首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
Utilisation (uptake) of hydrogen gas by whole cells of Rhizobium japonicum was found to be influenced by the carbon source(s) present in the growth medium, with activity being highest in a medium containing sugars. Tricarboxylic acid cycle intermediates, such as malate, significantly reduced H2 utilisation. No reduction in the hydrogenase activity is observed when the enzyme is assayed directly by the tritium exchange method, indicating that the decrease in hydrogen uptake activity is not due to repression of hydrogenase biosynthesis. Cyclic AMP was found to alleviate the inhibition of H2 uptake by malate, and this requires new protein synthesis. Addition of chloramphenicol or rifampicin simultaneously with cyclic AMP eliminated the stimulation of H2 uptake in the malate medium. These results show that in R. japonicum cyclic AMP plays a major role in the regulation of H2 metabolism.  相似文献   

3.
4.
Two forms of arginase (EC 3.5.3.1) have been found in Evernia prunastri: (1) a light-arginase (Mr, 180 000) induced by l-arginine—urea causes repression which is reversed by cyclic AMP; (2) a constitutive heavy-arginase (Mr, 330 000) which is not affected by cyclic AMP. Agmatine amidinohydrolase (EC 3.5.3.11) is also repressed by urea but this effect is carried out at catabolite concentrations higher than those required to prevent the synthesis of the light-arginase. This repression is also relieved by cyclic AMP.  相似文献   

5.
6.
The growth and the extracellular isoamylase production by Rhizopus oryzae PR7 MTCC 9642 were studied in a stationary culture at 28°C, with maximum isoamylase production obtained after 72 hours. Glycogen was found to be the best inducer for isoamylase synthesis, followed by maltose and dextrin. The enzyme was found to be repressed by glucose and this repression was not overcome by the addition of cGMP. The abrupt reduction in enzyme synthesis after the addition of exogenous glucose in a glycogen-induced culture medium confirmed the repressive action of glucose. An almost similar rate of repression was found to be exerted by α- and β-cyclodextrins. The inhibition of enzyme production after the addition of cycloheximide, a translation blocker, indicated the existence of de novo synthesis of the enzyme.  相似文献   

7.
In the present work we have been able to demonstrate the phenobarbital and lead exert an inducing effect on the biosynthesis of δ-aminovulenic acid synthase, ferrochelatase and cytochrome P-450 hemoproteins in isolated rat hepatocytes of normal adult rats. Dibutyryl cyclic AMP enhances the induction effect produced by phenobarbital in this in vitro system. Glucose inhibits the induction of δ-aminolevulinic acid synthase and ferrochelatase. This repression effect can be reversed with increasing concentrations of dibutyryl cyclic AMP. No glucose effect was observed on the phenobarbital- and lead-mediated inductions of cytochrome P-450. The present results add more experimental evidence to support the concept that the last enzyme of the heme pathway is inducible, and as such may have a significant role in regulatory mechanisms of porphyrin and heme biosynthesis.  相似文献   

8.
Summary Catabolic effects which exert control over the inducible synthesis of three enzymes in Arthrobacter crystallopoietes involve at least three different mechanisms: interference with inducer transport, severe catabolite repression, and transient repression. The rate of histidase induction by histidine is reduced by incubation of the cells with succinate or glucose. The maximum effect of succinate, 67% reduction in histidase production, occurs only after 100 min of incubation with succinate. At least 3h of incubation are required for the maximum effect of glucose (31% reduction in enzyme induction). Both succinate and glucose inhibit histidine transport. Cyclic adenosine 3,5-monophosphate (cyclic AMP), at 10-7 M, slightly stimulates the induction of histidase in cultures both with or without succinate. No conditions were found in which cyclic AMP abolishes the effect of succinate. Induction of l-serine dehydratase by glycine is severely and permanently repressed by glucose and to a lesser extent by citrate. Glucose does not affect glycine uptake. Succinate, fumarate, and aspartate, which are all better substrates than glucose or citrate for growth of A. crystallopoietes, have no effect on l-serine dehydratase induction. Induction and repression of l-serine dehydratase are not affected by cyclic AMP. Synthesis of isocitrate lyase after addition of acetate is unaffected by glucose but is severely repressed by succinate or fumarate. Aspartate and glutamate cause a transient repression of enzyme synthesis after which synthesis proceeds at the control rate. The ability to transport acetate is inducible. Development of this capacity in the presence of acetate is not affected by succinate or glutamate. Cyclic AMP has no effect on enzyme production or repression. A. crystallopoietes takes up radioactive cyclic AMP and has at least one of the enzymes of cyclic AMP metabolism, adenyl cyclase.  相似文献   

9.
Synthesis of bacterial fimbriae (group 1, subtype 1) was shown to be dependent on cyclic AMP and was subject to catabolite repression by many carbohydrates. Mutations in the genes coding for the energy-coupling protein constituents of the phosphoenolpyruvate:sugar phosphotransferase system prevented repression of fimbrial production by the sugar substrates of this enzyme system.  相似文献   

10.
The regulation of staphylococcal enterotoxin A (SEA) synthesis in a defined medium was studied using continuous culture techniques. SEA production was repressed by glucose and repression could be overcome by addition of exogenous cyclic AMP. As well as this classical catabolite repression control, addition of glucose to de-repressed steady-state cultures resulted in rapid disappearance of toxin from the medium (also mediated by loss of cyclic AMP). When the toxin dissappeared from the medium, it was taken up again by the bacteria without apparent modification.  相似文献   

11.
Production of extracellular amylase and protease in Vibrio parahaemolyticus was repressed by various carbohydrates present in the medium. In addition, the protease production was repressed very strongly by peptones or casamino acids. Cyclic adenosine 3′, 5′-monophosphate (cyclic AMP) added exogenously could reverse the repression of amylase production, but not that of protease production irrespective of the “repressors” used. Mutants of V. parahaemolyticus, which resembled the reported cya (adenylate cyclase) and crp (cyclic AMP receptor protein) mutants of Escherichia coli and related organisms, were examined for the exoenzyme production. Amylase production in the mutants was defective, while their protease production was not defective, but rather accentuated as compared with that in the parental strain. These findings strongly suggest that amylase production is subject to catabolite repression mediated by cyclic AMP, whereas protease production is controlled by a repression mechanism which mimics in part, but may be distinct from catabolite repression.  相似文献   

12.
Cryptococcus albidus secretes a xylanase when induced by xylan or beta-methylxyloside, a non-metabolizable inducer, and production of the enzyme is repressed by xylose. The effect of exogenous cAMP on xylanase production was tested under different growth conditions. The cAMP elicited a 1.5 to 2 fold increase in xylanase production during the induction by xylan and B-methylxyloside but did not relieve the repression observed during growth on xylose. Cyclic AMP also affected the growth rate of the cells and did not modulate the activity of pure xylanase in vitro. A 15-nucleotide sequence located upstream from the xylanase gene could be part of a cAMP regulatory sequence.  相似文献   

13.
The regulation of the synthesis of extracellular agarase by Cytophaga flevensis was studied in resting-cell suspensions. Enzyme synthesis was strictly dependent on the presence of a suitable inducer. Enzyme production was maximal at 20 C in phosphate buffer pH 6.9 in the presence of 1.3mm calcium chloride, 0.03% casamino acids and inducer. Enzyme production was virtually the same at 15 and 20 C, reduced to 50% at 25 C and was not detectable at 30 C. It was highly stimulated by the presence of 0.03% of casamino acids in the incubation mixture and was also favoured by the presence of 1.3mm calcium ions. Of a variety of compounds tested, only melibiose or neoagaro-oligosaccharides were effective inducers. Among the neoagaro-oligosaccharides, neoagarotetraose was the best inducer. At higher concentrations of inducer compounds catabolite repression of enzyme synthesis was apparent. This was also found when glucose was added to the incubation mixture. This repression was not relieved by the addition of cyclic AMP. Indications were found that the excretion process was limiting the rate of production of extracellular enzyme.  相似文献   

14.
《Process Biochemistry》2007,42(5):904-908
Various agro-industrial residues in combination with peptone, NH4Cl and/or soy bran were screened as substrates for extracellular β-glucosidase (BGL) production by Monascus purpureus NRRL1992 on submerged fermentations (SmF). Higher BGL production was achieved when the agro-industrial residues were combined with peptone, and the utilization of NH4Cl (inorganic nitrogen source) had not supported high enzyme production. The combination between grape waste and peptone was the best for enzyme production, and was selected as the growth substrate for further investigations. The evaluation of the effects of the medium components on enzyme production showed that the influence of peptone was more important than grape waste. The production of extracellular BGL by M. purpureus was inducible and controlled by carbon (glucose) catabolite repression.  相似文献   

15.
《Experimental mycology》1992,16(4):253-260
Regulation of endoglucanase formation by the brown-rot fungusGloeophyllum trabeum was investigated. This fungus produced endoglucanases in the presence of monosaccharides such as glucose or mannose as the sole carbon source, but the expression of these enzymes was four to five times higher in the presence of cellulose or cellobiose. In a lactose- or glucose-containing medium, endoglucanase production was induced by cellobiose. Glucose and glycerol did not repress enzyme production. We concluded that endoglucanase production by brown-rot fungi is inducible by cellulose and not subject to catabolite repression. Cellobiose is the most effective inducer of the system.  相似文献   

16.
Production of invertase by many strains of yeast is repressed in the presence of hexoses. This phenomenon interferes with studies on the secretion of invertase and with the preparation of large quantities of the enzyme for examination of its chemical and physical characteristics. Saccharomyces strain 303-67, a diploid carrying the single gene SUC-2 for (hexose repressible) invertase production, was subjected to ultraviolet irradiation. No single-step mutations to high level resistance were detected. By a two-step irradiation process mutants were obtained with differing degrees of resistance. The biochemical and genetic characteristics of these mutants are summarized with particular emphasis on FH4C (the most resistant). Although the steady state level of cyclic 3', 5'-adenosine monophosphate (cyclic AMP) was usually slightly higher in cells grown in low- rather than in high-glucose media, the level of cyclic AMP was not correlated with the sensitivity of invertase synthesis to glucose repression. In mutant FH4C, 1 to 2% of the total cell protein is present as invertase; synthesis of alpha-glucosidase is also resistant to repression by hexoses. This mutant does not sporulate and is probably a haploid of a-mating type with low frequency of conjugation and poor viability of conjugants. Mutants 1016 and 1710 are substantially resistant to hexose repression and still sporulate well. They may be useful for genetic analysis of hexose resistance.  相似文献   

17.
When an Escherichia coli mutant lacking the enzyme N-acetyl-glucosamine-6-phosphate (AcGN6P) deacetylase is grown in a succinate-mineral salts medium and exposed to an exogenous source of N-acetylglucosamine, approximately 20 to 30 pmoles of AcGN6P per mug of cell dry weight will accumulate in these cells. This accumulation occurs within 2 to 4 min after the addition of N-acetylglucosamine and is coincident with the production of a severe permanent catabolite repression of beta-galactosidase synthesis. This repression does not occur if adenosine 3',5'-cyclic phosphate (cyclic AMP) is added to the cells before AcGN6P accumulates. An immediate derepression occurs when cyclic AMP is added to cells that have already accumulated a large AcGN6P pool. These findings are consistent with the view that low-molecular-weight carbohydrate metabolites and cyclic AMP play key roles in the catabolite repression phenomenon, and that metabolites such as AcGN6P may participate in the represion mechanism by influencing either the formation or degradation of cyclic AMP in E. coli.  相似文献   

18.
The synthesis of polyglutamic acid (PGA) was repressed by exogenous glutamate in strains of Bacillus licheniformis but not in strains of Bacillus subtilis, indicating a clear difference in the regulation of synthesis of capsular slime in these two species. Although extracellular γ-glutamyltranspeptidase (GGT) activity was always present in PGA-producing cultures of B. licheniformis under various growth conditions, there was no correlation between the quantity of PGA and enzyme activity. Moreover, the synthesis of PGA in the absence of detectable GGT activity in B. subtilis S317 indicated that this enzyme was not involved in PGA biosynthesis in this bacterium. Glutamate repression of PGA biosynthesis may offer a simple means of preventing unwanted slime production in industrial fermentations using B. licheniformis.  相似文献   

19.
The regulation of three Salmonella typhimurium phosphatases in reponse to different nutritional limitations has been studied. Two enzymes, an acid hexose phosphatase (EC 3.1.3.2) and a cyclic phosphodiesterase (EC 3.1.4.d), appear to be regulated by the cyclic adenosine 3' ,5'-monophosphate (AMP) catabolite repression system. Levels of these enzymes increased in cells grown on poor carbon sources but not in cells grown on poor nitrogen or phosphorus sources. Mutants lacking adenyl cyclase did not produce elevated levels of these enzymes in response to carbon limitation unless cyclic AMP was supplied. Mutants lacking the cyclic AMP receptor protein did not produce elevated levels of these enzymes in response to carbon limitation regardless of the presence of cyclic AMP. Since no specific induction of either enzyme could be demonstrated, these enzymes appear to be controlled solely by the cyclic AMP system. Nonspecific acid phsphatase activity (EC 3.1.3.2) increased in response to carbon, nitrogen, phosphorus, or sulfur limitation. The extent of the increase depended on growth rate, with slower growth rates favoring greater increases, and on the type of limitation. Limitation for either carbon or phosphorus resulted in maximum increases, whereas severe limitation of Mg2+ caused only a slight increase. The increase in nonspecific acid phosphatase during carbon limitation was apparently not mediated by the catabolite repression system since mutants lacking adenyl cyclase or the cyclic AMP receptor protein still produced elevated levels of this enzyme during carbon starvation. Nor did the increase during phosphorus limitation appear to be mediated by the alkaline phosphatase regulatory system. A strain of Salmonella bearing a chromosomal mutation, which caused constitutive production of alkaline phosphatase (introduced by an episome from Escherichia coli), did not have constitutive levels of nonspecific acid phosphatase.  相似文献   

20.
Glucose can block the utilization of N-acetylglucosamine in Saccharomyces cerevisiae, a facultative aerobe, but not in Candida albicans, an obligatory aerobe. Furthermore, glucose represses the synthesis of the enzymes of the N-acetylglucosamine catabolic pathway in S. cerevisiae, but not in C. albicans. The results suggest that catabolite repression is present in S. cerevisiae, but not in C. albicans. Cyclic AMP added to S. cerevisiae cells maintained in a glucose medium cannot bring about their release from catabolite repression. On the contrary, the synthesis of inducible enzymes of N-acetylglucosamine pathway was inhibited by cyclic AMP in both the yeasts. This seems to indicate that cyclic AMP can penetrate into the yeast cells. Furthermore, cyclic AMP inhibits protein synthesis, suggesting that protein synthesis in yeast is under cyclic AMP control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号