首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The extracellular N-terminal domain of the human Ca(2+) receptor (hCaR) consists of a Venus's-flytrap (VFT) domain and a cysteine-rich (Cys-rich) domain. We have shown earlier that the Cys-rich domain is critical for signal transmission from the VFT domain to the seven-transmembrane domain. The VFT domain contains 10 cysteines: two of them (Cys(129) and Cys(131)) were identified as involved in intermolecular disulfide bonds necessary for homodimerization, and six others (Cys(60)-Cys(101), Cys(358)-Cys(395), and Cys(437)-Cys(449)) are predicted to form three intramolecular disulfide bonds. The Cys-rich domain contains nine cysteines, the involvement of which in disulfide bond formation has not been defined. In this work, we asked whether the remaining cysteines in the hCaR VFT, namely Cys(236) and Cys(482), form disulfide bond(s) with cysteines in the Cys-rich domain. We constructed mutant hCaRs with a unique tobacco etch virus (TEV) protease recognition site inserted between the VFT domain and the Cys-rich domain. These mutant hCaRs remain fully functional compared with the wild type hCaR. After TEV protease digestion of the mutant hCaR proteins, dimers of the VFT were identified on Western blot under nonreducing conditions. We concluded that there is no disulfide bond between the VFT and the Cys-rich domains in the hCaR.  相似文献   

2.
We previously found that mutants of conserved aspartate residues of sarcoplasmic reticulum Ca(2+)-ATPase in the cytosolic loop, connecting transmembrane segments M6 and M7 (L6-7 loop), exhibit a strongly reduced sensitivity toward Ca(2+) activation of the transport process. In this study, yeast membranes, expressing wild type and mutant Ca(2+)-ATPases, were reacted with Cr small middle dotATP and tested for their ability to occlude (45)Ca(2+) by HPLC analysis, after cation resin and C(12)E(8) treatment. We found that the D813A/D818A mutant that displays markedly low calcium affinity was capable of occluding Ca(2+) to the same extent as wild type ATPase. Using NMR and mass spectrometry we have analyzed the conformational properties of the synthetic L6-7 loop and demonstrated the formation of specific 1:1 cation complexes of the peptide with calcium and lanthanum. All three aspartate Asp(813)/Asp(815)/Asp(818) were required to coordinate the trivalent lanthanide ion. Overall these observations suggest a dual function of the loop: in addition to mediating contact between the intramembranous Ca(2+)-binding sites and the cytosolic phosphorylation site (Zhang, Z., Lewis, D., Sumbilla, C., Inesi G., and Toyoshima, C. (2001) J. Biol. Chem. 276, 15232-15239), the L6-7 loop, in a preceding step, participates in the formation of an entrance port, before subsequent high affinity binding of Ca(2+) inside the membrane.  相似文献   

3.
Conditions were developed in the absence of Ca(2+) for purification, delipidation, and long term stabilization of octaethylene glycol monododecyl ether (C(12)E(8))-solubilized sarcoplasmic reticulum Ca(2+)-ATPase with tightly bound Mg(2+) and F(-), an analog for the phosphoenzyme intermediate without bound Ca(2+). The Ca(2+)-ATPase activity to monitor denaturation was assessed after treatment with 20 mm Ca(2+) to release tightly bound Mg(2+)/F(-). The purification and delipidation was successfully achieved with Reactive Red-agarose affinity chromatography. The solubilized Mg(2+)/F(-)-bound Ca(2+)-ATPase was very rapidly denatured at pH 8, but was perfectly stabilized at pH 6 against denaturation for over 20 days at 4 degrees C even without exogenously added phospholipid and at a high C(12)E(8)/enzyme weight ratio (10:1). The activity was not restored unless the enzyme was treated with 20 mm Ca(2+), showing that tightly bound Mg(2+)/F(-) was not released during the long term incubation. The perfect stability was attained with or without 0.1 mm dithiothreitol, but inactivation occurred with a half-life of 10 days in the presence of 1 mm dithiothreitol, possibly due to reduction of a specific disulfide bond(s). The remarkable stability is likely conferred by intimate gathering of cytoplasmic domains of Ca(2+)-ATPase molecule induced by tight binding of Mg(2+)/F(-). The present study thus reveals an essential property of the Mg(2+)/F(-)/Ca(2+)-ATPase complex, which will likely provide clues to understanding structure of the Ca(2+)-released form of phosphoenzyme intermediate at an atomic level.  相似文献   

4.
Mutants in which Thr-353 of the Ca(2+)-ATPase of sarcoplasmic reticulum had been replaced with alanine, serine, glutamine, cysteine, valine, aspartate, or tyrosine were analyzed functionally. All the mutations severely affected MgATP binding, whereas ATP binding was close to normal in the alanine, serine, glutamine, and valine mutants. In the serine and valine mutants, the maximum rate of phosphorylation from MgATP was 8- and 600-fold lower, respectively, compared with wild type. Replacement of Mg(2+) with Mn(2+) led to a 1.5-fold enhancement of the maximum phosphorylation rate in the valine mutant and a 5-fold reduction in the wild type. The turnover of the phosphoenzyme formed from MgATP was slowed 1-2 orders of magnitude relative to wild type in the alanine, serine, and valine mutants, but was close to normal in the aspartate and cysteine mutants. Only the serine mutant formed a phosphoenzyme in the backward reaction with P(i), and the hydrolysis of this intermediate was greatly enhanced. Analysis of the functional changes in the mutants in the light of the recent high resolution structure of the Ca(2+)-ATPase crystallized without the MgATP substrate suggests that, in the native activated state of the enzyme, the side chain hydroxyl of Thr-353 participates in important interactions with nucleotide and phosphate, possibly in catalysis, whereas the main chain carbonyl of Thr-353, but not the side chain, may coordinate the catalytic Mg(2+).  相似文献   

5.
Tyr(122)-hydrophobic cluster (Y122-HC) is an interaction network formed by the top part of the second transmembrane helix and the cytoplasmic actuator and phosphorylation domains of sarcoplasmic reticulum Ca(2+)-ATPase. We have previously found that Y122-HC plays critical roles in the processing of ADP-insensitive phosphoenzyme (E2P) after its formation by the isomerization from ADP-sensitive phosphoenzyme (E1PCa(2)) (Wang, G., Yamasaki, K., Daiho, T., and Suzuki, H. (2005) J. Biol. Chem. 280, 26508-26516). Here, we further explored kinetic properties of the alanine-substitution mutants of Y122-HC to examine roles of Y122-HC for Ca(2+) release process in E2P. In the steady state, the amount of E2P decreased so that of E1PCa(2) increased with increasing lumenal Ca(2+) concentration in the mutants with K(0.5) 110-320 microm at pH 7.3. These lumenal Ca(2+) affinities in E2P agreed with those estimated from the forward and lumenal Ca(2+)-induced reverse kinetics of the E1PCa(2)-E2P isomerization. K(0.5) of the wild type in the kinetics was estimated to be 1.5 mM. Thus, E2P of the mutants possesses significantly higher affinities for lumenal Ca(2+) than that of the wild type. The kinetics further indicated that the rates of lumenal Ca(2+) access and binding to the transport sites of E2P were substantially slowed by the mutations. Therefore, the proper formation of Y122-HC and resulting compactly organized structure are critical for both decreasing Ca(2+) affinity and opening the lumenal gate, thus for Ca(2+) release from E2PCa(2). Interestingly, when K(+) was omitted from the medium of the wild type, the properties of the wild type became similar to those of Y122-HC mutants. K(+) binding likely functions via producing the compactly organized structure, in this sense, similarly to Y122-HC.  相似文献   

6.
Use of the nonphosphorylating beta,gamma-bidentate chromium(III) complex of ATP to induce a stable Ca(2+)-occluded form of the sarcoplasmic reticulum Ca(2+)-ATPase was combined with molecular sieve high performance liquid chromatography of detergent-solubilized protein to examine the ability of the Ca(2+)-ATPase mutants Gly-233-->Glu, Gly-233-->Val, Glu-309-->Gln, Gly-310-->Pro, Pro-312-->Ala, Ile-315-->Arg, Leu-319-->Arg, Asp-703-->Ala, Gly-770-->Ala, Glu-771-->Gln, Asp-800-->Asn, and Gly-801-->Val to occlude Ca2+. This provided a new approach to identification of amino acid residues involved in Ca2+ binding and in the closure of the gates to the Ca2+ binding pocket of the Ca(2+)-ATPase. The "phosphorylation-negative" mutant Asp-703-->Ala and mutants of ADP-sensitive phosphoenzyme intermediate type were fully capable of occluding Ca2+, as was the mutant Gly-770-->Ala. Mutants in which carboxylic acid-containing residues in the putative transmembrane segments had been substituted ("Ca(2+)-site mutants") and mutant Gly-801-->Val were unable to occlude either of the two calcium ions. In addition, the mutant Gly-310-->Pro, previously classified as ADP-insensitive phosphoenzyme intermediate type (Andersen, J.P., Vilsen, B., and MacLennan, D.H. (1992). J. Biol. Chem. 267, 2767-2774), was unable to occlude Ca2+, even though Ca(2+)-activated phosphorylation from MgATP took place in this mutant.  相似文献   

7.
Possible roles of the Lys(189)-Lys(205) outermost loop on the A domain of sarcoplasmic reticulum Ca(2+)-ATPase were explored by mutagenesis. Both nonconservative and conservative substitutions of Val(200) caused very strong inhibition of Ca(2+)-ATPase activity, whereas substitutions of other residues on this loop reduced activity only moderately. All of the Val(200) mutants formed phosphoenzyme intermediate (EP) from ATP. Isomerization from ADP-sensitive EP (E1P) to ADP-insensitive EP (E2P) was not inhibited in the mutants, and a substantially larger amount of E2P actually accumulated in the mutants than in wild-type sarcoplasmic reticulum Ca(2+)-ATPase at steady state. In contrast, decay of EP formed from ATP in the presence of Ca(2+) was strongly inhibited in the mutants. Hydrolysis of E2P formed from P(i) in the absence of Ca(2+) was also strongly inhibited but was faster than the decay of EP formed from ATP, indicating that the main kinetic limitation of the decay comes after loss of ADP sensitivity but before E2P hydrolysis. On the basis of the well accepted mechanism of the Ca(2+)-ATPase, the limitation is likely associated with the Ca(2+)-releasing step from E2P.Ca(2). On the other hand, the rate of activation of dephosphorylated enzyme on high affinity Ca(2+) binding was not altered by the substitutions. In light of the crystal structures, the present results strongly suggest that Val(200) confers appropriate interactions of the Lys(189)-Lys(205) loop with the P domain in the Ca(2+)-released form of E2P. Results further suggest that these interactions, however, do not contribute much to domain organization in the dephosphorylated enzyme and thus would be mostly lost on E2P hydrolysis.  相似文献   

8.
Acylphosphatase, purified from human erythrocytes, actively hydrolyzes the acylphosphorylated intermediate of human red blood cell membrane Ca(2+)-ATPase. This effect occurred with acylphosphatase amounts (up to 10 units/mg membrane protein) that fall within the physiological range. Furthermore, a very low Km value, 3.41 +/- 1.16 (S.E.) nM, suggests a high affinity in acylphosphatase for the phosphoenzyme intermediate, which is consistent with the small number of Ca(2+)-ATPase units in human erythrocyte membrane. Acylphosphatase addition to red cell membranes resulted in a significant increase in the rate of ATP hydrolysis. Maximal stimulation (about 2-fold over basal) was obtained at 2 units/mg membrane protein, with a concomitant decrease in apparent Km values for both Ca2+ and ATP. Conversely, similar amounts of acylphosphatase significantly decreased (by about 30%) the rate of Ca2+ transport into inside-out red cell membrane vesicles, albeit that reduced apparent Km values for Ca2+ and ATP were also observed in this case. A stoichiometry of 2.04 Ca2+/ATP hydrolyzed was calculated in the absence of acylphosphatase; in the presence of acylphosphatase optimal concentration, this ratio was reduced to 0.9. Acylphosphatase activity, rather than just protein, was essential for all the above effects. Taken together these findings suggest that, because of its hydrolytic activity on the phosphoenzyme intermediate, acylphosphatase reduces the efficiency of the erythrocyte membrane Ca2+ pump. A possible mechanism for this effect is that the phosphoenzyme is hydrolyzed before its transport work can be accomplished.  相似文献   

9.
An antipeptide antibody was produced against a peptide corresponding to residues 877-888 of fast twitch rabbit sarcoplasmic reticulum ATPase. This antipeptide antibody bound strongly to the ATPase in sarcoplasmic reticulum vesicles only after the vesicles had been solubilized with the detergent C12E8 indicating that its epitope was located in the lumen of the sarcoplasmic reticulum. Digestion of sarcoplasmic reticulum or purified (Ca2(+)-MG2+)-ATPase by proteinase K for up to 1 h resulted in a stable ATPase fragment of 30 kDa containing the epitope for the above antibody and the epitope for an antibody directed against the C terminus. Further proteolysis revealed smaller fragments (Mr 19,000 and 13,000) containing both epitopes. By contrast, small fragments of the ATPase (less than 29 kDa) containing the N-terminal epitope were not observed even after short exposures to proteinase K. These data support the view that the (Ca2(+)-MG2+)-ATPase has 10 transmembranous helices.  相似文献   

10.
During Ca(2+) transport by sarcoplasmic reticulum Ca(2+)-ATPase, the conformation change of ADP-sensitive phosphoenzyme (E1PCa(2)) to ADP-insensitive phosphoenzyme (E2PCa(2)) is followed by rapid Ca(2+) release into the lumen. Here, we find that in the absence of K(+), Ca(2+) release occurs considerably faster than E1PCa(2) to E2PCa(2) conformation change. Therefore, the lumenal Ca(2+) release pathway is open to some extent in the K(+)-free E1PCa(2) structure. The Ca(2+) affinity of this E1P is as high as that of the unphosphorylated ATPase (E1), indicating the Ca(2+) binding sites are not disrupted. Thus, bound K(+) stabilizes the E1PCa(2) structure with occluded Ca(2+), keeping the Ca(2+) pathway to the lumen closed. We found previously (Yamasaki, K., Wang, G., Daiho, T., Danko, S., and Suzuki, H. (2008) J. Biol. Chem. 283, 29144-29155) that the K(+) bound in E2P reduces the Ca(2+) affinity essential for achieving the high physiological Ca(2+) gradient and to fully open the lumenal Ca(2+) gate for rapid Ca(2+) release (E2PCa(2) → E2P + 2Ca(2+)). These findings show that bound K(+) is critical for stabilizing both E1PCa(2) and E2P structures, thereby contributing to the structural changes that efficiently couple phosphoenzyme processing and Ca(2+) handling.  相似文献   

11.
Clotrimazole (CLT) is an antimycotic imidazole derivative that is known to inhibit cytochrome P-450, ergosterol biosynthesis and proliferation of cells in culture, and to interfere with cellular Ca(2+) homeostasis. We found that CLT inhibits the Ca(2+)-ATPase of rabbit fast-twitch skeletal muscle (SERCA1), and we characterized in detail the effect of CLT on this calcium transport ATPase. We used biochemical methods for characterization of the ATPase and its partial reactions, and we also performed measurements of charge movements following adsorption of sarcoplasmic reticulum vesicles containing the ATPase onto a gold-supported biomimetic membrane. CLT inhibits Ca(2+)-ATPase and Ca(2+) transport with a K(I) of 35 mum. Ca(2+) binding in the absence of ATP and phosphoenzyme formation by the utilization of ATP in the presence of Ca(2+) are also inhibited within the same CLT concentration range. On the other hand, phosphoenzyme formation by utilization of P(i) in the absence of Ca(2+) is only minimally inhibited. It is concluded that CLT inhibits primarily Ca(2+) binding and, consequently, the Ca(2+)-dependent reactions of the SERCA cycle. It is suggested that CLT resides within the membrane-bound region of the transport ATPase, thereby interfering with binding and the conformational effects of the activating cation.  相似文献   

12.
H S Park  B J Gong    T Tao 《Biophysical journal》1994,66(6):2062-2065
Various thio-reactive bifunctional crosslinkers as well as 5,5'-dithiobis(2-nitrobenzoate)-mediated disulfide bond formation were used to crosslink troponin-C and troponin-I, the Ca(2+)-binding and inhibitory subunits of troponin, respectively. In all cases, substantial crosslinking was obtained when the reactions were carried out in the absence of Ca2+. No disulfide crosslinking occurred if either Cys98 of TnC, or Cys133 of TnI were blocked, indicating that these thiols are involved in the crosslinking. Troponin containing the disulfide crosslink is no longer capable of regulating actomyosin ATPase activity in a Ca(2+)-dependent manner. Our results suggest that the relative movement between the Cys98 region of TnC and the Cys133 region of TnI is required for the Ca(2+)-regulatory process in skeletal muscle.  相似文献   

13.
Inositol 1,4,5-trisphosphate receptor (IP(3)R) is a major intracellular Ca(2+) channel, modulated by many factors in the cytosolic and lumenal compartments. Compared with cytosolic control, lumenal-side regulation has been much less studied, and some of its mechanistic aspects have been controversial. Of particular interest with regard to lumenal regulation are whether it involves direct interactions between IP(3)R and the regulators, and whether it involves conformational changes of the lumenal regions of IP(3)R. To understand these lumenal-side regulation mechanisms, we studied the effects of two important lumenal regulatory factors, the redox potential and Ca(2+), on the L3-1 lumenal loop region of IP(3)R. The redox potential exerted direct and significant effects on the conformation of the loop region. By sharp contrast, Ca(2+) showed little effect on the L3-1 conformation, suggesting that the regulation of Ca(2+) is indirect or involves other receptor regions. GSH/oxidized glutathione-mediated oxidation introduced a unique intramolecular disulfide bond between Cys(34) and Cys(42). A variety of NMR experiments revealed that oxidation also induces localized helical characteristics in the Cys(34)-Cys(42) region. Dynamics studies also showed reduced motions in the region upon oxidation, consistent with the conformational changes. The results raise the interesting possibility that Cys(34) and Cys(42) may act together as a reduction sensor, and that Cys(65) may function as an oxidation sensor. Overall, our studies suggest that the redox potential and Ca(2+) can regulate IP(3)R through totally different mechanisms: Ca(2+) by the indirect effect and the redox potential by direct action causing conformational changes.  相似文献   

14.
Point mutants with alterations to amino acid residues Thr(247), Pro(248), Glu(340), Asp(813), Arg(819), and Arg(822) of sarcoplasmic reticulum Ca(2+)-ATPase were analyzed by transient kinetic measurements. In the Ca(2+)-ATPase crystal structures, most of these residues participate in a hydrogen-bonding network between the phosphorylation domain (domain P), the third transmembrane helix (M3), and the cytoplasmic loop connecting the sixth and the seventh transmembrane helices (L6-7). In several of the mutants, a pronounced phosphorylation "overshoot" was observed upon reaction of the Ca(2+)-bound enzyme with ATP, because of accumulation of dephosphoenzyme at steady state. Mutations of Glu(340) and its partners, Thr(247) and Arg(822), in the bonding network markedly slowed the Ca(2+) binding transition (E2 --> E1 --> Ca(2)E1) as well as Ca(2+) dissociation from Ca(2+) site II back toward the cytosol but did not affect the apparent affinity for vanadate. These mutations may have caused a slowing, in both directions, of the conformational change associated directly with Ca(2+) interaction at Ca(2+) site II. Because mutation of Asp(813) inhibited the Ca(2+) binding transition, but not Ca(2+) dissociation, and increased the apparent affinity for vanadate, the effect on the Ca(2+) binding transition seems in this case to be exerted by slowing the E2 --> E1 conformational change. Because the rate was not significantly enhanced by a 10-fold increase of the Ca(2+) concentration, the slowing is not the consequence of reduced affinity of any pre-binding site for Ca(2+). Furthermore, the mutations interfered in specific ways with the phosphoenzyme processing steps of the transport cycle; the transition from ADP-sensitive phosphoenzyme to ADP-insensitive phosphoenzyme (Ca(2)E1P --> E2P) was accelerated by mutations perturbing the interactions mediated by Glu(340) and Asp(813) and inhibited by mutation of Pro(248), and mutations of Thr(247) induced charge-specific changes of the rate of dephosphorylation of E2P.  相似文献   

15.
Site-directed mutations were produced in the distal segments of the Ca(2+)-ATPase (SERCA) transmembrane region. Mutations of Arg-290 (M3-M4 loop), Lys-958, and Thr-960 (M9 - M10 loop) had minor effects on ATPase activity and Ca(2+) transport. On the other hand, Val-304 (M4) mutations to Ile, Thr, Lys, Ala, or Glu inhibited transport by 90-95% while reducing ATP hydrolysis by 83% (Ile, Thr, and Lys), 56% (Ala), or 45% (Glu). Val-304 participates in Ca(2+) coordination with its main-chain carbonyl oxygen, and this function is not expected to be altered by mutations of its side chain. In fact, despite turnover inhibition, the Ca(2+) concentration dependence of residual ATPase activity remained unchanged in Val-304 mutants. However, the rates (but not the final levels) of phosphoenzyme formation, as well the rates of its hydrolytic cleavage, were reduced in proportion to the ATPase activity. Furthermore, with the Val-304 --> Glu mutant, which retained the highest residual ATPase activity, it was possible to show that occlusion of bound Ca(2+) was also impaired, thereby explaining the stronger inhibition of Ca(2+) transport relative to ATPase activity. The effects of Val-304 mutations on phosphoenzyme turnover are attributed to interference with mechanical links that couple movements of transmembrane segments and headpiece domains. The effects of thermal activation energy on reaction rates are thereby reduced. Furthermore, inadequate occlusion of bound Ca(2+) following utilization of ATP in Val-304 side-chain mutations is attributed to inadequate stabilization of the Glu-309 side chain and consequent defect of its gating function.  相似文献   

16.
Charybdotoxin (ChTX), a potent inhibitor of the high conductance Ca2(+)-activated K+ channel (PK,Ca) is a highly basic peptide isolated from venom of the scorpion Leiurus quinquestriatus hebraeus, whose primary structure has been determined (Gimenez-Gallego, G., Navia, M. A., Reuben, J. P., Katz, G. M., Kaczorowski, G. J., and Garcia, M. L. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 3329-3333). The synthesis of this peptide using continuous flow solid phase fluorenylmethyloxycarbonyl-pentafluorophenyl ester methodology has now been achieved. The 1-37-amino acid hexasulfhydryl peptide oxidizes readily to give the tricyclic disulfide structure in good yield. This folded synthetic material is identical to native toxin based on three criteria: co-migration with ChTX on reversed phase high performance liquid chromatography (HPLC); competitive inhibition of 125I-labeled monoiodotyrosine charybdotoxin binding to bovine aortic sarcolemmal membrane vesicles with a Ki (10 pM) identical to that of native toxin; blockade of PK,Ca activity in excised outside-out patches from bovine aortic smooth muscle with the potency and inhibitory properties characteristic of ChTX (i.e. appearance of silent periods interdispersed with normal bursts of channel activity in single channel recordings). Selective enzymatic digestion of native or synthetic ChTX by simultaneous exposure to chymotrypsin and trypsin yields identical reversed phase HPLC profiles. Analysis of the sequence and amino acid composition of the resulting fragments defines a disulfide bond arrangement (Cys7-Cys28, Cys13-Cys33, Cys17-Cys35) which differs from that previously suggested. This configuration predicts a highly folded tertiary structure for ChTX which, together with observations from electrophysiological and binding experiments, suggests a possible mechanism by which ChTX interacts with PK,Ca to block channel function.  相似文献   

17.
The vitamin K oxidoreductase (VKOR) reduces vitamin K to support the carboxylation and consequent activation of vitamin K-dependent proteins, but the mechanism of reduction is poorly understood. VKOR is an integral membrane protein that reduces vitamin K using membrane-embedded thiols (Cys-132 and Cys-135), which become oxidized with concomitant VKOR inactivation. VKOR is subsequently reactivated by an unknown redox protein that is currently thought to act directly on the Cys132-Cys135 residues. However, VKOR contains evolutionarily conserved Cys residues (Cys-43 and Cys-51) that reside in a loop outside of the membrane, raising the question of whether they mediate electron transfer from a redox protein to Cys-132/Cys-135. To assess a possible role, the activities of mutants with Ala substituted for Cys (C43A and C51A) were analyzed in intact membranes using reductants that were either membrane-permeable or -impermeable. Both reductants resulted in wild type VKOR reduction of vitamin K epoxide; however, the C43A and C51A mutants only showed activity with the membrane-permeant reductant. We obtained similar results when testing the ability of wild type and mutant VKORs to support carboxylation, using intact membranes from cells coexpressing VKOR and carboxylase. These results indicate a role for Cys-43 and Cys-51 in catalysis, suggesting a relay mechanism in which a redox protein transfers electrons to these loop residues, which in turn reduce the membrane-embedded Cys132-Cys135 disulfide bond to activate VKOR. The results have implications for the mechanism of warfarin resistance, the topology of VKOR in the membrane, and the interaction of VKOR with the carboxylase.  相似文献   

18.
The reduction, carboxymethylation and mercuration of disulfide bond, Cys250-Cys283, located on the surface of bovine chymosin molecule resulted in the loss of about 25% of enzyme activity, suggesting that Cys250-Cys283 is not intimately involved in catalytic mechanism. Cys250 and Cys283 were substituted with Asp. and Ser. by site- directed mutagenesis of the structural gene coding for bovine prochymosin B. All three mutants (C250D/C283S, C250D, C283S) failed to be activated to chymosin in acid, indicating that Cys250-Cys283 might have some contribution to the correct refolding of the unfolded prochymosin.  相似文献   

19.
The role of Mg2+ in the activation of phosphoenzyme hydrolysis has been investigated with the (Ca2+, Mg2+)-ATPase of sarcoplasmic reticulum vesicles. The enzyme of the native and solubilized vesicles was phosphorylated with ATP at 0 degrees C, pH 7.0, in the presence of Ca2+ and Mg2+. When Ca2+ and Mg2+ in the medium were chelated, phosphoenzyme hydrolysis continued for about 15 s and then ceased. The extent of this hydrolysis increased with increasing concentrations of Mg2+ added before the start of phosphorylation. This shows that the hydrolysis was activated by the Mg2+ added. The Mg2+ which activated phosphoenzyme hydrolysis was distinct from Mg2+ derived from MgATP bound to the substrate site. The Mg2+ site at which Mg2+ combined to activate phosphoenzyme hydrolysis was located on the outer surface of the vesicular membranes. During the catalytic cycle, Mg2+ combined with the Mg2+ site before Ca2+ dissociated from the Ca2+ transport site of the ADP-sensitive phosphoenzyme with bound Ca2+. This Mg2+ did not activate hydrolysis of the ADP-sensitive phosphoenzyme with bound Ca2+, but markedly activated hydrolysis of the ADP-insensitive phosphoenzyme without bound Ca2+. It is concluded that during the catalytic cycle, Mg2+ activates phosphoenzyme hydrolysis only after Ca2+ has dissociated from the Ca2+ transport site of phosphoenzyme.  相似文献   

20.
Limited labeling of amino groups with fluorescamine in fragmented sarcoplasmic reticulum vesicles inhibits Ca2+-ATPase activity and Ca2+ transport. Under the labeling conditions used, 80% of the label reacts with phosphatidylethanolamine and 20% with the Ca2+-ATPase polypeptide. This degree of labeling does not result in vesicular disruption or in loss of vesicular proteins and does not increase the membrane permeability to Ca2+. Fluorescamine labeling of a purified Ca2+-ATPase devoid of aminophospholipids also inhibits Ca2+-ATPase activity, suggesting that labeling of lysine residues of the enzyme polypeptide is responsible for the inhibition of Ca2+-ATPase activity in sarcoplasmic reticulum. Fluorescamine labeling interferes with phosphoenzyme formation and decomposition in both the native vesicles and the purified enzyme; addition of ATP during labeling, and with less effectiveness ADP or AMP, protects both partial reaction steps. Addition of a nonhydrolyzable ATP analog protects phosphoenzyme formation but not decomposition. The inhibition of Ca2+ transport but not of Ca2+-ATPase occurs in sarcoplasmic reticulum vesicles labeled in the presence of ATP, indicating that the transport reaction is uncoupled from the Ca2+-ATPase reaction. The inhibition of Ca2+ transport but not of Ca2+-ATPase activity is also found in sarcoplasmic reticulum vesicles in which only phosphatidylethanolamine has reacted with fluorescamine. Furthermore, the extent of labeling of phosphatidylethanolamine is correlated with the inhibition of Ca2+ transport rates. The inhibition of Ca2+ transport is a reflection of the inhibition of Ca2+ translocation and is not due to an increase in Ca2+ efflux. We propose that labeling of phosphatidylethanolamine perturbs the lipid environment around the enzyme, producing a specific defect in the Ca2+ translocation reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号