首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Complementary neurophysiological recordings in macaques and functional neuroimaging in humans show that the primary taste cortex in the rostral insula and adjoining frontal operculum provides separate and combined representations of the taste, temperature, and texture (including viscosity and fat texture) of food in the mouth independently of hunger and thus of reward value and pleasantness. One synapse on, in the orbitofrontal cortex, these sensory inputs are for some neurons combined by learning with olfactory and visual inputs. Different neurons respond to different combinations, providing a rich representation of the sensory properties of food. The representation of taste and other food-related stimuli in the orbitofrontal cortex of macaques is found from its lateral border throughout area 13 to within 7 mm of the midline, and in humans the representation of food-related and other pleasant stimuli is found particularly in the medial orbitofrontal cortex. In the orbitofrontal cortex, feeding to satiety with one food decreases the responses of these neurons to that food, but not to other foods, showing that sensory-specific satiety is computed in the primate (including human) orbitofrontal cortex. Consistently, activation of parts of the human orbitofrontal cortex correlates with subjective ratings of the pleasantness of the taste and smell of food. Cognitive factors, such as a word label presented with an odour, influence the pleasantness of the odour, and the activation produced by the odour in the orbitofrontal cortex. Food intake is thus controlled by building a multimodal representation of the sensory properties of food in the orbitofrontal cortex, and gating this representation by satiety signals to produce a representation of the pleasantness or reward value of food which drives food intake. A neuronal representation of taste is also found in the pregenual cingulate cortex, which receives inputs from the orbitofrontal cortex, and in humans many pleasant stimuli activate the pregenual cingulate cortex, pointing towards this as an important area in motivation and emotion.  相似文献   

2.
We used a 2 x 2 factorial design to dissociate regions responding to taste intensity and taste affective valence. Two intensities each of a pleasant and unpleasant taste were presented to subjects during event-related fMRI scanning. The cerebellum, pons, middle insula, and amygdala responded to intensity irrespective of valence. In contrast, valence-specific responses were observed in anterior insula/operculum extending into the orbitofrontal cortex (OFC). The right caudolateral OFC responded preferentially to pleasant compared to unpleasant taste, irrespective of intensity, and the left dorsal anterior insula/operculuar region responded preferentially to unpleasant compared to pleasant tastes equated for intensity. Responses best characterized as an interaction between intensity and pleasantness were also observed in several limbic regions. These findings demonstrate a functional segregation within the human gustatory system. They also show that amygdala activity may be driven by stimulus intensity irrespective of valence, casting doubt upon the notion that the amygdala responds preferentially to negative stimuli.  相似文献   

3.
Selective attention is thought to be associated with enhanced processing in modality-specific cortex. We used functional magnetic resonance imaging to evaluate brain response during a taste detection task. We demonstrate that trying to detect the presence of taste in a tasteless solution results in enhanced activity in insula and overlying operculum. The same task does not recruit orbitofrontal cortex (OFC). Instead, the OFC responds preferentially during receipt of an unpredicted taste stimulus. These findings demonstrate functional specialization of taste cortex in which the insula and the overlying operculum are recruited during taste detection and selective attention to taste, and the OFC is recruited during receipt of an unpredicted taste stimulus.  相似文献   

4.
Morrison SE  Saez A  Lau B  Salzman CD 《Neuron》2011,71(6):1127-1140
The orbitofrontal cortex (OFC) and amygdala are thought to participate in reversal learning, a process in which cue-outcome associations are switched. However, current theories disagree on whether OFC directs reversal learning in the amygdala. Here, we show that during reversal of cues' associations with rewarding and aversive outcomes, neurons that respond preferentially to stimuli predicting aversive events update more quickly in amygdala than OFC; meanwhile, OFC neurons that respond preferentially to reward-predicting stimuli update more quickly than those in the amygdala. After learning, however, OFC consistently differentiates between impending reinforcements with?a shorter latency than the amygdala. Finally, analysis of local field potentials (LFPs) reveals a disproportionate influence of OFC on amygdala that emerges after learning. We propose that reversal learning is supported by complex interactions between neural circuits spanning the amygdala and OFC, rather than directed by any single structure.  相似文献   

5.
Ohla K  Toepel U  le Coutre J  Hudry J 《PloS one》2012,7(3):e32434
Vision provides a primary sensory input for food perception. It raises expectations on taste and nutritional value and drives acceptance or rejection. So far, the impact of visual food cues varying in energy content on subsequent taste integration remains unexplored. Using electrical neuroimaging, we assessed whether high- and low-calorie food cues differentially influence the brain processing and perception of a subsequent neutral electric taste. When viewing high-calorie food images, participants reported the subsequent taste to be more pleasant than when low-calorie food images preceded the identical taste. Moreover, the taste-evoked neural activity was stronger in the bilateral insula and the adjacent frontal operculum (FOP) within 100 ms after taste onset when preceded by high- versus low-calorie cues. A similar pattern evolved in the anterior cingulate (ACC) and medial orbitofrontal cortex (OFC) around 180 ms, as well as, in the right insula, around 360 ms. The activation differences in the OFC correlated positively with changes in taste pleasantness, a finding that is an accord with the role of the OFC in the hedonic evaluation of taste. Later activation differences in the right insula likely indicate revaluation of interoceptive taste awareness. Our findings reveal previously unknown mechanisms of cross-modal, visual-gustatory, sensory interactions underlying food evaluation.  相似文献   

6.
Complementary neurophysiological recordings in macaques and functional neuroimaging in humans show that the primary taste cortex in the rostral insula and adjoining frontal operculum provides separate and combined representations of the taste, temperature and texture (including viscosity and fat texture) of food in the mouth independently of hunger and thus of reward value and pleasantness. One synapse on, in the orbitofrontal cortex, these sensory inputs are for some neurons combined by learning with olfactory and visual inputs. Different neurons respond to different combinations, providing a rich representation of the sensory properties of food. In the orbitofrontal cortex, feeding to satiety with one food decreases the responses of these neurons to that food, but not to other foods, showing that sensory-specific satiety is computed in the primate (including human) orbitofrontal cortex. Consistently, activation of parts of the human orbitofrontal cortex correlates with subjective ratings of the pleasantness of the taste and smell of food. Cognitive factors, such as a word label presented with an odour, influence the pleasantness of the odour and the activation produced by the odour in the orbitofrontal cortex. These findings provide a basis for understanding how what is in the mouth is represented by independent information channels in the brain; how the information from these channels is combined; and how and where the reward and subjective affective value of food is represented and is influenced by satiety signals. Activation of these representations in the orbitofrontal cortex may provide the goal for eating, and understanding them helps to provide a basis for understanding appetite and its disorders.  相似文献   

7.
We examined the laterality of the human gustatory neural pathway by measuring gustatory-evoked magnetic fields (GEMfs) and demonstrating the activation of the human primary gustatory cortex (PGC). In patients whose chorda tympani nerve had been severed unilaterally on the right side, we stimulated the normal side (i.e., left side) of the chorda tympani nerve with NaCl solution using a device developed for measuring GEMfs. We used the whole-head magnetoencephalography system for recording GEMfs and analyzed the frequency and latency of PGC activation in each hemisphere. "The transitional cortex between the insula and the parietal operculum" was identified as PGC with the base of the central sulcus in this experiment. Significant difference was found in frequencies among bilateral, only-ipsilateral, and only-contralateral responses by the Friedman test (P < 0.05), and more frequent bilateral responses were observed than only-ipsilateral (P < 0.05) or only-contralateral responses (P < 0.01) by the multiple comparison tests. In the bilateral responses, the averaged activation latencies of the transitional cortex between the insula and the parietal operculum were not significantly different in both hemispheres. These results suggest that unilateral gustatory stimulation will activate the transitional cortex between the insula and the parietal operculum bilaterally in humans.  相似文献   

8.
Smith DV  Ye MK  Li CS 《Chemical senses》2005,30(5):421-434
Previous studies have shown a modulatory influence of limbic forebrain areas, such as the central nucleus of the amygdala and lateral hypothalamus, on the activity of taste-responsive cells in the nucleus of the solitary tract (NST). The bed nucleus of the stria terminalis (BST), which receives gustatory afferent information, also sends descending axons to the NST. The present studies were designed to investigate the role of the BST in the modulation of NST gustatory activity. Extracellular action potentials were recorded from 101 taste-responsive cells in the NST of urethane-anesthetized hamsters and analyzed for a change in excitability following bilateral electrical stimulation of the BST. The response of NST taste cells to stimulation of the BST was predominately inhibitory. Orthodromic inhibitory responses were observed in 29 of 101 (28.7%) NST taste-responsive cells, with four cells inhibited bilaterally. An increase in excitability was observed in seven of the 101 (6.9%) NST taste cells. Of the 34 cells showing these responses, 25 were modulated by the ipsilateral BST and 15 by the contralateral; four were inhibited bilaterally and two inhibited ipsilaterally and excited contralaterally. The duration of inhibitory responses (mean = 177.9 ms) was significantly longer than that of excitatory responses (35.4 ms). Application of subthreshold electrical stimulation to the BST during taste trials inhibited or excited the taste responses of every BST-responsive NST cell tested with this protocol. NST neurons that were most responsive to sucrose, NaCl, citric acid or quinine hydrochloride were all affected by BST stimulation, although citric acid-best cells were significantly more often modulated and NaCl-best less often modulated than expected by chance. These results combine with excitatory and inhibitory modulation of NST neurons by the insular cortex, lateral hypothalamus and central nucleus of the amygdala to demonstrate extensive centrifugal modulation of brainstem gustatory neurons.  相似文献   

9.
Non-esterified fatty acids (NEFA) are reportedly detectable through taste mechanisms in the human oral cavity. However, wide variability has been observed in NEFA taste sensitivity between and within subjects as well as across research groups. Some of this variability may be due to the hydrophobic nature of the NEFA and the methods used to make stimuli emulsions. As NEFA are poorly soluble in water, emulsification is necessary for delivery of stimuli to taste receptors. However, properties of emulsions may also be detected by somatosensory cues complicating attribution of sensory findings to taste. Additionally, learning (improved test performance) has been observed when using traditional tests for measuring sensitivity to NEFA, which may contribute greatly to within-subject variability if not standardized. Factors such as sex, diet, and BMI have been proposed to affect NEFA taste sensitivity, but the degree to which these individual factors influence NEFA detection thresholds remains to be fully established. Improved knowledge of stimulus properties and individual sensory capabilities will be needed to further evaluate the posited taste component to human oral fat detection. Progress in this area should facilitate the translation of findings on how NEFA taste may contribute to or reflect food choice and chronic disease risk.  相似文献   

10.
The reactions of 164 neurons of the orbitofrontal cortex (OFC) to stimulation of the mediodorsal nucleus of the thalamus (MD), the amygdaloid complex, and various sections of the hypothalamus, were investigated in acute experiments on cats. Stimulation of the MD led to the development in OFC neurons of reactions with a short (sometimes less than 6 msec) and stable latent period. Similar reactions were observed upon stimulation of the lateral amygdaloid nuclei. Stimulation of the basal and central nuclei of the amygdala evoked synchronization of the discharges in OFC neurons. Stable responses of OFC neurons developed from nuclei of the hypothalamus only in the lateral region. Stimulation of the other nuclei of the hypothalamus was accompanied by irregular responses or synchronization of the discharges. In an analysis of the material obtained, the functional characteristics of the connections between the structures investigated and OFC neurons were examined.State Medical Institute, Kemerovo. Translated from Neirofiziologiya, Vol. 3, No. 5, pp. 484–490, September–October, 1971.  相似文献   

11.
Cho YK  Li CS  Smith DV 《Chemical senses》2003,28(2):155-171
The lateral hypothalamus (LH) and the central nucleus of the amygdala (CeA) exert an influence on many aspects of ingestive behavior. These nuclei receive projections from several areas carrying gustatory and viscerosensory information, and send axons to these nuclei as well, including the nucleus of the solitary tract (NST). Gustatory responses of NST neurons are modulated by stimulation of the LH and the CeA, and by several physiological factors related to ingestive behavior. We investigated the effect of both LH and CeA stimulation on the activity of 215 taste-responsive neurons in the hamster NST. More than half of these neurons (113/215) were modulated by electrical stimulation of the LH and/or CeA; of these, 52 cells were influenced by both areas, often bilaterally. The LH influenced more neurons than the CeA (101 versus 64 cells). Contralateral stimulation of these forebrain areas was more often effective (144 responses) than ipsilateral (74). Modulatory effects were mostly excitatory (102 cells); 11 cells were inhibited, mostly by ipsilateral LH stimulation. A subset of these cells (n = 25) was examined for the effects of microinjection of DL-homocysteic acid (DLH), a glutamate receptor agonist, into the LH and/or CeA. The effects of electrical stimulation were completely mimicked by DLH, indicating that cell somata in and around the stimulating sites were responsible for these effects. Other cells (n = 25) were tested for the effects of electrical stimulation of the LH and/or CeA on the responses to taste stimulation of the tongue (32 mM sucrose, NaCl and quinine hydrochloride, and 3.2 mM citric acid). Responses to taste stimuli were enhanced by the excitatory influence of the LH and/or CeA. These data demonstrate that descending influences from the LH and CeA reach many of the same cells in the gustatory NST and can modulate their responses to taste stimulation.  相似文献   

12.
Lei Q  Yan JQ  Shi JH  Yang XJ  Chen K 《生理学报》2007,59(3):260-266
本研究以轻度麻醉的大鼠为对象,应用细胞外微电极记录技术,观察并分析了脑桥臂旁核抑制性味觉神经元的自发活动及其对NaCl、HCl、盐酸奎宁(quinine HCl,QHCl))和蔗糖等四种基本味觉刺激的反应。共分析了18个具有自发活动的抑制性味觉神经元,自发放电频率分布在0.2~5.5Hz之间,平均放电频率(2.15±0.31)Hz。18个神经元中,1个神经元对单一味觉刺激呈抑制性反应,其余17个神经元对两种或两种以上的基本味觉刺激发生抑制性反应,且抑制具有潜伏期短、持续时间较长等特征。抑制持续时间5~80S,部分神经元表现为后抑制效应。根据神经元对四种基本味觉刺激呈抑制性反应的程度,将其分为NaCl优势神经元(n=8),HCl优势神经元(n=3),QHCl优势神经元n=3)和蔗糖优势神经元n=4)。其中NaCl优势神经元的反应谐宽最高(0.945)。这些神经元对欣快或厌恶刺激的区别能力较低。结果提示,在脑桥臂旁核存在对味觉刺激起抑制性反应的神经元,这些味觉神经元可能在味觉的调制及对欣快和厌恶刺激的编码中发挥重要的作用。  相似文献   

13.
The basolateral amygdala (BLA) and the insular cortex (IC) represent two major areas for odor-taste associations, i.e. flavor integration. This learning may require the development of convergent odor and taste neuronal activation allowing the memory representation of such association. Yet identification of neurons that respond to such coincident input and the effect of flavor experience on odor-taste convergence remain unclear. In the present study we used the compartmental analysis of temporal activity using fluorescence in situ hybridization for Arc (catFISH) to visualize odor-taste convergence onto single neurons in the BLA and in the IC to assess the number of cells that were co-activated by both stimuli after odor-taste association. We used a sucrose conditioned odor preference as a flavor experience in rats, in which 9 odor-sucrose pairings induce a reliable odor-taste association. The results show that flavor experience induced a four-fold increase in the percentage of cells activated by both taste and odor stimulations in the BLA, but not in the IC. Because conditioned odor preference did not modify the number of cells responding selectively to one stimulus, this greater odor-taste convergence into individual BLA neurons suggests the recruitment of a neuronal population that can be activated by both odor and taste only after the association. We conclude that the development of convergent activation in amygdala neurons after odor-taste associative learning may provide a cellular basis of flavor memory.  相似文献   

14.
Hanamori T 《Chemical senses》2003,28(8):717-728
Extracellular neuronal responses were recorded from the posterior insular cortex following electrical and chemical stimulation of the thalamic reticular nucleus (Rt) regions. In the present study, most neurons (29/32) were first characterized for their responses to electrical stimulation of the superior laryngeal (SL) nerve or glossopharyngeal (IXth) nerve. In the first experiment, 15 neurons in the posterior insular cortex were examined for their responses to electrical stimulation of the Rt regions. It was found that effective stimulation sites to evoke action potentials in the posterior insular cortex were the ventromedial portion of the Rt and its adjacent regions. In the second experiment, 17 neurons in the posterior insular cortex were examined for their responses by pressure injection of glutamate (Glu) into the Rt regions. Of the 17 neurons, 13 were inhibited in the spontaneous discharge rate following injection of Glu into the Rt, and the remaining four were unaffected. Histologically, it was demonstrated that Glu injection sites for the case of inhibition were located near or within the Rt. On the other hand, the injection sites for all four non-responsive neurons were located outside of the Rt. These data suggest that excitation of the Rt (GABAergic neurons) causes depression of the neuronal activity in the thalamic relay nucleus and then this may in turn induce depressed neuronal activity in the posterior insular cortex. The results here indicate that neuronal activity in the posterior insular cortex is controlled by the Rt, which has been reported in other sensory systems.  相似文献   

15.
阻断大鼠杏仁中央核AMPA受体对臂旁核味觉反应的影响   总被引:1,自引:0,他引:1  
Kang Y  Yan JQ  Huang T 《生理学报》2004,56(6):671-677
以往的研究表明,电刺激或损毁杏仁中央核明显改变臂旁核味觉神经元的活动。为了研究杏仁中央核内的兴奋性受体是否参与此调节,本实验应用细胞外记录方法,在乌拉坦麻醉的大鼠观察了杏仁中央核内微量注射6-氰基-7-硝基喹喔啉-2,3- 二酮(CNQX)前后臂旁核味觉神经元对四种基本味觉刺激反应的变化。结果表明,杏仁中央核内注射 CNQX 对 30% 的臂旁核神经元产生时间依赖性的抑制作用,此抑制作用以对盐酸和盐酸奎宁刺激引起的反应尤为明显(P<0.05)。根据对味觉刺激的优势反应,40% 的NaCl优势、30% 的HCl优势和20% 的奎宁优势反应神经元在注射CNQX 后对至少一种味觉刺激的反应降低;盐酸优势和奎宁优势反应神经元对各自的优势反应在杏仁中央核内注药后均明显降低(P<0.01)。相关性分析表明,在注射 CNQX 后,臂旁核味觉神经元对 NaCl 和其它三种味觉刺激物之间的分辨能力降低。以上结果表明,杏仁中央核内的AMPA 受体可能参与杏仁核对臂旁核味觉神经元的下行调控。  相似文献   

16.
E T Rolls 《Chemical senses》2001,26(5):595-604
Approximately 35% of neurons in the orbitofrontal cortex taste and olfactory areas with olfactory responses provide a representation of odour that depends on the taste with which the odour has been associated previously. This representation is produced by a slowly acting learning mechanism that learns associations between odour and taste. Other neurons in the orbitofrontal cortex respond to both the odour and to the mouth feel of fat. The representation of odour thus moves for at least some neurons in the orbitofrontal cortex beyond the domain of physico-chemical properties of the odours to a domain where the ingestion-related significance of the odour determines the representation provided. Olfactory neurons in the primate orbitofrontal cortex decrease their responses to a food eaten to satiety, but remain responsive to other foods, thus contributing to a mechanism for olfactory sensory-specific satiety. It has been shown in neuroimaging studies that the human orbitofrontal cortex provides a representation of the pleasantness of odour, in that the activation produced by the odour of a food eaten to satiety decreases relative to another food-related odour not eaten in the meal. In the same general area there is a representation of the pleasantness of the smell, taste and texture of a whole food, in that activation in this area decreases to a food eaten to satiety, but not to a food that has not been eaten in the meal.  相似文献   

17.
The present study has investigated interaction at the cortical level in the human between two major components of flavor perception, pure chemical gustatory and lingual somatosensory perception. Twelve subjects participated in a functional magnetic resonance imaging study and tasted six stimuli, applied on the whole tongue, among which four were pure gustatory stimuli (NaCl, aspartame, quinine and HCl, pH 2.4 or 2.2) and two were both taste and lingual somatosensory stimuli, i.e. somato-gustatory stimuli (HCl, pH 1.6 or 1.5, and aluminum potassium sulfate). Functional images were acquired with an echo planar sequence on a 3 T system and were individually processed by correlation with the temporal perception profile. Both sets of stimuli showed activation in the same cortical areas, namely the insula, the rolandic operculum (base of the pre- and post-central gyri), the frontal operculum and the temporal operculum, confirming a wide overlap of taste and lingual somatosensory representations. However, the relative activation across areas and the analysis of co-activated areas across all runs for each set of stimuli allowed discrimination of taste and somatosensory modalities. Factor analysis of correspondences indicated different patterns of activation across the sub-insular and opercular regions, depending on the gustatory or somato-gustatory nature of the stimuli. For gustatory stimuli different activation patterns for the superior and inferior parts of the insula suggested a difference in function between these two insular sub-regions. Furthermore, the left inferior insula was co-activated with the left angular gyrus, a structure involved in semantic processing. In contrast, only somato-gustatory stimuli specifically produced a simultaneous and symmetrical activation of both the left and right rolandic opercula, which include a part of the sensory homunculus dedicated to the tactile representation of oral structures.  相似文献   

18.
Electrical stimulation of the waist area (W) of the parabrachial nucleus (PBN) in conscious rats elicits stereotypical oromotor behaviors (Galvin et al. 2004). To identify neurons possibly involved in these behavioral responses, we used Fos immunohistochemistry to locate populations of neurons within central gustatory and oromotor centers activated by PBN stimulation. Dramatic increases in the numbers of Fos-like immunoreactive neurons were observed in the ipsilateral PBN, nucleus of the solitary tract (NST), and central amygdala. The increase in neurally-activated cells within the ventral subdivision (V) of the rostral NST is particularly noteworthy because of its projections to medullary oromotor centers. A modest increase in labeled neurons occurred bilaterally within the gustatory cortex. Although there were trends for an increase in Fos-labeled neurons in the gustatory thalamus and medullary reticular formation, most changes in labeled neurons in these areas were not statistically significant. Linear regression analysis revealed a relationship between the number of taste reactivity (TR) behaviors performed during PBN stimulation and the number of Fos-like immunoreactive neurons in the caudal PBN and V of the rostral NST. These data support a role for neurons in W of the PBN and the ventral rostral NST in the initiation of TR behaviors.  相似文献   

19.
Star-nosed moles have a series of mechanosensory appendages surrounding each nostril. Each appendage is covered with sensory organs (Eimer's organs) containing both rapidly adapting and slowly adapting mechanoreceptors and each appendage is represented in primary somatosensory cortex (S1) by a single cortical module. When the skin surface of an appendage is depressed, neurons in the corresponding module in S1 respond in either a transient or sustained fashion. The aim of this study was to characterize and compare the responses of these two classes of neurons to both short (5 or 20 ms) and long (500 ms) mechanosensory stimulation. Activity from neurons in the representation of appendage 11, the somatosensory fovea, was recorded while delivering mechanosensory stimuli to the corresponding skin surface. Transient and sustained neurons had different levels of spontaneous activity and different responses to both short and long mechanosensory stimulation. Neurons with sustained responses had a significantly higher spontaneous firing rate than neurons with transient responses. Transient neurons responded to a 5 ms stimulus with excitation followed by suppression of discharge whereas sustained neurons did not exhibit post-excitatory suppression. Rather, responses of sustained neurons to 5 ms stimuli lasted several hundred milliseconds. Consequently sustained responses contained significantly more spikes than transient responses. These experiments suggest contact to the appendages causes two distinct firing patterns in cortex regardless of the duration of the stimulus. The sustained and transient responses could reflect either the activity of fundamentally different classes of neurons or activity in distinct subcortical and cortical networks.  相似文献   

20.
The reactions of 288 neurons of the orbitofrontal cortex (OFC) to stimulation of the posteroventral (VP), ventral anterior (VA), and reticular (R) nuclei, as well as the median center (CM) of the thalamus, were investigated in acute experiments on cats. OFC neurons can be divided into four groups by their reactions to stimulation of thalamic nuclei: 1) those which respond with an increase in the frequency of the discharges to single and serial stimuli with a frequency of up to 20/sec; 2) those which respond doubtfully to single stimuli with a frequency of 4–12/sec; 3) those which respond with inhibition of the background impulses; 4) those which do not respond to stimulation of the nuclei. Stimulation of the thalamic nuclei evoked responses of OFC neurons with a large scatter of the latent period duration. The responses of neurons to stimulation of the VP (mean latent period 19.1±6.1 msec) had the shortest latent period (sometimes less than 3–4 msec). Reactions with a longer latent period developed upon stimulation of the VA (23.8±7.4 msec) and CM (42.8±12.8 msec). The uniqueness of the links of the OFC with the various optic thalamic nuclei is shown in an analysis of the material obtained and possible methods of the activation of the neurons of this region from thalamic structures are discussed.State Medical Institute, Kemerovo. Translated from Neirofiziologiya, Vol. 3, No. 4, pp. 350–358, July–August, 1971.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号