首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The Robertsonian fusion is a common chromosomal mutation among mammal species and is especially prevalent in the West European house mouse, Mus musculus domesticus. More than 40 races of the house mouse exist in Europe, including the famous “tobacco mouse” (Poschiavo race) of Val Poschiavo, Switzerland. Documented here is the discovery of an extreme case of karyotypic variation in the neighboring Upper Valtellina, Italy. In a 20-km stretch of the valley, 32 karyotypes were observed, including five chromosomal races and 27 hybrid types. One previously unknown race is reported, the “Mid Valtellina” race, with a diploid number of 2n = 24 and the Robertsonian fusions Rb(1.3), Rb(4.6), Rb(5.15), Rb(7.18), Rb(8.12), Rb(9.14), Rb(11.13), and Rb(16.17). The Poschiavo race (2n = 26), Upper Valtellina race (2n = 24), Lower Valtellina race (2n = 22) and all-acrocentric race (2n = 40) were also present. The races form a patchy distribution, which we term a “mottled hybrid zone.” Geographical position, isolation, extinction, recolonization, and selection against hybrids are all believed to be instrumental in the origin and evolution of this complex system. Previous studies of house mice from Upper Valtellina indicated that two of the races in the valley (the Upper Valtellina and Poschiavo races) may have speciated in the village of Migiondo. We discuss the possibility that there may have been a reinforcement event in this village.  相似文献   

2.
Multivariate morphometric differentiation between chromosomal races of the mouse Mus domesticus in Central Italy was investigated using a population of 2n = 22 “CB” karyotype, three populations of standard 2n = 40 karyotype, five populations of 2n = 22 “CD” karyotype and three populations from the hybrid zone between the latter two karyotypes. Whilst populations of different karyotype generally have significantly different morphometry, canonical analysis does not reveal that the populations ordinate into distinct aggregations based on karyotype, largely because the 2n = 22 “CD” populations are so diverse. Nevertheless, canonical analysis does reveal a significant cline in morphology across the contact zone between the 2n = 40 and 2n = 22 “CD” mice. The nature of this transition, i. e. a cline 1. within the 2n = 40 range, 2. within the hybrid range (but unrelated to chromosome number) and 3. within the 2n = 22 “CD” range, tends to indicate that the morphometric divergence is due to adaptation to the different ecological regimes across which these mice are distributed rather than the phylogenetic divergence of the karyotypic races.  相似文献   

3.
Robertsonian (Rb) translocation is a common chromosomal rearrangement in the house mouse. In free-living populations, 79 fusions with different combinations of chromosomes 1 to 18 have been found in some 45 populations. An updated list of these fusions is presented and analysed in order to reveal the possible processes by which the fusions spread within or among populations. A widespread hypothesis is that when two populations share the same fusion, it can be assumed that they have a common ancestor. This can serve as the basis for the use of the cladistic methods. While I present such an analysis on the updated list of Rbs, I also point to the problems associated with it in this case because many fusions have multiple origins and exchanges of Rbs between populations are frequent. I have tried to use a different approach, based on a critical and quantitative evaluation of the hypothesis of common ancestry. Assuming that the 153 possible fusions have an equal probability of occurrence, I give the formula to compute the probability that populations share a given number of fusions by chance alone. Only when this probability is lower than a chosen level (say 5%) can the populations be inferred to have a non-independent origin (i.e. they have a common ancestor or they have exchanged chromosomes by introgression). This probability measure is then used as a distance estimate to show the relationship between all the Rb populations. This analysis suggests that although some Rbs must have occurred more than once, most of the populations have non-independent origins. Almost all the populations from northern Africa to Belgium and Germany appear to have close karyotopic relationships and form a major group. Clearly independent Rb populations are mainly found in the periphery of this major group, for example in Scotland, Denmark and Spain. 'Chromosomal' flow between Rb populations appears to be a very important process.  相似文献   

4.
Chromosomal evolution is widely considered an important driver of speciation because it can promote the establishment of reproductive barriers. Karyotypic reorganization is also expected to affect the mean phenotype, as well as its development and patterns of phenotypic integration, through processes such as variation in genetic linkage between quantitative trait loci or between regulatory regions and their targets. Here we explore the relationship between chromosomal evolution and phenotypic integration by analyzing a well-known house mouse parapatric contact zone between a highly derived Robertsonian (Rb) race (2n = 22) and populations with standard karyotype (2n = 40). Populations with hybrid karyotypes are scattered throughout the hybrid zone connecting the two parental races. Using mandible shape data and geometric morphometrics, we test the hypothesis that patterns of integration progressively diverge from the “normal” integration pattern observed in the standard race as they accumulate Rb fusions. We find that the main pattern of integration observed between the posterior and anterior part of the mandible can be largely attributed to allometry. We find no support for a gradual increase in divergence from normal patterns of integration as fusions accumulate. Surprisingly, however, we find that the derived Rb race (2n = 22) has a distinct allometric trajectory compared with the standard race. Our results suggest that either individual fusions disproportionately affect patterns of integration or that there are mechanisms which “purge” extreme variants in hybrids (e.g. reduced fitness of hybrid shape).  相似文献   

5.
Strong ecological selection on a genetic locus can maintain allele frequency differences between populations in different environments, even in the face of hybridization. When alleles at divergent loci come into tight linkage disequilibrium, selection acts on them as a unit and can significantly reduce gene flow. For populations interbreeding across a hybrid zone, linkage disequilibria between loci can force clines to share the same slopes and centers. However, strong ecological selection on a locus can also pull its cline away from the others, reducing linkage disequilibrium and weakening the barrier to gene flow. We looked for this “cline uncoupling” effect in a hybrid zone between stream resident and anadromous sticklebacks at two genes known to be under divergent natural selection (Eda and ATP1a1) and five morphological traits that repeatedly evolve in freshwater stickleback. These clines were all steep and located together at the top of the estuary, such that we found no evidence for cline uncoupling. However, we did not observe the stepped shape normally associated with steep concordant clines. It thus remains possible that these clines cluster together because their individual selection regimes are identical, but this would be very surprising given their diverse roles in osmoregulation, body armor, and swimming performance.  相似文献   

6.
One of the simplest models of chromosomal speciation is speciation by monobrachial centric fusion. This model is based on the assumption that a sterility barrier can develop between populations, in which fixed centric fusions show monobrachial homology, i.e. share only one chromosome arm. However, studies aimed at delineating intermediate stages of transition to reproductive isolation are lacking. In this paper, we describe a new area of chromosomal polymorphism in the house mouse, Mus musculus domesticus Schwarz and Schwarx, 1943, in Sicily (Italy). We trapped 79 mice at eighteen localities in an area of approximately 500 Km2 surrounding the largest active European volcano, Mount Etna. Combining G‐banding and chromosome painting we identified twelve different Robertsonian (Rb) metacentrics. Considering the high number of Rb fusions, some of them shared with other documented areas, the presently studied area of chromosomal polymorphism is very likely to represent a mixture of allochthonous and autochthonous Rb fusions. The Rb(9.16) is the most widespread metacentric (overall frequency 0.80). Two Rb metacentrics, Rb(4.10) and Rb(5.6), have similar overall frequency, 0.29 and 0.37, respectively, and are narrowly co‐distributed in ten populations. Nine fusions – Rb(2.13), Rb(1.3), Rb(12.17), Rb(8.17), Rb(2.14), Rb(10.14), Rb(11.17), Rb(3.15), and Rb(11.14) – show a low frequency (0.04–0.01) and mostly non‐overlapping localization, but each of them shares monobrachial homology with at least one other metacentric. The overall geographical distribution of different Rb fusions seems to match an early stage of race formation. The eventual role of the presently studied hybrid zone in the context of chromosomal speciation by monobrachial centric fusions is discussed. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 722–731.  相似文献   

7.
This paper examines the relation between chromosomal and nuclear-gene divergence in 28 wild populations of the house mouse semi-species, Mus musculus domesticus, in Western Europe and North Africa. Besides describing the karyotypes of 15 of these populations and comparing them to those of 13 populations for which such information was already known, it reports the results of an electrophoretic survey of proteins encoded by 34 nuclear loci in all 28 populations. Karyotypic variation in this taxon involves only centric (or Robertsonian) fusions which often differ in arm combination and number between chromosomal races. The electrophoretic analysis showed that the amount of genic variation within Robertsonian (Rb) populations was similar to that for all-acrocentric populations, i.e. bearing the standard karyotype. Moreover, divergence between the two types of populations was extremely low. These results imply that centric fusions in mice have not modified either the level or the nature of genic variability. The genetic similarity between Rb and all-acrocentric populations is not attributed to the persistence of gene flow, since multiple fusions cause marked reproductive isolation. Rather, we attribute this extreme similarity to the very recent origin of chromosomal races in Europe. Furthermore, genic diversity measures suggest that geographically separated Rb populations have in situ and independent origins. Thus, Rb translocations are probably not unique events, but originated repeatedly. Two models are presented to explain how the rapid fixation of a series of chromosomal rearrangements can occur in a population without lowering variability in the nuclear genes. The first model assumes that chromosomal mutation rates are between 10(-3) and 10(-4) and that populations underwent a series of transient bottlenecks in which the effective population size did not fall below 35. In the second model, genic variability is restored following severe bottlenecks, through gene flow and recombination.  相似文献   

8.
Computer simulations of clines (Brues, 1972; Endler, 1977) as well as theoretical arguments (Nagylaki, 1975), have shown that steps in gene frequencies will be pulled to partial barriers (areas of reduced gene flow) if they form within approximately a cline width of the partial barrier. The behavior of a hybrid zone between two chromosomal taxa (“Moreton” and “Torresian”) of the acridine grasshopper Caledia captiva in southeast Queensland has been analyzed and found to comform qualitatively with a model of altered gene flow patterns. Clines in four enzyme systems were analyzed for 1983 and 1986 along a transect across the hybrid zone. The clines have shifted towards an area of regenerating forest, while homozygote frequencies have increased at this point. This forest barrier has broken the continuity of the spatial distribution of C. captiva, forming population islands in part of the hybrid zone, and thus reducing the amount of gene flow. The distance between the barrier and the original cline is approximately of the order of a cline width, so that they would be expected to interact. Historical information suggests that the secondary contact between the “Moreton” and “Torresian” taxa occurred very recently (1844–1940), due to the intensive land-clearing activities during the European settlement.  相似文献   

9.
In wild populations of the house mouse from Tunisia, fluctuating asymmetry and character size of tooth traits were compared between chromosomal races (2n = 40, all acrocentric standard karyotype, and 2n = 22, with nine fixed Robertsonian fusions) and their natural hybrids. Developmental stability was impaired in hybrids compared to both parental groups. Because genetic divergence measured by allozyme markers was low, genomic incompatibilities were not expected between the chromosomal races. This suggests that differentiation of gene systems specifically involved in development may have occurred between the chromosomal races. Support for the latter was found in the study of character size which showed that the 2n = 22 mice had smaller teeth than either the hybrid or the standard mice. The study of Tunisian chromosomal races thus shows that chromosomal evolution may lead to important changes in coadapted gene systems without involving extensive genic differentiation.  相似文献   

10.
Twenty microsatellite loci were isolated from a hybrid of two daylilies, Hemerocallis fulva and Hemerocallis citrina. We characterized individuals from two H. fulva populations and two H. citrina populations in Japan and observed three to 20 alleles per locus in H. fulva and one to 19 alleles per locus in H. citrina. Mean observed heterozygosity within populations ranged from 0.35 to 0.85 in H. fulva and from 0 to 0.95 in H. citrina. In about a half of the loci, the observed heterozygosity did not deviate from Hardy–Weinberg equilibrium. These loci are proved useful in studying gene flow and qualitative trait loci mapping using the two species.  相似文献   

11.
Striped hamsters (Cricetulus barabensis sensu lato) represent a complex of chromosomally distinct allopatric lineages/taxa of either species or subspecies rank. They are widely distributed across the steppes of eastern and central Palearctic. Phylogenetic analysis of cytochrome b gene sequences based on 496 specimens from 112 localities revealed five well‐supported lineages divergent at 2%–4%. Two of them correspond to “griseus” (2n = 22) and “pseudogriseus” (2n = 24) karyomorphs and are placed as sister taxa. The “barabensis” (2n = 20) karyomorph is represented by three other branches and appears non‐monophyletic. All mtDNA lineages are distributed allopatrically or parapatrically; no indications of gene flow between populations of different chromosomal races were found. The results of the molecular clock analysis suggest that the main lineages diverged in the late Middle Pleistocene. The inferred evolutionary scenario implies that the common ancestor of the recent lineages belonged to the 2n = 20 karyomorph and originated in the eastern part of the contemporary range.  相似文献   

12.
The recent discovery of Robertsonian (Rb) translocations in Danish mice from the hybrid zone between Mus musculus musculus and M. m. domesticus stimulated the chromosomal analysis of populations along a north-south transect through this zone. G-Banding identified the Rb fusions as Rb(3.8), Rb(2.5) and Rb(6.9). The cytogenetic results show that there is a gradual decrease in the number of fusions as one proceeds north, the translocations abruptly ending in populations from the centre of the hybrid zone determined by seven diagnostic allozymic markers. These results indicate that Rb fusions are present only in domesticus or predominantly domesticus-genotype mice and that they do not introgress into M. m. musculus . To test if genie incompatibilities between the musculus genetic background and Rb fusions were involved in the systematic elimination of the latter, predominantly musculus mice from the hybrid zone were crossed with Rb domesticus mice carrying Rb(3.8). The karyotypic analysis of the progeny showed no distortion of the transmission ratio of this fusion.
The chromosomal and allozymic analysis of these mice further indicates that (i) recombination is not suppressed between metacentrics and their acrocentric homologues and (ii) specific domesticus chromosomal segments are tolerated in the musculus genomes whereas the Rb centromeres are not.  相似文献   

13.
Chromosomal rearrangements may directly cause hybrid sterility and can facilitate speciation by preserving local adaptation in the face of gene flow. We used comparative linkage mapping with shared gene‐based markers to identify potential chromosomal rearrangements between the sister monkeyflowers Mimulus lewisii and Mimulus cardinalis, which are textbook examples of ecological speciation. We then remapped quantitative trait loci (QTLs) for floral traits and flowering time (premating isolation) and hybrid sterility (postzygotic isolation). We identified three major regions of recombination suppression in the M. lewisii × M. cardinalis hybrid map compared to a relatively collinear Mimulus parishii × M. lewisii map, consistent with a reciprocal translocation and two inversions specific to M. cardinalis. These inferences were supported by targeted intraspecific mapping, which also implied a M. lewisii‐specific reciprocal translocation causing chromosomal pseudo‐linkage in both hybrid mapping populations. Floral QTLs mapped in this study, along with previously mapped adaptive QTLs, were clustered in putatively rearranged regions. All QTLs for male sterility, including two underdominant loci, mapped to regions of recombination suppression. We argue that chromosomal rearrangements may have played an important role in generating and consolidating barriers to gene flow as natural selection drove the dramatic ecological and morphological divergence of these species.  相似文献   

14.
Chromosomally diverse Australian morabine grasshoppers (genus Vandiemenella, viatica species group) have parapatric distributions and occasionally hybridize at contact zones. To investigate population genetic structure and the extent of gene flow between chromosomal races/species of Vandiemenella, we isolated and characterized nine polymorphic microsatellite loci and one insertion/deletion polymorphic locus. The numbers of alleles per locus ranged from two to 34 across three chromosomal races on Kangaroo Island, South Australia, and expected heterozygosity within races ranged from 0.00 to 0.94. Inter‐taxon amplification was generally successful within Vandiemenella, but not for other morabine genera.  相似文献   

15.
16.
The karyotype of the Cretan spiny mouse Acomys minous was examined with chromosome banding techniques in 53 individuals from 12 localities of Crete, aiming to gain a more detailed knowledge on the chromosomal constitution and variability of its natural populations. We found that it consists of three Robertsonian (Rb) populations with 2n = 38, 2n = 40 and 2n = 42, respectively, the last one being reported for the first time, and with stable fundamental number (FNa = 66, FN = 68). The G‐banding pattern proves that the Rb populations are closely linked phylogenetically by the many common Rb fusions and the lack of monobrachial homologies. In addition, they appear to freely mate at their contact areas, producing viable and fertile hybrids. No other type of chromosomal rearrangement appears to have played part in the chromosomal evolution of this species, at least in the recent past, as indicated also by the study of the telomeric sequences. Heterochromatin appears to be restricted to the pericentromeric position of all acrocentric and most biarmed autosomes, as well as of the X chromosome, whereas the Y chromosome is uniformly, yet faintly heterochromatic. Chromosome banding comparison of the karyotypes in A. minous with those of the other species in the cahirinus group (i.e. Acomys cahirinus, Acomys cilicicus, and Acomys nesiotes) proves their very close phylogenetic relationship, further reinforced by the study of the cytochrome b sequences, and that A. minous possesses the ancestral karyotype of the group. It is suggested that at least two of the karyotypes that characterize A. minous today, pre‐existed in North Africa before it colonized Crete and that the specific status of the four members in the cahirinus group may need to be revisited. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 498–509.  相似文献   

17.
Populations are often exposed to multiple sources of gene flow, but accounts are lacking of the population genetic dynamics that result from these interactions or their effects on local evolution. Using a genomic clines framework applied to 1,195 single nucleotide polymorphisms, we documented genomewide, locus‐specific patterns of introgression between Choristoneura occidentalis biennis spruce budworms and two ecologically divergent relatives, C. o. occidentalis and Choristoneura fumiferana, that it interacts with at alternate boundaries of its range. We observe contrasting hybrid indexes between the two hybrid zones, no overlap in “gene‐flow outliers” (clines showing relatively extreme extents or rates of locus‐specific introgression) and variable linkage disequilibrium among those outliers. At the same time, correlated genomewide rates of introgression between zones suggest the presence of processes common to both boundaries. These findings highlight the contrasting population genetic dynamics that can occur at separate frontiers of a single population, while also suggesting that shared patterns may frequently accompany cases of divergence‐with‐gene‐flow that involve a lineage in common. Our results point to potentially complex evolutionary outcomes for populations experiencing multiple sources of gene flow.  相似文献   

18.
A major issue in evolutionary biology is explaining patterns of differentiation observed in population genomic data, as divergence can be due to both direct selection on a locus and genetic hitchhiking. “Divergence hitchhiking” (DH) theory postulates that divergent selection on a locus reduces gene flow at physically linked sites, facilitating the formation of localized clusters of tightly linked, diverged loci. “Genome hitchhiking” (GH) theory emphasizes genome‐wide effects of divergent selection. Past theoretical investigations of DH and GH focused on static snapshots of divergence. Here, we used simulations assessing a variety of strengths of selection, migration rates, population sizes, and mutation rates to investigate the relative importance of direct selection, GH, and DH in facilitating the dynamic buildup of genomic divergence as speciation proceeds through time. When divergently selected mutations were limiting, GH promoted divergence, but DH had little measurable effect. When populations were small and divergently selected mutations were common, DH enhanced the accumulation of weakly selected mutations, but this contributed little to reproductive isolation. In general, GH promoted reproductive isolation by reducing effective migration rates below that due to direct selection alone, and was important for genome‐wide “congealing” or “coupling” of differentiation (FST) across loci as speciation progressed.  相似文献   

19.
The common shrew (Sorex araneus) is subdivided into several karyotypic races in Britain. Two of these races meet near Oxford o form the “Oxford-Hermitage” hybrid zone. We present a model which describes this system a; a “tension zone,” i.e., a set of clines maintained by a balance between dispersal and selection against chromosomal heterozygotes. The Oxford and Hermitage races differ by Robertsonian fusions with monobrachial homology (kq, no versus ko), and so Fl hybrids between them would have low fertility. However, the acrocentric karyotype is found at high frequency within the hybrid zone, so that complex Robertsonian heterozygotes (kg no/q ko n) are replaced by more fertile combinations, such as (kg no/k q n o). This suggests that the hybrid zone has been modified so as to increase hybrid fitness. Mathematical analysis and simulation show that, if selection against complex heterozygotes is sufficiently strong relative to selection against simple heterozygotes, acrocentrics increase, and displace the clines for kg and no from the cline for ko. Superimposed on this separation is a tendency for the hybrid zone to move in favor of the Oxford (kg no) race. We compare the model with estimates of linkage disequilibrium and cline shape made from field data.  相似文献   

20.
Hybrid zones are unique biological interfaces that reveal both population level and species level evolutionary processes. A genome‐scale approach to assess gene flow across hybrid zones is vital, and now possible. In Mexican towhees (genus Pipilo), several morphological hybrid gradients exist. We completed a genome survey across one such gradient (9 populations, 140 birds) using mitochondrial DNA, 28 isozyme, and 377 AFLP markers. To assess variation in introgression among loci, cline parameters (i.e., width, center) for the 61 clinally varying loci were estimated and compiled into genomic distributions for tests against three empirical models spanning the range of observed cline shape. No single model accounts for observed variation in cline shape among loci. Numerous backcross individuals near the gradient center confirm a hybrid origin for these populations, contrary to a previous hypothesis based on social mimicry and character displacement. In addition, the observed variation does not bin into well‐defined categories of locus types (e.g., neutral vs. highly selected). Our multi‐locus analysis reveals cross‐genomic variation in selective constraints on gene flow and locus‐specific flexibility in the permeability of the interspecies membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号