首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The cytosolic and proplastid isoenzymes of 6-phosphogluconate dehydrogenase were purified from the developing endosperm of the castor bean (Ricinis communis L.). No differences in physical or kinetic properties were found for the purified isoenzymes. Each was composed of two identical 55,000 subunits. They had identical pH optima of 7.8 to 8.0 and similar MgCl2 stimulation for the oxidative decarboxylation of 6-phosphogluconate. The Km values for 6-phosphogluconate were 12 and 9.6 micromolar and for NADP+ were 4.1 and 5.4 micromolar for the cytosolic and proplastid isoenzymes, respectively. Therefore, the synthesis of two distinct 6-phosphogluconate dehydrogenase isoenzymes does not appear to have any kinetic significance for the developing seed. However, changes in the proplastid contribution toward carbohydrate metabolism occur in the developing seed and may necessitate independent gene expression to allow for a unique and flexible subcellular distribution of isoenzymes during development.  相似文献   

2.
The plastid isozyme of phosphofructokinase from developing castor oil seeds is stimulated by low concentrations of fructose 2,6-bisphosphate when assayed at pH 7.0. The stimulation involves a shift in fructose 6-phosphate kinetics from sigmoidal to near hyperbolic. The plastid isozyme is unaffected by fructose 2,6-bisphosphate when assayed at pH 8.0, and the cytosolic isozyme is unaffected at either pH 7.0 or 8.0. There is no interaction between fructose 2,6-bisphosphate and the other regulators of the Ricinus phosphofructokinases; phosphoenolpyruvate, 2-phosphoglycerate, 3-phosphoglycerate and inorganic phosphate.  相似文献   

3.
The aim of this work was to examine the possibility that fructose 2,6-bisphosphate (Fru-2,6-P2) plays a role in the regulation of gluconeogenesis from fat. Fru-2,6-P2 is known to inhibit cytoplasmic fructose 1,6-bisphosphatase and stimulate pyrophosphate:fructose 6-phosphate phosphotransferase from the endosperm of seedlings of castor bean (Ricinus communis). Fru-2,6-P2 was present throughout the seven-day period in amounts from 30 to 200 picomoles per endosperm. Inhibition of gluconeogenesis by anoxia or treatment with 3-mercaptopicolinic acid doubled the amount of Fru-2,6-P2 in detached endosperm. The maximum activities of fructose 6-phosphate,2-kinase and fructose 2,6-bisphosphatase (enzymes that synthesize and degrade Fru-2,6-P2, respectively) were sufficient to account for the highest observed rates of Fru-2,6-P2 metabolism. Fructose 6-phosphate,2-kinase exhibited sigmoid kinetics with respect to fructose 6-phosphate. These kinetics became hyperbolic in the presence of inorganic phosphate, which also relieved a strong inhibition of the enzyme by 3-phosphoglycerate. Fructose 2,6-bisphosphatase was inhibited by both phosphate and fructose 6-phosphate, the products of the reaction. The properties of the two enzymes suggest that in vivo the amounts of fructose-6-phosphate, 3-phosphoglycerate, and phosphate could each contribute to the control of Fru-2,6-P2 level. Variation in the level of Fru-2,6-P2 in response to changes in the levels of these metabolites is considered to be important in regulating flux between fructose 1,6-bisphosphate and fructose 6-phosphate during germination.  相似文献   

4.
The role of fructose 2,6 bisphosphate in partitioning of photosynthate between sucrose and starch has been studied in spinach (Spinacia oleracea U.S. hybrid 424). Spinach leaf material was pretreated to alter the sucrose content, so that the rate of starch synthesis could be varied. The level of fructose 2,6-bisphosphate and other metabolites was then related to the accumulation of sucrose and the rate of starch synthesis. The results show that fructose 2,6-bisphosphate is involved in a sequence of events which provide a fine control of sucrose synthesis so that more photosynthate is diverted into starch in conditions when sucrose has accumulated to high levels in the leaf tissue. (a) As sucrose levels in the leaf rise, there is an accumulation of triose phosphates and hexose phosphates, implying an inhibition of sucrose phosphate synthase and cytosolic fructose 1,6-bisphosphatase. (b) In these conditions, fructose 2,6-bisphosphate increases. (c) The increased fructose 2,6-bisphosphate can be accounted for by the increased fructose 6-phosphate in the leaf. (d) Fructose 2,6-bisphosphate inhibits the cytosolic fructose 1,6-bisphosphatase so more photosynthate is retained in the chloroplast, and converted to starch.  相似文献   

5.
The chloroplastic and cytosolic forms of spinach (Spinacia oleracea cv Long Standing Bloomsdale) leaf NADH:dihydroxyacetone phosphate (DHAP) reductase were separated and partially purified. The chloroplastic form was stimulated by dithiothreitol, reduced thioredoxin, dihydrolipoic acid, 6-phosphogluconate, and phosphate; the cytosolic isozyme was stimulated by fructose 2,6-bisphosphate but not by reduced thioredoxin. End product components that severely inhibited both forms of the reductase included lipids and free fatty acids, membranes, and glycerol phosphate. In addition, two groups of inhibitory peptides were obtained from the fraction precipitated by 70 to 90% saturation with (NH4)2SO4. Chromatography of this fraction on Sephadex G-50 revealed a peptide peak of about 5 kilodaltons which inhibited the chloroplastic DHAP reductase and a second peak containing peptides of about 2 kilodaltons which inhibited the cytosolic form of the enzyme. Regulation of the reduction of dihydroxyacetone phosphate from the C3 photosynthetic carbon cycle or from glycolysis is a complex process involving activators such as thioredoxin or fructose 2,6-bisphosphate, peptide and lipid inhibitors, and intermediary metabolites. It is possible that fructose 2,6-bisphosphate increases lipid production by stimulating DHAP reductase for glycerol phosphate production as well as inhibiting fructose 1,6-bisphosphatase to stimulate glycolysis.  相似文献   

6.
How fructose 2,6-bisphosphate and metabolic intermediates interact to regulate the activity of the cytosolic fructose 1,6-bisphosphatase in vitro has been investigated. Mg2+ is required as an activator. There is a wide pH optimum, especially at high Mg2+. The substrate dependence is not markedly pH dependent. High concentrations of Mg2+ and fructose 1,6-bisphosphate are inhibitory, especially at higher pH. Fructose 2,6-bisphosphate inhibits over a wide range of pH values. It acts by lowering the maximal activity and lowering the affinity for fructose 1,6-bisphosphate, for which sigmoidal saturation kinetics are induced, but the Mg2+ dependence is not markedly altered. On its own, adenosine monophosphate inhibits competitively to Mg2+ and noncompetitively to fructose 1,6-bisphosphate. In the presence of fructose 2,6-bisphosphate, adenosine monophosphate inhibits in a fructose 1,6-bisphosphate-dependent manner. In the presence of adenosine monophosphate, fructose 2,6-bisphosphate inhibits in Mg2+-dependent manner. Fructose 6-phosphate and phosphate both inhibit competitively to fructose 1,6-bisphosphate. Fructose 2,6-bisphosphate does not affect the inhibition by phosphate, but weakens inhibition by fructose 6-phosphate. Dihydroxyacetone phosphate and hydroxypyruvate inhibit noncompetitively to fructose 1,6-bisphosphate and to Mg2+, but both act as activators in the presence of fructose 2,6-bisphosphate by decreasing the S0.5 for fructose 1,6-bisphosphate. A model is proposed to account for the interaction between these effectors.  相似文献   

7.
Two isoenzymes each of phosphoglucomutase, hexose phosphate isomerase, aldolase, fructose diphosphatase, phosphofructokinase, and 6-phosphogluconate dehydrogenase have been separated by DEAE-cellulose column chromatography of extracts from endosperm of germinating castor beans (Ricinus communis cv. Hale). One of each of the enzymes is localized in the cytosol and the other is confined to plastids. Developmental studies of these isoenzymes were carried out to clarify their roles in the endosperm. In extracts from ungerminated seeds the activities of marker enzymes of mitochondria (fumarase), plastids (ribulose bisphosphate carboxylase), and glyoxysomes (catalase) were low, but phosphoglucomutase, hexose phosphate isomerase, aldolase, and 6-phosphogluconate dehydrogenase were present in relatively high activity. The total amounts of these enzymes increased 3- to 4-fold during the first 5 days of growth. The activities of isoenzymes in the plastids rose in parallel with that of ribulose bisphosphate carboxylase to reach a maximum at day 4, and like the carboxylase they declined sharply thereafter. The activities of the cytosolic isoenzymes peaked at day 5. These changes are consistent with the roles previously proposed for the sequences present in plastid and cytosol.  相似文献   

8.
The cytosolic fructose 1,6-bisphosphatase from spinach (Spinacia oleracea U.S. hybrid 424) leaves has been partially purified and its response to fructose 2,6-bisphosphate, AMP, and fructose 1,6-bisphosphate studied, using concentrations present in the cytosol during photosynthesis. In the presence of fructose 2,6-bisphosphate, the substrate saturation kinetics for fructose 1,6-bisphosphate are sigmoidal, with half-maximal activity being attained in 0.1 to 1 millimolar concentration range. The inhibition is enhanced by AMP. Using these results, and information published elsewhere on metabolite concentrations, it is discussed how fructose 1,6-bisphosphatase activity will vary in vivo in response to alterations in the availability of triose phosphate and AMP, and the accumulation of the product, fructose 6-phosphate.  相似文献   

9.
Cytosolic isozymes of 6-phosphogluconate dehydrogenase were purified from roots of maize (Zea mays L.). The final preparation contained two 55-kD proteins. Affinity-purified dehydrogenases from a maize line that is null for both cytosolic 6-phosphogluconate dehydrogenase isozymes (Pgd1-null, Pgd2-null) lacked the 55-kD proteins. The substrate kinetics of the purified enzyme were determined.  相似文献   

10.
Glucagon and dibutyryl cyclic AMP inhibited glucose utilization and lowered fructose 2,6-bisphosphate levels of hepatocytes prepared from fed chickens. Partially purified preparations of chicken liver 6-phosphofructo-1-kinase and fructose 1,6-bisphosphatase were activated and inhibited by fructose 2,6-bisphosphate, respectively. The sensitivities of these enzymes and the changes observed in fructose 2,6-bisphosphate levels are consistent with an important role for this allosteric effector in hormonal regulation of carbohydrate metabolism in chicken liver. In contrast, oleate inhibition of glucose utilization by chicken hepatocytes occurred without change in fructose, 2,6-bisphosphate levels. Likewise, pyruvate inhibition of lactate gluconeogenesis in chicken hepatocytes cannot be explained by changes in fructose 2,6-bisphosphate levels. Exogenous glucose caused a marked increase in fructose 2,6-bisphosphate content of hepatocytes from fasted but not fed birds. Both glucagon and lactate prevented this glucose effect. Fasted chicken hepatocytes responded to lower glucose concentrations than fasted rat hepatocytes, perhaps reflecting the species difference in hexokinase isozymes.  相似文献   

11.
Pyrophosphate:fructose-6-phosphate phosphotransferase (PFP) was purified over 500-cold from endosperm of germinating castor bean (Ricinus commiunis L. var. Hale). The kinetic properties of the purified enzyme were studied. PFP was specific for pyrophosphate and had a requirement for a divalent metal ion. The pH optimum for activity was 7.3 to 7.7. The enzyme had similar activities in the forward and reverse directions and exhibited hyperbolic kinetics with all substrates. Kinetic constants were determined in the presence of fructose 2,6-bisphosphate, which stimulated activity about 20-fold and increased the affinity of the enzyme for fructose 6-phosphate, fructose 1,6-bisphosphate, and pyrophosphate up to 10-fold. Half-maximum activation of PFP by fructose 2,6-bisphosphate was obtained at 10 nanomolar. The affinity of PFP for this activator was reduced by decreasing the concentration of fructose 6-phosphate or increasing that of phosphate. Phosphate inhibited PFP when the reaction was measured in the reverse direction, i.e. fructose 6-phosphate production. In the presence of fructose 2,6-bisphosphate, phosphate was a mixed inhibitor with respect to both fructose 6-phosphate and pyrophosphate when the reaction was measured in the forward direction, i.e. fructose 1,6-bisphosphate production. The possible roles of fructose 2,6-bisphosphate, fructose 6-phosphate, and phosphate in the control of PFP are discussed.  相似文献   

12.
Mammalian and yeast hexokinases were reported to be reversibly inhibited by fructose 2,6-bisphosphate in the presence of cytosolic proteins (H. Niemeyer, C. Cerpa, and E. Rabajille (1987) Arch. Biochem. Biophys. 257, 17-26). Reinvestigation of this finding using a radioassay with [14C]glucose as substrate showed no effect of fructose 2,6-bisphosphate on hexokinase activity of rat liver cytosols. Detailed reexamination of the spectrophotometric assay resulted in the observation that the fructose 2,6-bisphosphate-dependent inhibition was a function of the cytosolic phosphoglucose isomerase and phosphofructokinase activities compared to the amount of glucose-6-phosphate dehydrogenase used as auxiliary enzyme. The diminution or loss of the fructose 2,6-bisphosphate-dependent inhibition produced in aged cytosols was restored by addition of crystalline muscle phosphofructokinase, as well as by decreasing the amount of glucose-6-phosphate dehydrogenase in the assay. When phosphoglucose isomerase, phosphofructokinase, and hexokinase activities were separated by DEAE-chromatography of liver cytosol, no fructose 2,6-bisphosphate-dependent inhibition of hexokinase was found in any single fraction of the chromatogram. However, combination of fractions containing both phosphoglucose isomerase and phosphofructokinase displayed the fructose 2,6-bisphosphate-dependent inhibition on either endogenous hexokinase or added yeast hexokinase. From these results we conclude that the activation of phosphofructokinase elicited by fructose 2,6-bisphosphate is responsible for the hexokinase inhibition observed in the coupled spectrophotometric assay.  相似文献   

13.
The plastid and cytosolic isozymes of enolase from developing endosperm of castor oil seeds, Ricinus communis L. cv. Baker 296, were separated and partially purified. Each purified isozyme had a specific activity of approximately 200 μmol min?1 mg protein. The isozymes have similar pH optima for the forward reaction, but different optima for the reverse reaction. The divalent metal specificity is the same for both isozymes. In addition to differences in charge, the isozymes can be distinguished by their different kinetic constants, thermostability and sensitivity to fluoride inhibition. Antibodies against yeast enolase isozyme I cross-react with Ricinus plastid enolase but not with the cytosolic isozyme.  相似文献   

14.
The cytoplasmic form of fructose 1,6-bisphosphatase (FBPase) was purified over 60-fold from germinating castor bean endosperm (Ricinus communis). The kinetic properties of the purified enzyme were studied. The preparation was specific for fructose 1,6-bisphosphate and exhibited optimum activity at pH 7.5. The affinity of the enzyme for fructose 1,6-bisphosphate was reduced by AMP, which was a mixed linear inhibitor. Fructose 2,6-bisphosphate also inhibited FBPase and induced a sigmoid response to fructose 1,6-bisphosphate. The effects of fructose 2,6-bisphosphate were enhanced by low levels of AMP. The latter two compounds interacted synergistically in inhibiting FBPase, and their interaction was enhanced by phosphate which, by itself, had little effect. The enzyme was also inhibited by ADP, ATP, UDP and, to a lesser extent, phosphoenolpyruvate. There was no apparent synergism between UDP, a mixed inhibitor, and fructose 2,6-bisphosphate. Similarly ADP, a predominantly competitive inhibitor, did not interact with fructose 2,6-bisphosphate. Possible roles for fructose 2,6-bisphosphate and the other effectors in regulating FBPase are discussed.  相似文献   

15.
Metabolism of fructose arising endogenously from sucrose or mannitol was studied in halophilic archaebacteria Haloarcula vallismortis and Haloferax mediterranei. Activities of the enzymes of Embden-Meyerhof-Parnas (EMP) pathway, Entner-Doudoroff (ED) pathway and Pentose Phosphate (PP) pathway were examined in extracts of cells grown on sucrose or mannitol and compared to those grown on fructose and glucose. Sucrase and NAD-specific mannitol dehydrogenase were induced only when sucrose or mannitol respectively were the growth substrates. Endogenously arising fructose was metabolised in a manner similar to that for exogenously supplied fructose i.e. a modified EMP pathway initiated by ketohexokinase. While the enzymes for modified EMP pathway viz. ketohexokinase, 1-phosphofructokinase and fructose 1,6-bisphosphate aldolase were present under all growth conditions, their levels were elevated in presence of fructose. Besides, though fructose 1,6-bisphosphatase, phosphohexoseisomerase and glucose 6-phosphate dehydrogenase were present, the absence of 6-phosphogluconate dehydratase precluded routing of fructose through ED pathway, or through PP pathway directly as 6-phosphogluconate dehydrogenase was lacking. Fructose 1,6-bisphosphatase plays the unusual role of a catabolic enzyme in supporting the non-oxidative part of PP pathway. However the presence of constitutive levels of glucose dehydrogenase and 2-keto 3-deoxy 6-phosphogluconate aldolase when glucose or sucrose were growth substrates suggested that glucose breakdown took place via the modified ED pathway.Abbreviations EMP Embden Meyerhof Parnas - ED Entner Doudoroff - PP pentose phosphate - KHK ketohexokinase - 1-PFK 1-phosphofructokinase - PEP-PTS phosphoenolpyruvate phosphotransferase - 6-PFK 6-phosphofructokinase - FBPase fructose 1,6-bisphosphatase - PHI phosphohexoseisomerase - G6P-DH glucose 6-phosphate dehydrogenase - 6PG-DH 6-phosphogluconate dehydrogenase - GAPDH glyceraldehyde 3-phosphate dehydrogenase - FIP fructose 1-phosphate - GSH reduced glutathione - 2-ME -mercaptoethanol - FBP fructose 1,6-bisphosphate - KDPG 2-keto 3-deoxy 6-phosphogluconate - F6P fructose 6-phosphatez  相似文献   

16.
Fructose 6-phosphate from several commercial sources was shown to be contaminated with fructose 2,6-bisphosphate. This contaminant was identified by its activation of PPi:fructose 6-phosphate phosphotransferase, extreme acid lability and behaviour on ion-exchange chromatography. The apparent kinetic properties of PPi:fructose 6-phosphate phosphotransferase from castor bean endosperm were considerably altered when contaminated fructose 6-phosphate was used as a substrate. Varying levels of fructose 2,6-bisphosphate in the substrate may account for differences that have been observed in the properties of the above enzyme from several plant sources.  相似文献   

17.
A mechanism is proposed for a feed-forward control of photosynthetic sucrose synthesis, which allows withdrawal of carbon from the chloroplast for sucrose synthesis to be coordinated with the rate of carbon fixation. (a) Decreasing the rate of photosynthesis of spinach (Spinacia oleracea, U.S. hybrid 424) leaf discs by limiting light intensities or CO2 concentrations leads to a 2-to 4-fold increase in fructose 2,6-bisphosphate. (b) This increase can be accounted for by lower concentrations of metabolites which inhibit the synthesis of fructose 2,6-bisphosphate, such as dihydroxyacetone phosphate and 3-phosphoglycerate. (c) Thus, as photosynthesis decreases, lower levels of dihydroxyacetone phosphate should inhibit the cytosolic fructose bisphosphatase via simultaneously lowering the concentration of the substrate fructose 1,6-bisphosphate, and raising the concentration of the inhibitor fructose 2,6-bisphosphate.  相似文献   

18.
Fructose 2,6-bisphosphate hydrolyzing enzymes in higher plants   总被引:1,自引:1,他引:0       下载免费PDF全文
The phosphatases that hydrolyze fructose 2,6-bisphosphate in a crude spinach (Spinacia oleracea L.) leaf extract were separated by chromatography on blue Sepharose, into three fractions, referred to as phosphatases I, II, and III, which were further purified by various means. Phosphatase I hydrolyzed fructose 2,6-bisphosphate, with a Km value of 30 micromolar, to a mixture of fructose 2-phosphate (90%) and fructose 6-phosphate (10%). It acted on a wide range of substrates and had a maximal activity at acidic pH. Phosphatase II specifically recognized the osyl-link of phosphoric derivatives and had more affinity for the β-anomeric form. Its apparent Km for fructose 2,6-bisphosphate was 30 micromolar. It most likely corresponded to the fructose-2,6-bisphosphatase described by F. D. Macdonald, Q. Chou, and B. B. Buchanan ([1987] Plant Physiol 85: 13-16). Phosphatase III copurified with phosphofructokinase 2 and corresponded to the specific, low-Km (24 nanomolar) fructose-2,6-bisphosphatase purified and characterized by Y. Larondelle, E. Mertens, E. Van Schaftingen, and H. G. Hers ([1986] Eur J Biochem 161: 351-357). Three similar types of phosphatases were present in a crude extract of Jerusalem artichoke (Helianthus tuberosus) tuber. The concentration of fructose 2,6-bisphosphate decreased at a maximal rate of 30 picomoles per minute and per gram of fresh tissue in slices of Jerusalem artichoke tuber, upon incubation in 50 millimolar mannose. This rate could be accounted for by the maximal extractable activity of the low-Km fructose-2,6-bisphosphatase. A new enzymic method for the synthesis of β-glucose 1,6-bisphosphate from β-glucose 1-phosphate and ATP is described.  相似文献   

19.
Upon differential centrifugation of cell-free extracts of Trypanosoma brucei, 6-phosphofructo-2-kinase and fructose-2,6-bisphosphatase behaved as cytosolic enzymes. The two activities could be separated from each other by chromatography on both blue Sepharose and anion exchangers. 6-phosphofructo-2-kinase had a Km for both its substrates in the millimolar range. Its activity was dependent on the presence of inorganic phosphate and was inhibited by phosphoenolpyruvate but not by citrate or glycerol 3-phosphate. The Km of fructose-2,6-bisphosphatase was 7 microM; this enzyme was inhibited by fructose 1,6-bisphosphate (Ki = 10 microM) and, less potently, by fructose 6-phosphate, phosphoenolpyruvate and glycerol 3-phosphate. Melarsen oxide inhibited 6-phosphofructo-2-kinase (Ki less than 1 microM) and fructose-2,6-bisphosphatase (Ki = 2 microM) much more potently than pyruvate kinase (Ki greater than 100 microM). The intracellular concentrations of fructose 2,6-bisphosphate and hexose 6-phosphate were highest with glucose, intermediate with fructose and lowest with glycerol and dihydroxyacetone as glycolytic substrates. When added with glucose, salicylhydroxamic acid caused a decrease in the concentration of fructose 2,6-bisphosphate, ATP, hexose 6-phosphate and fructose 1,6-bisphosphate. These studies indicate that the concentration of fructose 2,6-bisphosphate is mainly controlled by the concentration of the substrates of 6-phosphofructo-2-kinase. The changes in the concentration of phosphoenolpyruvate were in agreement with the stimulatory effect of fructose 2,6-bisphosphate on pyruvate kinase. At micromolar concentrations, melarsen oxide blocked almost completely the formation of fructose 2,6-bisphosphate induced by glucose, without changing the intracellular concentrations of ATP and of hexose 6-phosphates. At higher concentrations (3-10 microM), this drug caused cell lysis, a proportional decrease in the glycolytic flux, as well as an increase in the phosphoenolypyruvate concentrations which was restricted to the extracellular compartment. Similar changes were induced by digitonin. It is concluded that the lytic effect of melarsen oxide on the bloodstream form of T. brucei is not the result of an inhibition of pyruvate kinase.  相似文献   

20.
Pyrophosphate:fructose-6-phosphate phosphotransferase (PFP, EC 2.7.1.90) from endosperm of developing wheat (Triticum aestivum L.) grains was purified to apparent homogeneity with about 52% recovery using ammonium sulfate fractionation, ion exchange chromatography on DEAE-cellulose and gel filtration through Sepharose-CL-6B. The purified enzyme, having a molecular weight of about 170,000, was a dimer with subunit molecular weights of 90,000 and 80,000, respectively. The enzyme exhibited maximum activity at pH 7.5 and was highly specific for pyrophosphate (PPi). None of the nucleoside mono-, di- or triphosphate could replace PPi as a source of energy and inorganic phosphate (Pi). Similarly, the enzyme was highly specific for fructose-6-phosphate. It had a requirement for Mg2+ and exhibited hyperbolic kinetics with all substrates including Mg2+. Km values as determined by Lineweaver-Burk plots were 322, 31, 139, and 129 micromolar, respectively, for fructose-6-phosphate, PPi, fructose-1,6-bisphosphate and Pi. Kinetic constants were determined in the presence of fructose-2,6-bisphosphate, which stimulated activity about 20-fold and increased the affinity of the enzyme for its substrates. Initial velocity studies indicated kinetic mechanism to be sequential. At saturating concentrations of fructose-2,6-bisphosphate (1 micromolar), Pi strongly inhibited PFP; the inhibition being mixed with respect to both fructose-6-phosphate and PPi, with Ki values of 0.78 and 1.2 millimolar, respectively. The inhibition pattern further confirmed the mechanism to be sequential with random binding of the substrates. Probable role of PFP in endosperm of developing wheat grains (sink tissues) is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号