首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Antimycin A-sensitive cyclic electron flow (CEF) was discovered as cyclic phosphorylation by Arnon et al. (1954). Because of its sensitivity to antimycin A, PROTON GRADIENT REGULATION 5 (PGR5)/PGR5-like Photosynthetic Phenotype 1 (PGRL1)-dependent CEF has been considered identical to the CEF of Arnon et al. However, this conclusion still needs additional supportive evidence, mainly because of the absence of definitive methods of evaluating CEF activity. In this study, we revisited the classical method of monitoring cyclic phosphorylation in ruptured chloroplasts to characterize two Arabidopsis mutants: pgr5, which is defective in antimycin A-sensitive CEF, and chlororespiratory reduction 2-1 (crr2-1), which is defective in chloroplast NDH-dependent CEF. We observed a significant reduction in CEF-dependent pmf formation and consequently ATP synthesis in the pgr5 mutant, although LEF-dependent pmf formation and ATP synthesis were not impaired at photosynthetic photon flux densities below 130?μmol?m?2?s?1. In contrast, the contribution of chloroplast NDH complex to pmf formation and ATP synthesis was not significant. Antimycin A partially inhibited CEF-dependent pmf formation, although there may be further inhibition sites. Unlike in the observation in leaves, the proton conductivity of ATP synthase, monitored as gH+, was not enhanced in ruptured chloroplasts of the pgr5 mutant.  相似文献   

2.
Long TA  Okegawa Y  Shikanai T  Schmidt GW  Covert SF 《Planta》2008,228(6):907-918
There are at least two photosynthetic cyclic electron transport (CET) pathways in most C3 plants: the NAD(P)H dehydrogenase (NDH)-dependent pathway and a pathway dependent upon putative ferredoxin:plastoquinone oxidoreductase (FQR) activity. While the NDH complex has been identified, and shown to play a role in photosynthesis, especially under stress conditions, less is known about the machinery of FQR-dependent CET. Recent studies indicate that FQR-dependent CET is dependent upon PGR5, a small protein of unknown function. In a previous study we found that overexpression of PGR5 causes alterations in growth and development associated with decreased chloroplast development and a transient increase in nonphotochemical quenching (NPQ) after the shift from dark to light. In the current study we examine the spatiotemporal expression pattern of PGR5, and the effects of overexpression of PGR5 in Arabidopsis under a host of light and stress conditions. To investigate the conserved function of PGR5, we cloned PGR5 from a species which apparently lacks NDH, loblolly pine, and overexpressed it in Arabidopsis. Although greening of cotyledons was severely delayed in overexpressing lines under low light, mature plants survived exposure to high light and drought stress better than wild-type. In addition, PSI was more resistant to high light in the PGR5 overexpressors than in wild-type plants, while PSII was more sensitive to this stress. These complex responses corresponded to alterations in linear and cyclic electron transfer, suggesting that over-accumulation of PGR5 induces pleiotropic effects, probably via elevated CET. We conclude that PGR5 has a developmentally-regulated, conserved role in mediating CET.  相似文献   

3.
C4 plants can fix CO2 efficiently using CO2‐concentrating mechanisms (CCMs), but they require additional ATP. To supply the additional ATP, C4 plants operate at higher rates of cyclic electron transport around photosystem I (PSI), in which electrons are transferred from ferredoxin to plastoquinone. Recently, it has been reported that the NAD(P)H dehydrogenase‐like complex (NDH) accumulated in the thylakoid membrane in leaves of C4 plants, making it a candidate for the additional synthesis of ATP used in the CCM. In addition, C4 plants have higher levels of PROTON GRADIENT REGULATION 5 (PGR5) expression, but it has been unknown how PGR5 functions in C4 photosynthesis. In this study, PGR5 was overexpressed in a C4 dicot, Flaveria bidentis. In PGR5‐overproducing (OP) lines, PGR5 levels were 2.3‐ to 3.0‐fold greater compared with wild‐type plants. PGR5‐like PHOTOSYNTHETIC PHENOTYPE 1 (PGRL1), which cooperates with PGR5, increased with PGR5. A spectroscopic analysis indicated that in the PGR5‐OP lines, the acceptor side limitation of PSI was reduced in response to a rapid increase in photon flux density. Although it did not affect CO2 assimilation, the overproduction of PGR5 contributed to an enhanced electron sink downstream of PSI.  相似文献   

4.
Photosynthetic organisms have evolved numerous photoprotective mechanisms and alternative electron sinks/pathways to fine‐tune the photosynthetic apparatus under dynamic environmental conditions, such as varying carbon supply or fluctuations in light intensity. In cyanobacteria flavodiiron proteins (FDPs) protect the photosynthetic apparatus from photodamage under fluctuating light (FL). In Arabidopsis thaliana, which does not possess FDPs, the PGR5‐related pathway enables FL photoprotection. The direct comparison of the pgr5, pgrl1 and flv knockout mutants of Chlamydomonas reinhardtii grown under ambient air demonstrates that all three proteins contribute to the survival of cells under FL, but to varying extents. The FDPs are crucial in providing a rapid electron sink, with flv mutant lines unable to survive even mild FL conditions. In contrast, the PGRL1 and PGR5‐related pathways operate over relatively slower and longer time‐scales. Whilst deletion of PGR5 inhibits growth under mild FL, the pgrl1 mutant line is only impacted under severe FL conditions. This suggests distinct roles, yet a close relationship, between the function of PGR5, PGRL1 and FDP proteins in photoprotection.  相似文献   

5.
Besides major photosynthetic complexes of oxygenic photosynthesis, new electron carriers have been identified in thylakoid membranes of higher plant chloroplasts. These minor components, located in the stroma lamellae, include a plastidial NAD(P)H dehydrogenase (NDH) complex and a plastid terminal plastoquinone oxidase (PTOX). The NDH complex, by reducing plastoquinones (PQs), participates in one of the two electron transfer pathways operating around photosystem I (PSI), the other likely involving a still uncharacterized ferredoxin-plastoquinone reductase (FQR) and the newly discovered PGR5. The existence of a complex network of mechanisms regulating expression and activity of the NDH complex, and the presence of higher amounts of NDH complex and PTOX in response to environmental stress conditions the phenotype of mutants, indicate that these components likely play a role in the acclimation of photosynthesis to changing environmental conditions. Based on recently published data, we propose that the NDH-dependent cyclic pathway around PSI participates to the ATP supply in conditions of high ATP demand (such as high temperature or water limitation) and together with PTOX regulates cyclic electron transfer activity by tuning the redox state of intersystem electron carriers. In response to severe stress conditions, PTOX associated to the NDH and/or the PGR5 pathway may also limit electron pressure on PSI acceptor and prevent PSI photoinhibition.  相似文献   

6.
Cyclic electron transport (CET) around photosystem I (PSI) plays an important role in balancing the ATP/NADPH ratio and the photoprotection of plants. The NAD(P)H dehydrogenase complex (NDH) has a key function in one of the CET pathways. Current knowledge indicates that, in order to fulfill its role in CET, the NDH complex needs to be associated with PSI; however, until now there has been no direct structural information about such a supercomplex. Here we present structural data obtained for a plant PSI–NDH supercomplex. Electron microscopy analysis revealed that in this supercomplex two copies of PSI are attached to one NDH complex. A constructed pseudo‐atomic model indicates asymmetric binding of two PSI complexes to NDH and suggests that the low‐abundant Lhca5 and Lhca6 subunits mediate the binding of one of the PSI complexes to NDH. On the basis of our structural data, we propose a model of electron transport in the PSI–NDH supercomplex in which the association of PSI to NDH seems to be important for efficient trapping of reduced ferredoxin by NDH.  相似文献   

7.
In Arabidopsis, the chloroplast NADH‐dehydrogenase‐like (NDH) complex is sandwiched between two copies of photosystem I (PSI) supercomplex, consisting of a PSI core and four light‐harvesting complex I (LHCI) proteins (PSI‐LHCI) to form the NDH–PSI supercomplex. Two minor LHCI proteins, Lhca5 and Lhca6, contribute to the interaction of each PSI–LHCI copy with the NDH complex. Here, large‐pore blue‐native gel electrophoresis revealed that, in addition to this complex, there were at least two types of higher‐order association of more LHCI copies with the NDH complex. In single‐particle images, this higher‐order association of PSI–LHCI preferentially occurs at the left side of the NDH complex when viewed from the stromal side, placing subcomplex A at the top (Yadav et al., Biochim. Biophys. Acta ‐ Bioenerg., 1858, 2017, 12). The association was impaired in the lhca6 mutant but not in the lhca5 mutant, suggesting that the left copy of PSI–LHCI was linked to the NDH complex via Lhca6. From an analysis of subunit compositions of the NDH–PSI supercomplex in lhca5 and lhca6 mutants, we propose that Lhca6 substitutes for Lhca2 in the left copy of PSI–LHCI, whereas Lhca5 substitutes for Lhca4 in the right copy. In the lhca2 mutant, Lhca3 was specifically stabilized in the NDH–PSI supercomplex through heterodimer formation with Lhca6. In the left copy of PSI–LHCI, subcomplex B, Lhca6 and NdhD likely formed the core of the supercomplex interaction. In contrast, a larger protein complex, including at least subcomplexes B and L and NdhB, was needed to form the contact site with Lhca5 in the right copy of PSI–LHCI.  相似文献   

8.
Although photosystem I (PSI) cyclic electron transport is essential for plants, our knowledge of the route taken by electrons is very limited. To assess whether ferredoxin (Fd) donates electrons directly to plastoquinone (PQ) or via a Q-cycle in the cytochrome (cyt) b(6)f complex in PSI cyclic electron transport, we characterized the activity of PSI cyclic electron transport in an Arabidopsis mutant, pgr1 (proton gradient regulation). In pgr1, Q-cycle activity was hypersensitive to acidification of the thylakoid lumen because of an amino acid alteration in the Rieske subunit of the cyt b(6)f complex, resulting in a conditional defect in Q-cycle activity. In vitro assays using ruptured chloroplasts did not show any difference in the activity of PGR5-dependent PQ reduction by Fd, which functions in PSI cyclic electron transport in vivo. In contrast to the pgr5 defect, the pgr1 defect did not show any synergistic effect on the quantum yield of photosystem II in crr2-2, a mutant in which NDH (NAD(P)H dehydrogenase) activity was impaired. Furthermore, the simultaneous determination of the quantum yields of both photosystems indicated that the ratio of linear and PSI cyclic electron transport was not significantly affected in pgr1. All the results indicated that the pgr1 mutation did not affect PGR5-dependent PQ reduction by Fd. The phenotypic differences between pgr1 and pgr5 indicate that maintenance of the proper balance of linear and PSI cyclic electron transport is essential for preventing over-reduction of the stroma.  相似文献   

9.
An Arabidopsis thaliana mutant, crr7 (chlororespiratory reduction), was isolated using chlorophyll fluorescence imaging to detect reduced activity in NAD(P)H dehydrogenase (NDH). The chloroplast NDH complex is considered to have originated from cyanobacteria in which the NDH complex is involved in respiration, photosystem I (PSI) cyclic electron transport and CO2 uptake. In higher plants the NDH complex functions in PSI cyclic electron transport within the chloroplast. Despite exhaustive biochemical approaches, the entire subunit composition of the NDH complex is unclear in both cyanobacteria and chloroplasts. In crr7 accumulation of the NDH complex was specifically impaired. In vivo analysis of electron transport supported the specific loss of the NDH complex in crr7. CRR7 (At5g39210) encodes a protein of 156 amino acids, including a putative plastid target signal, and does not contain any known motifs. In contrast to CRR2 and CRR4, involved in the expression of chloroplast ndh genes, CRR7 is conserved in cyanobacterial genomes. Although CRR7 did not contain any transmembrane domains, it localized to the membrane fraction of the chloroplast. CRR7 was unstable in the crr2-2 mutant background, in which the expression of ndhB was impaired. These results strongly suggest that CRR7 is a novel subunit of the chloroplast NDH complex.  相似文献   

10.
Cyclic electron flow (CEFI) has been proposed to balance the chloroplast energy budget, but the pathway, mechanism, and physiological role remain unclear. We isolated a new class of mutant in Arabidopsis thaliana, hcef for high CEF1, which shows constitutively elevated CEF1. The first of these, hcef1, was mapped to chloroplast fructose-1,6-bisphosphatase. Crossing hcef1 with pgr5, which is deficient in the antimycin A–sensitive pathway for plastoquinone reduction, resulted in a double mutant that maintained the high CEF1 phenotype, implying that the PGR5-dependent pathway is not involved. By contrast, crossing hcef1 with crr2-2, deficient in thylakoid NADPH dehydrogenase (NDH) complex, results in a double mutant that is highly light sensitive and lacks elevated CEF1, suggesting that NDH plays a direct role in catalyzing or regulating CEF1. Additionally, the NdhI component of the NDH complex was highly expressed in hcef1, whereas other photosynthetic complexes, as well as PGR5, decreased. We propose that (1) NDH is specifically upregulated in hcef1, allowing for increased CEF1; (2) the hcef1 mutation imposes an elevated ATP demand that may trigger CEF1; and (3) alternative mechanisms for augmenting ATP cannot compensate for the loss of CEF1 through NDH.  相似文献   

11.
A transient in chlorophyll fluorescence after cessation of actinic light illumination, which has been ascribed to electron donation from stromal reductants to plastoquinone (PQ) by the NAD(P)H-dehydrogenase (NDH) complex, was investigated in Arabidopsis thaliana. The transient was absent in air in a mutant lacking the NDH complex (ndhM). However, in ndhM, the transient was detected in CO2-free air containing 2% O2. To investigate the reason, ndhM was crossed with a pgr5 mutant impaired in ferredoxin (Fd)-dependent electron donation from NADPH to PQ, which is known to be redundant for NDH-dependent PQ reduction in the cyclic electron flow around photosystem I (PSI). In ndhM pgr5, the transient was absent even in CO2-free air with 2% O2, demonstrating that the post-illumination transient can also be induced by the Fd- (or PGR5)-dependent PQ reduction. On the other hand, the transient increase in chlorophyll fluorescence was found to be enhanced in normal air in a mutant impaired in plastid fructose-1,6-bisphosphate aldolase (FBA) activity. The mutant, termed fba3-1, offers unique opportunities to examine the relative contribution of the two paths, i.e., the NDH- and Fd- (or PGR5)-dependent paths, on the PSI cyclic electron flow. Crossing fba3-1 with either ndhM or pgr5 and assessing the transient suggested that the main route for the PSI cyclic electron flow shifts from the NDH-dependent path to the Fd-dependent path in response to sink limitation of linear electron flow.  相似文献   

12.
Spathiphyllum wallisii plants were used to study the effect of chilling stress under high illumination on photosynthesis and chlororespiration. Leaves showed different responses that depended on root temperature. When stem, but not root, was chilled, photosystem II (PSII) was strongly photoinhibited. However, when the whole plant was chilled, the maximal quantum yield of PSII decreased only slightly below the normal values and cyclic electron transport was stimulated. Changes were also observed in the chlororespiration enzymes and PGR5. In whole plants chilled under high illumination, the amounts of NADH dehydrogenase (NDH) complex and plastid terminal oxidase (PTOX) remained similar to control and increased when only stem was chilled. In contrast, the amount of PGR5 polypeptide was higher in plants when both root and stem were chilled than in plants in which only stem was chilled. The results indicated that the contribution of chlororespiration to regulating photosynthetic electron flow is not relevant when the whole plant is chilled under high light, and that another pathway, such as cyclic electron flow involving PGR5 polypeptide, may be more important. However, when PSII activity is strongly photoinhibited in plants in which only stem is chilled, chlororespiration, together with other routes of electron input to the electron transfer chain, is probably essential.  相似文献   

13.
Beena Nandha  Pierre Joliot  Giles N. Johnson 《BBA》2007,1767(10):1252-1259
The pgr5 mutant of Arabidopsis thaliana has been described as being deficient in cyclic electron flow around photosystem I, however, the precise role of the PGR5 protein remains unknown. To address this issue, photosynthetic electron transport was examined in intact leaves of pgr5 and wild type A. thaliana. Based on measurements of the kinetics of P700 oxidation in far red light and re-reduction following oxidation in the presence of DCMU, we conclude that this mutant is able to perform cyclic electron flow at a rate similar to the wild type. The PGR5 protein is therefore not essential for cyclic flow. However, cyclic flow is affected by the pgr5 mutation under conditions where this process is normally enhanced in wild type leaves, i.e. high light or low CO2 concentrations resulted in enhancement of cyclic electron flow. This suggests a different capacity to regulate cyclic flow in response to environmental stimuli in the mutant. We also show that the pgr5 mutant is affected in the redox poising of the chloroplast, with the electron transport chain being substantially reduced under most conditions. This may result in defective feedback regulation of photosynthetic electron transport under some conditions, thus providing a rationale for the reduced efficiency of cyclic electron flow.  相似文献   

14.
In addition to linear electron transport from water to NADP+, alternative electron transport pathways are believed to regulate photosynthesis. In the two routes of photosystem I (PSI) cyclic electron transport, electrons are recycled from the stromal reducing pool to plastoquinone (PQ), generating additional ΔpH (proton gradient across thylakoid membranes). Plastid terminal oxidase (PTOX) accepts electrons from PQ and transfers them to oxygen to produce water. Although both electron transport pathways share the PQ pool, it is unclear whether they interact in vivo. To investigate the physiological link between PSI cyclic electron transport‐dependent PQ reduction and PTOX‐dependent PQ oxidation, we characterized mutants defective in both functions. Impairment of PSI cyclic electron transport suppressed leaf variegation in the Arabidopsis immutans (im) mutant, which is defective in PTOX. The im variegation was more effectively suppressed in the pgr5 mutant, which is defective in the main pathway of PSI cyclic electron transport, than in the crr2‐2 mutant, which is defective in the minor pathway. In contrast to this chloroplast development phenotype, the im defect alleviated the growth phenotype of the crr2‐2 pgr5 double mutant. This was accompanied by partial suppression of stromal over‐reduction and restricted linear electron transport. We discuss the function of the alternative electron transport pathways in both chloroplast development and photosynthesis in mature leaves.  相似文献   

15.
PSI cyclic electron transport contributes markedly to photosynthesis and photoprotection in flowering plants. Although the thylakoid protein PGR5 (Proton Gradient Regulation 5) has been shown to be essential for the main route of PSI cyclic electron transport, its exact function remains unclear. In transgenic Arabidopsis plants overaccumulating PGR5 in the thylakoid membrane, chloroplast development was delayed, especially in the cotyledons. Although photosynthetic electron transport was not affected during steady-state photosynthesis, a high level of non-photochemical quenching (NPQ) was transiently induced after a shift of light conditions. This phenotype was explained by elevated activity of PSI cyclic electron transport, which was monitored in an in vitro system using ruptured chloroplasts, and also in leaves. The effect of overaccumulation of PGR5 was specific to the antimycin A-sensitive pathway of PSI cyclic electron transport but not to the NAD(P)H dehydrogenase (NDH) pathway. We propose that a balanced PGR5 level is required for efficient regulation of the rate of antimycin A-sensitive PSI cyclic electron transport, although the rate of PSI cyclic electron transport is probably also regulated by other factors during steady-state photosynthesis.  相似文献   

16.
《BBA》2020,1861(3):148154
Avoidance of photoinhibition at photosystem (PS)I is based on synchronized function of PSII, PSI, Cytochrome b6f and stromal electron acceptors. Here, we used a special light regime, PSI photoinhibition treatment (PIT), in order to specifically inhibit PSI by accumulating excess electrons at the photosystem (Tikkanen and Grebe, 2018). In the analysis, Arabidopsis thaliana WT was compared to the pgr5 and ndho mutants, deficient in one of the two main cyclic electron transfer pathways described to function as protective alternative electron acceptors of PSI. The aim was to investigate whether the PGR5 (pgr5) and the type I NADH dehydrogenase (NDH-1) (ndho) systems protect PSI from excess electron stress and whether they help plants to cope with the consequences of PSI photoinhibition. First, our data reveals that neither PGR5 nor NDH-1 system protects PSI from a sudden burst of electrons. This strongly suggests that these systems in Arabidopsis thaliana do not function as direct acceptors of electrons delivered from PSII to PSI – contrasting with the flavodiiron proteins that were found to make Physcomitrella patens PSI resistant to the PIT. Second, it is demonstrated that under light-limiting conditions, the electron transfer rate at PSII is linearly dependent on the amount of functional PSI in all genotypes, while under excess light, the PGR5-dependent control of electron flow at the Cytochrome b6f complex overrides the effect of PSI inhibition. Finally, the PIT is shown to increase the amount of PGR5 and NDH-1 as well as of PTOX, suggesting that they mitigate further damage to PSI after photoinhibition rather than protect against it.  相似文献   

17.
The chloroplast NDH complex, NAD(P)H dehydrogenase, reduces the plastoquinone pool non-photochemically and is involved in cyclic electron flow around photosystem I (PSI). A transient increase in chlorophyll fluorescence after turning off actinic light is a result of NDH activity. We focused on this subtle change in chlorophyll fluorescence to isolate nuclear mutants affected in chloroplast NDH activity in Arabidopsis by using chlorophyll fluorescence imaging. crr2-1 and crr2-2 (chlororespiratory reduction) are recessive mutant alleles in which accumulation of the NDH complex is impaired. Except for the defect in NDH activity, photosynthetic electron transport was unaffected. CRR2 encodes a member of the plant combinatorial and modular protein (PCMP) family consisting of more than 200 genes in Arabidopsis. CRR2 functions in the intergenic processing of chloroplast RNA between rps7 and ndhB, which is possibly essential for ndhB translation. We have determined the function of a PCMP family member, indicating that the family is closely related to pentatrico-peptide PPR proteins involved in the maturation steps of organellar RNA.  相似文献   

18.
In addition to linear electron transport, photosystem I cyclic electron transport (PSI-CET) contributes to photosynthesis and photoprotection. In Arabidopsis (Arabidopsis thaliana), PSI-CET consists of two partially redundant pathways, one of which is the PROTON GRADIENT REGULATION5 (PGR5)/PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1)–dependent pathway. Although the physiological significance of PSI-CET is widely recognized, the regulatory mechanism behind these pathways remains largely unknown. Here, we report on the regulation of the PGR5/PGRL1-dependent pathway by the m-type thioredoxins (Trx m). Genetic and phenotypic characterizations of multiple mutants indicated the physiological interaction between Trx m and the PGR5/PGRL1-dependent pathway in vivo. Using purified Trx proteins and ruptured chloroplasts, in vitro, we showed that the reduced form of Trx m specifically decreased the PGR5/PGRL1-dependent plastoquinone reduction. In planta, Trx m4 directly interacted with PGRL1 via disulfide complex formation. Analysis of the transgenic plants expressing PGRL1 Cys variants demonstrated that Cys-123 of PGRL1 is required for Trx m4-PGRL1 complex formation. Furthermore, the Trx m4-PGRL1 complex was transiently dissociated during the induction of photosynthesis. We propose that Trx m directly regulates the PGR5/PGRL1-dependent pathway by complex formation with PGRL1.  相似文献   

19.
In higher plants, thylakoid membrane protein complexes show lateral heterogeneity in their distribution: photosystem (PS) II complexes are mostly located in grana stacks, whereas PSI and adenosine triphosphate (ATP) synthase are mostly found in the stroma-exposed thylakoids. However, recent research has revealed strong dynamics in distribution of photosystems and their light harvesting antenna along the thylakoid membrane. Here, the dark-adapted spinach (Spinacia oleracea L.) thylakoid network was mechanically fragmented and the composition of distinct PSII-related proteins in various thylakoid subdomains was analyzed in order to get more insights into the composition and localization of various PSII subcomplexes and auxiliary proteins during the PSII repair cycle. Most of the PSII subunits followed rather equal distribution with roughly 70% of the proteins located collectively in the grana thylakoids and grana margins; however, the low molecular mass subunits PsbW and PsbX as well as the PsbS proteins were found to be more exclusively located in grana thylakoids. The auxiliary proteins assisting in repair cycle of PSII were mostly located in stroma-exposed thylakoids, with the exception of THYLAKOID LUMEN PROTEIN OF 18.3 (TLP18.3), which was more evenly distributed between the grana and stroma thylakoids. The TL29 protein was present exclusively in grana thylakoids. Intriguingly, PROTON GRADIENT REGULATION5 (PGR5) was found to be distributed quite evenly between grana and stroma thylakoids, whereas PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1) was highly enriched in the stroma thylakoids and practically missing from the grana cores. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

20.
The chloroplast NAD(P)H dehydrogenase (NDH) complex, which reducesplastoquinones in thylakoid membranes, is involved in PSI cyclicelectron flow and chlororespiration. In addition to land plants,the NDH complex is conserved in cyanobacteria. In this study,we identified a novel NDH-related gene of Arabidopsis, NDH-dependentcyclic electron flow 5 (NDF5, At1g55370). Post-illuminationincreases in chlorophyll fluorescence were absent in ndf5 mutantplants, which indicated that NDF5 is essential for NDH activity.Sequence analysis did not reveal any known functional motifsin NDF5, but there was some homology in amino acid sequencebetween NDF5 and NDF2, a known NDH subunit. NDF5 and NDF2 homologswere present in higher plants, but not cyanobacteria. A singlehomolog, which had similarity to both NDF5 and NDF2, was identifiedin the moss Physcomitrella patens. Immunoblot analysis showedthat NDF5 localizes to membrane fractions of chloroplasts. Thestability of NdhH, a subunit of the NDH complex, as well asNDF5 and NDF2, was decreased in ndf5, ndf2 and double ndf2/ndf5mutants, resulting in a loss of NDH activity in these mutants.These results indicated that both NDF5 and NDF2 have essentialfunctions in the stabilization of the NDH complex. We proposethat NDF5 and NDF2 were acquired by land plants during evolution,and that in higher plants both NDF5 and NDF2 are critical toregulate NDH activity and each other's protein stability, aswell as the stability of additional NDH subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号