首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
High performance liquid chromatography (HPLC) was used to assess the uptake dynamics of the cryoprotectant DMSO by intact unfertilized eggs (stage 0), 8-cell (stage 5) and eyed embryos (stage 30) of medaka, Oryzias latipes, the relation of the internal concentration (Cin) of DMSO with fertilization and survival rates, and the effects of several factors on these processes. The factors examined were: cryoprotectant concentration (0.6, 1.2, 1.9 and 2.5 M), impregnation time (1, 3, 5, 10, 15 and 20 min), temperature (0, 5 and 20 degrees C), hydrostatic pressure (0 and 50 atm), and the osmotic conditions of the materials (normal or partially dehydrated). Cryoprotectant permeation, estimated from the initial rates of DMSO uptake, was higher in embryos than in eggs and increased with embryonic development; however, the DMSO Cin in eyed embryos reached a plateau at 1-5 min and could not be increased by prolonging impregnation. The highest fertilization and survival rates for any given DMSO Cin were obtained with high concentrations and short times of impregnation rather than low concentrations and long impregnation times. Application of hydrostatic pressure (50 atm) and exposure for 3 min to a 1 M trehalose solution prior to impregnation induced a substantial increase in the DMSO Cin of 8-cell embryos in comparison to untreated controls with no significant effect on survival. Hydrostatic pressure also promoted DMSO uptake in unfertilized eggs, but with rapid loss of viability, and was ineffective in eyed embryos. The uptake of DMSO and its toxicity to 8-cell embryos were directly proportional to the temperature of impregnation. The results of this study reveal important interactions between cryoprotectant concentration, impregnation time and the developmental stage (or type) of the materials and provide evidence that hydrostatic pressure, temperature of impregnation and the osmotic conditions of the materials can be manipulated to increase the uptake of cryoprotectant by fish eggs and embryos.  相似文献   

2.
Cord blood is a source of hematopoietic stem cells used in transplantation in which hematopoietic reconstitution is necessary. This transplant modality requires the cryopreservation of hematopoietic stem cells (HSCs). Dimethyl sulfoxide has been used as a cryoprotectant (CPA) in the cryopreservation of HSCs; however, it has been demonstrated that Me2SO exhibits toxic side effects to the human body. Due to its stability upon freezing, disaccharides such as trehalose have been investigated as a cryoprotectant. This study investigated the hypothesis that a cryopreservation solution containing intracellular and extracellular trehalose improves the recovery of stem cells after cryopreservation. After thawing, the cells were tested for their viability using the 7AAD stain, CD45+/CD34+ cells were assessed using flow cytometry and the MTT viability assay, and the proportion of hematopoietic progenitor cells was measured using the CFU assay. Our results showed the effectiveness of the solution containing intracellular and extracellular trehalose in the cryopreservation of cord blood cells, demonstrating that trehalose may be an optimal cryoprotectant when present both inside and outside of cells.  相似文献   

3.
The first successful cryopreservation of fish embryos was reported in the Japanese flounder by vitrification [Chen and Tian, Theriogenology, 63, 1207-1219, 2005]. Since very high concentrations of cryoprotectants are needed for vitrification and fish embryos have a large volume, Japanese flounder embryos must have low sensitivity to cryoprotectant toxicity and high permeability to water and cryoprotectants. So, we investigated the sensitivity and the permeability of Japanese flounder embryos. In addition, we assessed the survival of flounder embryos after vitrification with solutions containing methanol and propylene glycol, following Chen and Tian's report. The embryos were relatively insensitive to the toxicity of individual cryoprotectants at lower concentrations, especially methanol and propylene glycol as their report. Although their permeability to water and cryoprotectants could not be measured from volume changes in cryoprotectant solutions, the embryos appeared to be permeable to methanol but less permeable to DMSO, ethylene glycol, and propylene glycol. Although vitrification solutions containing methanol and propylene glycol, which were used in Chen and Tian's report, were toxic to embryos, a small proportion of embryos did survived. However, when vitrified with the vitrification solutions, no embryos survived after warming. The embryos became opaque during cooling with liquid nitrogen, indicating the formation of intracellular ice during cooling. When embryos had been kept in vitrification solutions for 60 min after being treated with the vitrification solution, some remained transparent during cooling, but became opaque during warming. This suggests that dehydration and/or permeation by cryoprotectants were insufficient for vitrification of the embryos even after they had been over-treated with the vitrification solutions. Thus, Chen and Tian's cryopreservation method lacks general application to Japanese flounder embryos.  相似文献   

4.
S. Tsai 《Theriogenology》2009,71(8):1226-1233
Cryopreservation of germplasm of aquatic species offers many benefits to the fields of aquaculture, conservation and biomedicine. Although successful fish sperm cryopreservation has been achieved with many species, there has been no report of successful cryopreservation of fish embryos and late stage oocytes which are large, chilling sensitive and have low membrane permeability. In the present study, cryopreservation of early stage zebrafish ovarian follicles was studied for the first time using controlled slow freezing. The effect of cryoprotectant, freezing medium, cooling rate, method for cryoprotectant removal, post-thaw incubation time and ovarian follicle developmental stage were investigated. Stages I and II ovarian follicles were frozen in 4 M methanol and 3 M DMSO in either L-15 medium or KCl buffer. Ovarian follicle viability was assessed using trypan blue, FDA + PI staining and ADP/ATP assay. The results showed that KCl buffer was more beneficial than L-15 medium, methanol was more effective than DMSO, optimum cooling rates were 2-4 °C/min, stepwise removal of cryoprotectant improved ovarian follicle viability significantly and stage I ovarian follicles were more sensitive to freezing. The results also showed that FDA + PI staining and ADP/ATP assay were more sensitive than TB staining. The highest follicle viabilities after post-thaw incubation for 2 h obtained with FDA + PI staining were 50.7 ± 4.0% although ADP/ATP ratios of the cryopreserved follicles were significantly increased indicating increased cell damage. Studies are currently being carried out on in vitro maturation of these cryopreserved ovarian follicles.  相似文献   

5.
Sustainability of channel catfish, Ictalurus punctatus ♀ × blue catfish, Ictalurus furcatus ♂ hybrid aquaculture relies on new innovative technologies to maximize fry output. Transplanting spermatogonial stem cells (SSCs) from blue catfish into channel catfish hosts has the potential to greatly increase gamete availability and improve hybrid catfish fry outputs. Cryopreservation would make these cells readily accessible for xenogenesis, but a freezing protocol for blue catfish testicular tissues has not yet been fully developed. Therefore, the objectives of this experiment were to identify the best permeating [dimethyl sulfoxide (DMSO), ethylene glycol (EG), glycerol, methanol] and non-permeating (lactose or trehalose with egg yolk or BSA) cryoprotectants, their optimal concentrations, and the best freezing rates (−0.5, −1.0, −5.0, −10 °C/min until −80 °C) that yield the highest number of viable type A spermatogonia cells. Results showed that all of these factors had significant impacts on post-thaw cell production and viability. DMSO was the most efficient permeating cryoprotectant at a concentration of 1.0 M. The optimal concentration of each cryoprotectant depended on the specific cryoprotectant due to interactions between the two factors. Of the non-permeating cryoprotectants, 0.2 M lactose with egg yolk consistently improved type A spermatogonia production and viability beyond that of the 1.0 M DMSO control. The overall best freezing rate was consistent at −1 °C/min, but similar results were obtained using −0.5 °C/min. Overall, we recommend cryopreserving blue catfish testicular tissues in 1.0 M DMSO with 0.2 M lactose and egg yolk at a rate of either -0.5 or −1 °C/min to achieve the best cryopreservation outcomes. Continued development of cryopreservation protocols for blue catfish and other species will make spermatogonia available for xenogenic applications and genetic improvement programs.  相似文献   

6.
Vitrification could provide a promising tool for the cryopreservation of fish embryos. However, in order to achieve a vitrifiable medium, a high concentration of permeable cryoprotectants must be employed, and the incorporation of high molecular weight compounds should also be considered. The toxicity of these permeable and non-permeable agents has to be assessed, particularly when high concentrations are required. In the present study, permeable and non-permeable cryoprotectant toxicity was determined in turbot embryos at two development stages (F stage-tail bud and G stage-tail bud free). Embryos treated with pronase (2mg/ml, 10 min at 22 degrees C) were incubated in dimethyl sulfoxide (Me2SO), methanol (Meth.) or ethylene glycol (EG) in concentrations ranging from 0.5 to 6M for periods of 10 or 30 min, and in 5, 10, and 15% polyvinylpyrrolidone (PVP), 10, 15, and 20% sucrose or 0.1, 1, and 2% X-1000 for 2 min. The embryos were then washed well and incubated in seawater until hatching. The toxicity of permeable cryoprotectants increased with concentration and exposure time. There were no significant differences between permeable cryoprotectants. However, embryos tolerated higher concentrations of Me2SO than other cryoprotectants. Exposure to permeable cryoprotectants did not affect the hatching rate except at G stage with X-1000 treatment and 20% sucrose. Taking into account the cryoprotectant toxicity and the vitrification ability of cryoprotectant mixtures, three vitrification solutions (V1, V2, and V3), and one protocol for stepwise incorporation were designed. The tested solutions contained 5M Me2SO+2M Meth+1M EG plus 5% PVP, 10% sucrose or 2% X-1000. The hatching rate of embryos that had been exposed to the the vitrification solutions was analyzed and no significant differences were noticed compared with the controls. Our results demonstrate that turbot embryos can be subject to this cryoprotectant protocol without deleterious effect on the hatching rate.  相似文献   

7.
The effect of electrolyte and non‐electrolyte solutions on the survival and on the morphology of zebrafish Danio rerio embryos was investigated. Embryos in different ontogenetic stages were incubated in electrolyte (NaCl, KCl, MgCl2 and CaCl2) and non‐electrolyte solutions [sucrose and polyvinylalcohol (PVA)] of different concentrations for 5 – 15 min. The embryos were hatched to the long‐pec stage and the effective concentrations which caused a 50% decrease in embryo development (EC50) were determined. The morphometric changes, which were caused by the test solutions, were measured. Ion channel blockers were used to see if active ion transport played a role for embryo survival. Finally, dechorionated embryos were exposed to the test solutions to get indications about the importance of chorion and perivitelline space. For 12 hours post fertilization (hpf) embryos and a 15 min exposure period, EC50 was highest for MgCl2 (1·60 mol l?1), followed by sucrose (0·73 mol l?1), NaCl (0·49 mol l?1), KCl (0·44 mol l?1), CaCl2 (0·43 mol l?1) and PVA [0·0005 mol l?1 (2·2%)]. EC50 were lower for early embryonic stages than for advanced stages for all solutions with exception of MgCl2 and sucrose. At the EC50, MgCl2 and CaCl2 solutions did not induce morphometric changes. NaCl and sucrose solutions induced reversible morphometric changes, which were compensated within 10 min. Only the EC50 of KCl and PVA solutions induced permanent morphometric changes, which could not be compensated. Incubation of embryos in electrolyte and non‐electrolyte solutions together with ouabain (blocker of Na+– K+ ATPase), HgCl3 (dose‐dependent inhibition of aquaporine channels), verapamil (inhibition of calcium and magnesium uptake) and amiloride (inhibition of sodium uptake) significantly decreased the per cent of embryos developing to the long‐pec stage in comparison to the same solutions without blockers. Ouabain and HgCl3 also induced morphometric changes. For dechorionated embryos the survival rates in water and in the different test solutions were similar to untreated embryos.  相似文献   

8.
Physiological responses of the euryhaline red drum, Sciaenops ocellatus, to chloride salt addition, low salinity, and high sulfate concentration were measured. Survival was increased by addition of calcium chloride (CaCl2) or magnesium chloride (MgCl2) to dilute artificial seawater (0.2 ppt salinity). Although survival and routine metabolic rates were greater in MgCl2 treatments, growth and feed efficiency were greater in CaCl2 treatments. Marginal metabolic scope increased when CaCl2 or MgCl2 were added to dilute artificial seawater. There was a strong positive linear relationship (p=0.0001, r=0.91) between fish survival and salinity of artificial seawater dilutions over the salinity range 0.1 to 3.0 ppt. Monovalent ion concentrations in red drum plasma varied; whereas, divalent ion concentrations were relatively constant. Survival and growth were not affected by high sulfate concentrations (2000 mg l-1) in 3.0 ppt artificial seawater supplemented with either sodium sulfate or magnesium sulfate. Routine metabolic rate and marginal metabolic scope of red drum exposed to high sulfate concentrations were slightly, but not significantly, lower than those of red drum in 3 ppt artificial seawater.  相似文献   

9.
In vitro and in vivo survival of in vitro-derived 2- to 4-cell cat embryos following cryopreservation was examined. Prefreeze 1- vs 2-step cryoprotectant exposure (Experiment 1) and warming method (Experiment 2) on zona pellucida damage and development in vitro were compared. To determine viability in vivo, frozen/thawed embryos were cultured in vitro to the morula/early blastocyst stage and transferred to synchronous recipients (Experiment 3). At 24 to 26 h after IVF, embryos were cryopreserved in 1.4 M propanediol (Pr) + 0.125 M sucrose (Su) by cooling at 0.3 degrees C/min from -6 degrees C to -30 degrees C and storing in liquid nitrogen. Autologous embryos were cultured in vitro for 7 d. After warming for 5 sec in air and 10 sec at 37 degrees C in water (Experiments 1 to 3), or at room temperature air (22 degrees C; Experiment 2), the cryoprotectant was removed and embryos were cultured in vitro for 6 d (Experiments 1 and 2). Development was assessed after staining by counting cell numbers/embryo and determining the percentages at the 2- to 4-cell (nonsurvivor), pre (5 to 15), early (16 to 32), mid (33 to 50), late (>50) morula or blastocyst stages. Post-thaw development to late morula/blastocyst after 1-step exposure (68%, 15 min Pr + Su) was higher (P< 0.05) than that after 2-step exposure (36%, 15 min Pr and 15 min Pr + Su). Both warming methods produced similar percentages of embryos with damaged zonae (13 to 15%) and equivalent development to morula/blastocyst (64 to 69%). Development in vitro to early morula/blastocyst of frozen embryos with intact zonae was similar to that of nonfrozen embryos. Following cryopreservation, most 2- to 4-cell cat embryos retained their capability for in vitro development to morula/blastocyst, and in vivo viability was demonstrated by the birth of 3 live kittens to 2 of 4 recipients following the transfer of 58 embryos.  相似文献   

10.
Current strategies for marine pollution monitoring are based on the integration of chemical and biological techniques. The sea urchin embryo-larval bioassays are among the biological methods most widely used worldwide. Cryopreservation of early embryos of sea urchins could provide a useful tool to overcome one of the main limitations of such bioassays, the availability of high quality biological material all year round. The present study aimed to determine the suitability of several permeant (dimethyl sulfoxide, Me2SO; propylene glycol, PG; and ethylene glycol, EG) and non-permeant (trehalose, TRE; polyvinylpyrrolidone, PVP) cryoprotectant agents (CPAs) and their combination, for the cryopreservation of eggs and embryos of the sea urchin Paracentrotus lividus. On the basis of the CPAs toxicity, PG and EG, in combination with PVP, seem to be most suitable for the cryopreservation of P. lividus eggs and embryos. Several freezing procedures were also assayed. The most successful freezing regime consisted on cooling from 4 to −12 °C at 1 °C/min, holding for 2 min for seeding, cooling to −20 °C at 0.5 °C/min, and then cooling to −35 °C at 1 °C/min. Maximum normal larvae percentages of 41.5% and 68.5%, and maximum larval growth values of 42.9% and 60.5%, were obtained for frozen fertilized eggs and frozen blastulae, respectively.  相似文献   

11.
Procedures for forming and regenerating protoplasts of four Frankia strains are described. Cells obtained from growth medium containing 0.1% glycine were digested with lysozyme (250 μg/ml) in a medium containing 0.5 M sucrose, 5.0 mM CaCl2, and 5.0 mM MgCl2. Protoplasts were formed during 15 to 120 min of digestion at 25°C. Optimum conditions for protoplast regeneration involved placing protoplasts on a layer of complex growth medium containing 0.3 M sucrose, 5.0 mM CaCl2, and 5.0 mM MgCl2 which was overlaid with a layer of 0.8% low-melting-point agarose containing 0.5 M sucrose, 5.0 mM MgCl2, and 5.0 mM CaCl2. The maximum regeneration efficiency was 36.9% for strain CpI1, 1.3% for strain ACN1AG, 27% for strain EAN1pec, and 20% for strain EuI1c.  相似文献   

12.
Cryopreservation of murine embryos with trehalose and glycerol   总被引:6,自引:1,他引:5  
Several concentrations of trehalose (0.0, 0.04, 0.1, 0.25 M) in combination with three concentrations of glycerol (1.0, 1.5, 2.0 M) were evaluated for the cryopreservation of murine embryos. Embryos were transferred through increasing concentrations of glycerol in Dulbecco's phosphate-buffered saline with 10% fetal calf serum (PBS + FCS) to reach the final glycerol concentrations. They were then randomly assigned to one of the concentrations of trehalose. A total of 506 morulae were packaged individually in 0.25-ml plastic straws and cooled from ambient temperature at 1.0 degrees C/min in a programmable methanol freezer. Embryos were seeded at -7 degrees C and then cooled to -25 degrees C at 0.3 degrees C/min before being plunged into liquid nitrogen. After thawing and a one-step dilution of glycerol, embryos were cultured for 48 hr and viability was determined by blastocoel formation. Highest viability (70.0%) after 48 hr in culture was obtained for embryos frozen in 1.5 M glycerol plus 0.10 M trehalose as compared to 31% viability for embryos frozen with glycerol alone. These observations suggest that trehalose can be used in combination with glycerol as a cryoprotectant and that a high rate of viability can be achieved after a one-step dilution of the cryoprotectants.  相似文献   

13.
Investigation into fish oocyte membrane permeability is essential for developing successful protocols for their cryopreservation. The aim of the present work was to study the permeability of the zebrafish (Danio rerio) oocyte membrane to water and cryoprotectants before cryopreservation protocol design. The study was conducted on stage III and stage V zebrafish oocytes. Volumetric changes of stage III oocytes in different concentrations of sucrose were measured after 20 min exposure at 22 degrees C and the osmotically inactive volume of the oocytes (Vb) was determined using the Boyle-van't Hoff relationship. Volumetric changes of oocytes during exposure to different cryoprotectant solutions were also measured. Oocytes were exposed to 2 M dimethyl sulphoxide (DMSO), propylene glycol (PG), and methanol for 40 min at 22 degrees C. Stage III oocytes were also exposed to 2 M DMSO at 0 degrees C. Oocyte images were captured on an Olympus BX51 cryomicroscope using Linkham software for image recording. Scion Image was used for image analysis and diameter measurement. The experimental data were fitted to a two-parameter model using Berkeley Madonna 8.0.1 software. Hydraulic conductivity (L(p)) and solute (cryoprotectant) permeability (Ps) were estimated using the model. The osmotically inactive volume of stage III zebrafish oocytes was found to be 69.5%. The mean values+/-SE of Lp were found to be 0.169+/-0.02 and 0.196+/-0.01 microm/min/atm in the presence of DMSO and PG, respectively, at 22 degrees C, assuming an internal isosmotic value for the oocyte of 272 mOsm. The Ps values were 0.000948+/-0.00015 and 0.000933+/-0.00005 cm/min for DMSO and PG, respectively. It was also shown that the membrane permeability of stage III oocytes decreased significantly with temperature. No significant changes in cell volume during methanol treatment were observed. Fish oocyte membrane permeability parameters are reported here for the first time. The Lp and Ps values obtained for stage III zebrafish oocytes are generally lower than those obtained from successfully cryopreserved mammalian oocytes and higher than those obtained with fish embryos and sea urchin eggs. It was not possible to estimate membrane permeability parameters for stage V oocytes using the methods employed in this study because stage V oocytes experienced the separation of outer oolemma membrane from inner vitelline during exposure to cryoprotectants.  相似文献   

14.
The ability of embryos to successfully survive cryopreservation is dependent on both morphological and developmental characteristics. Domestic cat oocytes matured in vitro exhibit alterations in nuclear and cytoplasmic maturation that may affect developmental competence, particularly after cryopreservation. In Experiment 1, we evaluated the developmental competence of in vitro produced (IVM/IVF) cat embryos after cryopreservation on Days 2, 4 or 5 of IVC. In Experiment 2, in vivo viability was examined by transfer of cryopreserved embryos into recipient queens. Oocytes recovered from minced ovaries were cultured in TCM-199 with hCG/eCG and EGF at 38 degrees C in 5% O(2), 5% CO(2), 90% N(2) for 24h. In Experiment 1, after IVM/IVF, on Day 2 (n=56), Day 4 (n=48) and Day 5 (n=42) of IVC, embryos were equilibrated for 10 min at 22 degrees C in HEPES (15m M) Tyrode's (HeTy) with 1.4M propylene glycol (PG), 0.125 M sucrose (S), 10% dextran and 10% FBS, loaded into 0.25 ml straws, cooled at 2.0 degrees C/min to -6.0 degrees C and held for 10 min. After seeding, cooling resumed at 0.3 degrees C/min to -30 degrees C and after a 10 min hold, straws were plunged into liquid nitrogen (LN(2)). Straws were thawed in air for 2 min and cryoprotectant was removed by a five-step rinse consisting of 3 min each in HeTY with 0.95 M PG/0.25 M S; 0.95 M PG/0.125 M S; 0.45 M PG/0.125 M S; 0 PG/0.125 M S; 0 PG/0.0625 M S. Contemporary IVM/IVF embryos were used as nonfrozen controls (Day 2, n=14; Day 4, n=26; Day 5, n=35). After 8 days of IVC, the number of embryos developing to blastocysts was recorded and blastocyst cell numbers were counted after staining with Hoechst 33342. In Experiment 1, developmental stage did not affect the survival rate after thawing (Day 2=79%, Day 4=90%, Day 5=98%) and was not different from that of controls (Day 2=89%, Day 4=88%, Day 5=96%). Blastocyst development was similar among days both after cryopreservation (Day 2=59%, Day 4=54%, Day 5=63%) and in controls (Day 2=55%, Day 4=54%, Day 5=58%). Mean (+/-S.D.) cell number of blastocysts was slightly lower (NS) in cryopreserved embryos (Day 2=152+/-19, Day 4=124+/-20, Day 5=121+/-24) than in controls (Day 2=141+/-25, Day 4=169+/-21, Day 5=172+/-19). In Experiment 2, embryos frozen on Day 2 (n=68), Day 4 (n=49) or Day 5 (n=73) were thawed and cultured for 3, 1, or 0 days before transfer by laparotomy to 5 (mean=12.6+/-2.4), 4 (mean=12.2+/-3.7) and 6 (mean=12.0+/-1.6) recipients, respectively. Four recipients were pregnant on Day 21; two from embryos frozen on Day 4 and two from Day 5. Two live kittens were born at 66 days, a third kitten died during parturition at 64 days and a fourth pregnancy aborted by Day 45. In summary, we have shown that a controlled rate cryopreservation technique can be successfully applied to cat embryos produced by IVM/IVF. In vitro development to the blastocyst stage was not affected by the age of embryos at cryopreservation. The births of live kittens after ET of cryopreserved embryos is additional validation of progress toward applying assisted reproductive technology to preservation of endangered felids.  相似文献   

15.
The cryopreservation of pronuclear-stage embryos has particular importance in transgenic technology and human assisted reproductive technology (ART). The objective of this study was to improve the efficiency of cryopreservation of pronuclear-stage mouse embryos. Two vitrification methods (solid surface vitrification (SSV) vs. vitrification in cryotube) have been compared with special emphasis on the effect of the exposure of the embryos to the solutions for various times and the sugar content (trehalose, sucrose, or raffinose) of the vitrification solutions. Pronuclear-stage embryos were either exposed to 1 M dimethyl sulfoxide (DMSO) + 1 M propylene-glycol (PG) solution for 2, 5, 10, or 15 min or not exposed to this "equilibration" solution. The vitrification solutions consisted of 2.75 M DMSO and 2.75 M PG in M2 medium supplemented with 1 M trehalose (DPT), 1 M sucrose (DPS), or 1 M raffinose (DPR). In the cryotube method, groups of 15-25 embryos were transferred into a 1.8 ml cryotube containing 30 microl of DPT, DPS, or DPR. After 30 sec, the cryotubes were directly plunged into liquid nitrogen (LN(2)) and stored for 1 day to 1 month. Vitrified samples were warmed by immersing the cryotubes in a 40 degrees C water bath and then immediately diluted with 300 microl of 0.3 M trehalose, sucrose, or raffinose in M2. In the SSV method, after equilibration 15-20 embryos were exposed to DPT, DPS, or DPR solutions for around 20 sec before being dropped in 2-microl drops onto a pre-cooled (-150 to -180 degrees C) metal surface. Vitrified droplets were stored in cryovials in LN(2). Warming was performed by transferring the vitrified droplets into 0.3 M solutions of trehalose, sucrose, or raffinose at 37 degrees C, respectively. Results showed that both SSV and cryotube vitrification methods can result in high rates of in vitro blastocyst development (up to 58.3 and 68.5% with DPR, respectively), not statistically different from that of the controls (58.3 and 64.4%). Even without the equilibration step prior to vitrification, relatively high-survival rates have been achieved, except for the DPS solution. In conclusion, vitrification of pronuclear-stage mouse embryos can result in high rates of in vitro development to blastocyst, and the use of raffinose in the vitrification solution is advantageous to improve cryosurvival.  相似文献   

16.
Transgenic suspension cells of Oryza sativa L. cv. Dongjin utilized as a host for producing recombinant human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig) were preserved in liquid nitrogen (−196 °C) after slow prefreezing in a deep freezer (−70 °C). The development of an optimal procedure for long-term storage was investigated by the addition of various concentrations of cryoprotectant mixture and osmoticum in preculture media before cooling. A pre-deep-freezing time of 120 min was the most effective for maintaining cell viability. Compared with mannitol, sorbitol, trehalose, and NaCl under the same osmotic conditions, 0.5 M sucrose was found to be the best osmoticum for preculture media. The cryoprotectant comprising sucrose, glycerol, and dimethylsulfoxide (DMSO) was applied to the precultured cells, and a combination of 1 M sucrose, 1 M glycerol, and 1 M DMSO provided the best result. The viability with this optimized condition was 88% after cryocell-banking for 1 day. The expression of hCTLA4Ig in recovered callus from cryopreservation was also kept stable, and the production level was similar to that observed in noncryopreserved cultures.  相似文献   

17.
Studies on permittivity changes in fish embryos measured by impedance spectroscopy after ultrasound treatment during exposure to cryoprotectant is reported here for the first time. The permittivity changes of zebrafish embryos in cryoprotectant solutions before and after ultrasound treatment were measured using impedance spectroscopy. Zebrafish (Danio rerio) embryos at 50% epiboly stage were exposed to 2 M methanol for 25 min before ultrasound treatment for 5 min at 22 degrees C. Embryos were treated with ultrasound in different frequencies (24 and 48 kHz) and voltages (50, 100, 150 and 175 V) combinations. The results showed a clear increasing trend of permittivity from voltage 50 to 175 V over lower impedance frequency range of 10-10(3) Hz indicating increased methanol penetration into the embryos after ultrasound treatment. The embryo survival was not compromised after ultrasound treatment under conditions used in the present study. The use of impedance spectroscopy technique provides a useful none-invasive tool for detecting changes of cryoprotectant penetration in fish embryos after ultrasound treatment. The technique is especially useful for the selection of the suitable cryoprotectants in embryo cryopreservation and may also allow quantitative measurements in embryo membrane permeability studies.  相似文献   

18.
Trehalose is a promising natural cryoprotectant, but its cryoprotective effect is limited due to difficulties in transmembrane transport. Thus, expressing the trehalose transporter TRET1 on various mammalian cells may yield more trehalose applications. In this study, we ran comparative cryopreservation experiments between the TRET1-expressing CHO-K1 cells (CHO-TRET1) and the CHO-K1 cells transfected with an empty vector (CHO-vector). The experiments involve freezing under various trehalose concentrations in an extracellular medium. The freeze-thawing viabilities of CHO-TRET1 cells are higher than those of CHO-vector cells for most freezing conditions. This result differs from control experiments with a transmembrane type cryoprotectant, dimethyl sulfoxide (Me2SO), which had similar viabilities in each condition for both cell types. We conclude that the trehalose loaded into the cells with TRET1 significantly improves the cryoprotective effect. The higher viabilities occurred when the extracellular trehalose concentration exceeded 200 mM, with 250–500 mM being optimal, and a cooling rate below 30 K/min, with 5–20 K/min being optimal.  相似文献   

19.
为了评价利用不同冷冻保护剂冷冻早期卵裂期胚胎的效果,用小鼠为实验动物,采用慢速冷冻、快速融解的冷冻技术,比较丙二醇、二甲基亚砜和甘油作冷冻保护剂对小鼠2-细胞、4-细胞、8-细胞胚胎冷冻后胚胎存活率和囊胚形成率的影响。发现以丙二醇和蔗糖为冷冻保护剂冷冻4-细胞、8-细胞胚胎,解冻后胚胎成活率和囊胚形成率显著高于以二甲基亚砜或甘油为冷冻保护剂。结果表明,丙二醇是一种冷冻早期卵裂期小鼠胚胎有效的冷冻保护剂。  相似文献   

20.
Embryonic development of the sea urchin after low-temperature preservation   总被引:1,自引:0,他引:1  
The sea urchin embryos were cooled to -196 degrees by two-step freezing with the use of 1-1.5 M dimethyl sulfoxide as a cryoprotectant. The embryos were equilibrated with the cryoprotectant for 20-30 min at 0 +/- 2 degrees. At -7 degrees ice crystallization was induced and the embryos were cooled to -38-42 degrees at a rate of 6-8 degrees /min. The embryos were then transferred into liquid nitrogen. The embryos were thawed in a water bath at 19 degrees. No less than 90% of the embryos frozen at the stages of blastula, gastrula, or pluteus were capable of recovery and normal development. The length of cryopreservation did not affect the survival of the embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号