratio of 14.2 (D2Ki/D4Ki ratio = 14.2). In an animal model of antipsychotic efficacy, the (+)-SYA 09 was efficacious with an ED50 value of 1.6 mg/kg, i.p., and at twice this value, (+)-SYA 09 did not induce significant catalepsy in rats.  相似文献   

15.
ATP analogues were used to study the active site specificity of the catalytic unit (C) of solubilized and partially purified bovine brain caudate nucleus adenylate cyclase. Phenylenediamine ATP (PD-ATP), 8-azido ATP (8-N3ATP), chromium(III) 3'-beta-alanylarylazido ATP (CrATPa), and 2',3'-dialdehyde ATP (oATP) are competitive inhibitors of C in the presence of the substrate MnATP and the activator forskolin. (Km for MnATP is 50 +/- 11 microM, n = 13). The Ki values determined under initial velocity conditions are: PD-ATP, Ki = 695 +/- 60 microM, n = 5; 8-N3ATP, Ki = 155 +/- 23 microM, n = 5; CrATPa, Ki = 7 +/- 3 microM, n = 2; oATP, Ki = 42 +/- 5 microM, n = 3. Irradiation of 100 microM 8-N3ATP by UV light (254 nm) causes the first-order loss of reagent either in the presence or absence of C. Concomitant irreversible inhibition of C in the presence of 8-N3ATP was more complex and asymptotically approached 50% within 4-6 min. Loss of C activity in controls was 10-20%. The fraction of C covalently modified by 8-N3ATP, alpha, was calculated for each time point of irradiation for an increasing initial concentration ([A]o) of 8-N3ATP. Extrapolated to infinite time of photolysis, the value of alpha reached a final level, termed alpha t whose magnitude depended on [A]o. From these data we calculated an apparent KD of 4.5 microM for 8-N3ATP. ATP protected against the irreversible inhibition due to 8-N3ATP. These data are most consistent with a mechanism of photoaffinity labeling involving equilibrium binding and covalent insertion of 8-N3ATP into the active site. These results indicate that the active site binds analogues of ATP which are considerably modified in the adenine, ribose, and gamma-phosphate portions and that the affinity of C for these analogues is within an order of magnitude of the Km for ATP.  相似文献   

16.
A series of novel phenyl substituted side-chain analogues of classical cannabinoids were synthesized and their CB1 and CB2 binding affinities were evaluated relative to Delta(8)-THC and compound 2. CB1 and CB2 binding assays indicate that the dimethyl and ketone analogues (3) and (6) display selectivity for the CB2 receptor in comparison to delta(8)-THC and compound 2. This study provides newer insights into the geometrical and functional group requirements of the ligand binding pockets of the CB1 and the CB2 receptors.  相似文献   

17.
We have identified in the DDT1 smooth muscle cell line a [3H]dihydroergocryptine-binding site having the characteristics of an alpha 1-adrenergic receptor. Specific binding of [3H]dihydroergocryptine to DDT1 cells grown either in monolayer or suspension culture was reversible, saturable, and of high affinity, and the binding site demonstrated stereoselectivity. [3H]Dihydroergocryptine dissociation constants of 1.4 +/- 0.2 nM and 1.4 +/- 0.3 nM were observed for suspension and monolayer cells, respectively. However, the concentration of binding sites in suspension-cultured cells (65,100 +/- 8,300 sites/cell) was significantly greater (p less than 0.001) than that found in monolayer cells (27,900 +/- 4,300 sites/cell). The order of agonist competition for the binding site was epinephrine (Ki = 0.92 +/- 0.32 microM) greater than or equal to norepinephrine (Ki = 2.2 +/- 1.0 microM) greater than isoproterenol (Ki = 137 +/- 17 microM), consistent with an alpha-adrenergic interaction. Results of competition experiments with specific antagonists prazosin (alpha 1-selective) or yohimbine (alpha 2-selective) and a computer modeling technique indicated that the alpha-adrenergic receptor of the DDT1 cell was predominantly (greater than 95%) the alpha 1-subtype.  相似文献   

18.
Aplysamine-1 (1), a marine natural product, was synthesized and screened for in vitro activity at the human and rat histamine H3 receptors. Aplysamine-1 (1) was found to possess a high binding affinity for the human H3 receptor (Ki = 30+/-4 nM). Synthetic analogs of 1, including des-bromoaplysamine-1 (10) and dimethyl-{2-[4-(3-piperidin-1-yl-propoxy)-phenyl]-ethyl}-amine (13), were potent H3 antagonists.  相似文献   

19.
Cannabinoid CB1 receptors have been the focus of extensive studies since the first clinical results of rimonabant (SR141716) for the treatment of obesity and related metabolic disorders were reported in 2001. To further evaluate the properties of CB receptors, we have designed a new series of tetrazole-biarylpyrazoles. The various analogues were efficiently prepared and bio-assayed for binding to cannabinoid CB1 receptor. Six of the new compounds which displayed high in vitro CB1 binding affinities were assayed for binding to CB2 receptor. Noticeably, cyclopentyl-tetrazole (9a) demonstrated good binding affinity and selectivity for CB1 receptor (IC(50)=11.6nM and CB2/CB1=366).  相似文献   

20.
Alkylamides (alkamides) from Echinacea modulate tumor necrosis factor alpha mRNA expression in human monocytes/macrophages via the cannabinoid type 2 (CB2) receptor (Gertsch, J., Schoop, R., Kuenzle, U., and Suter, A. (2004) FEBS Lett. 577, 563-569). Here we show that the alkylamides dodeca-2E,4E,8Z,10Z-tetraenoic acid isobutylamide (A1) and dodeca-2E,4E-dienoic acid isobutylamide (A2) bind to the CB2 receptor more strongly than the endogenous cannabinoids. The Ki values of A1 and A2 (CB2 approximately 60 nM; CB1 >1500 nM) were determined by displacement of the synthetic high affinity cannabinoid ligand [3H]CP-55,940. Molecular modeling suggests that alkylamides bind in the solvent-accessible cavity in CB2, directed by H-bonding and pi-pi interactions. In a screen with 49 other pharmacologically relevant receptors, it could be shown that A1 and A2 specifically bind to CB2 and CB1. A1 and A2 elevated total intracellular Ca2+ in CB2-positive but not in CB2-negative promyelocytic HL60 cells, an effect that was inhibited by the CB2 antagonist SR144528. At 50 nM, A1, A2, and the endogenous cannabinoid anandamide (CB2 Ki >200 nM) up-regulated constitutive interleukin (IL)-6 expression in human whole blood in a seemingly CB2-dependent manner. A1, A2, anandamide, the CB2 antagonist SR144528 (Ki <10 nM), and also the non-CB2-binding alkylamide undeca-2E-ene,8,10-diynoic acid isobutylamide all significantly inhibited lipopolysaccharide-induced tumor necrosis factor alpha, IL-1beta, and IL-12p70 expression (5-500 nM) in a CB2-independent manner. Alkylamides and anandamide also showed weak differential effects on anti-CD3-versus anti-CD28-stimulated cytokine expression in human whole blood. Overall, alkylamides, anandamide, and SR144528 potently inhibited lipopolysaccharide-induced inflammation in human whole blood and exerted modulatory effects on cytokine expression, but these effects are not exclusively related to CB2 binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号