首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sex‐dependent gene expression is likely an important genomic mechanism that allows sex‐specific adaptation to environmental changes. Among Drosophila species, sex‐biased genes display remarkably consistent evolutionary patterns; male‐biased genes evolve faster than unbiased genes in both coding sequence and expression level, suggesting sex differences in selection through time. However, comparatively little is known of the evolutionary process shaping sex‐biased expression within species. Latitudinal clines offer an opportunity to examine how changes in key ecological parameters also influence sex‐specific selection and the evolution of sex‐biased gene expression. We assayed male and female gene expression in Drosophila serrata along a latitudinal gradient in eastern Australia spanning most of its endemic distribution. Analysis of 11 631 genes across eight populations revealed strong sex differences in the frequency, mode and strength of divergence. Divergence was far stronger in males than females and while latitudinal clines were evident in both sexes, male divergence was often population specific, suggesting responses to localized selection pressures that do not covary predictably with latitude. While divergence was enriched for male‐biased genes, there was no overrepresentation of X‐linked genes in males. By contrast, X‐linked divergence was elevated in females, especially for female‐biased genes. Many genes that diverged in D. serrata have homologs also showing latitudinal divergence in Drosophila simulans and Drosophila melanogaster on other continents, likely indicating parallel adaptation in these distantly related species. Our results suggest that sex differences in selection play an important role in shaping the evolution of gene expression over macro‐ and micro‐ecological spatial scales.  相似文献   

2.
The relative rate of evolution for sex‐biased genes has often been used as a measure of the strength of sex‐specific selection. In contrast to studies in a wide variety of animals, far less is known about the molecular evolution of sex‐biased genes in plants, particularly in dioecious angiosperms. Here, we investigate the gene expression patterns and evolution of sex‐biased genes in the dioecious plant Salix viminalis. We observe lower rates of sequence evolution for male‐biased genes expressed in the reproductive tissue compared to unbiased and female‐biased genes. These results could be partially explained by the lower codon usage bias for male‐biased genes leading to elevated rates of synonymous substitutions compared to unbiased genes. However, the stronger haploid selection in the reproductive tissue of plants, together with pollen competition, would also lead to higher levels of purifying selection acting to remove deleterious variation. Future work should focus on the differential evolution of haploid‐ and diploid‐specific genes to understand the selective dynamics acting on these loci.  相似文献   

3.
4.
In sharp contrast with birds and mammals, the sex chromosomes of ectothermic vertebrates are often undifferentiated, for reasons that remain debated. A linkage map was recently published for Rana temporaria (Linnaeus, 1758) from Fennoscandia (Eastern European lineage), with a proposed sex‐determining role for linkage group 2 (LG2). We analysed linkage patterns in lowland and highland populations from Switzerland (Western European lineage), with special focus on LG2. Sibship analyses showed large differences from the Fennoscandian map in terms of recombination rates and loci order, pointing to large‐scale inversions or translocations. All linkage groups displayed extreme heterochiasmy (total map length was 12.2 cM in males, versus 869.8 cM in females). Sex determination was polymorphic within populations: a majority of families (with equal sex ratios) showed a strong correlation between offspring phenotypic sex and LG2 paternal haplotypes, whereas other families (some of which with female‐biased sex ratios) did not show any correlation. The factors determining sex in the latter could not be identified. This coexistence of several sex‐determination systems should induce frequent recombination of X and Y haplotypes, even in the absence of male recombination. Accordingly, we found no sex differences in allelic frequencies on LG2 markers among wild‐caught male and female adults, except in one high‐altitude population, where nonrecombinant Y haplotypes suggest sex to be entirely determined by LG2. Multifactorial sex determination certainly contributes to the lack of sex‐chromosome differentiation in amphibians.  相似文献   

5.
Frequency‐dependent selection should drive dioecious populations toward a 1:1 sex ratio, but biased sex ratios are widespread, especially among plants with sex chromosomes. Here, we develop population genetic models to investigate the relationships between evolutionarily stable sex ratios, haploid selection, and deleterious mutation load. We confirm that when haploid selection acts only on the relative fitness of X‐ and Y‐bearing pollen and the sex ratio is controlled by the maternal genotype, seed sex ratios evolve toward 1:1. When we also consider haploid selection acting on deleterious mutations, however, we find that biased sex ratios can be stably maintained, reflecting a balance between the advantages of purging deleterious mutations via haploid selection, and the disadvantages of haploid selection on the sex ratio. Our results provide a plausible evolutionary explanation for biased sex ratios in dioecious plants, given the extensive gene expression that occurs across plant genomes at the haploid stage.  相似文献   

6.
Sex chromosomes can evolve gene contents that differ from the rest of the genome, as well as larger sex differences in gene expression compared with autosomes. This probably occurs because fully sex‐linked beneficial mutations substitute at different rates from autosomal ones, especially when fitness effects are sexually antagonistic (SA). The evolutionary properties of genes located in the recombining pseudoautosomal region (PAR) of a sex chromosome have not previously been modeled in detail. Such PAR genes differ from classical sex‐linked genes by having two alleles at a locus in both sexes; in contrast to autosomal genes, however, variants can become associated with gender. The evolutionary fates of PAR genes may therefore differ from those of either autosomal or fully sex‐linked genes. Here, we model their evolutionary dynamics by deriving expressions for the selective advantages of PAR gene mutations under different conditions. We show that, unless selection is very strong, the probability of invasion of a population by an SA mutation is usually similar to that of an autosomal mutation, unless there is close linkage to the sex‐determining region. Most PAR genes should thus evolve similarly to autosomal rather than sex‐linked genes, unless recombination is very rare in the PAR.  相似文献   

7.
Second‐generation, sex‐specific genetic linkage maps were generated for the economically important estuarine‐dependent marine fish Sciaenops ocellatus (red drum). The maps were based on F1 progeny from each of two single‐pair mating families. A total of 237 nuclear‐encoded microsatellite markers were mapped to 25 linkage groups. The female map contained 226 markers, with a total length of 1270.9 centiMorgans (cM) and an average inter‐marker interval of 6.53 cM; the male map contained 201 markers, with a total length of 1122.9 cM and an average inter‐marker interval of 6.03 cM. The overall recombination rate was approximately equal in the two sexes (♀:♂ = 1.03:1). Recombination rates in a number of linkage intervals, however, differed significantly between the same sex in both families and between sexes within families. The former occurred in 2.4% of mapped intervals, while the latter occurred in 51.2% of mapped intervals. Sex‐specific recombination rates varied within chromosomes, with regions of both female‐biased and male‐biased recombination. Original clones from which the microsatellite markers were generated were compared with genome sequence data for the spotted green puffer, Tetraodon nigroviridis; a total of 43 matches were located in 17 of 21 chromosomes of T. nigroviridis, while seven matches were in unknown portions of the T. nigroviridis genome. The map for red drum provides a new, useful tool for aquaculture, population genetics, and comparative genomics of this economically important marine species.  相似文献   

8.
Sex chromosomes evolve from ordinary autosomes through the expansion and subsequent degeneration of a region of suppressed recombination that is inherited through one sex. Here we investigate the relative timing of these processes in the UV sex chromosomes of the moss Ceratodon purpureus using molecular population genetic analyses of eight newly discovered sex‐linked loci. In this system, recombination is suppressed on both the female‐transmitted (U) sex chromosome and the male‐transmitted (V) chromosome. Genes on both chromosomes therefore should show the deleterious effects of suppressed recombination and sex‐limited transmission, while purifying selection should maintain homologs of genes essential for both sexes on both sex chromosomes. Based on analyses of eight sex‐linked loci, we show that the nonrecombining portions of the U and V chromosomes expanded in at least two events (~0.6–1.3 MYA and ~2.8–3.5 MYA), after the divergence of C. purpureus from its dioecious sister species, Trichodon cylindricus and Cheilothela chloropus. Both U‐ and V‐linked copies showed reduced nucleotide diversity and limited population structure, compared to autosomal loci, suggesting that the sex chromosomes experienced more recent selective sweeps that the autosomes. Collectively these results highlight the dynamic nature of gene composition and molecular evolution on nonrecombining portions of the U and V sex chromosomes.  相似文献   

9.
10.
Sex chromosomes have different evolutionary properties compared to autosomes due to their hemizygous nature. In particular, recessive mutations are more readily exposed to selection, which can lead to faster rates of molecular evolution. Here, we report patterns of gene expression and molecular evolution for a group of butterflies. First, we improve the completeness of the Heliconius melpomene reference annotation, a neotropical butterfly with a ZW sex determination system. Then, we analyse RNA from male and female whole abdomens and sequence female ovary and gut tissue to identify sex‐ and tissue‐specific gene expression profiles in H. melpomene. Using these expression profiles, we compare (a) sequence divergence and polymorphism; (b) the strength of positive and negative selection; and (c) rates of adaptive evolution, for Z and autosomal genes between two species of Heliconius butterflies, H. melpomene and H. erato. We show that the rate of adaptive substitutions is higher for Z than autosomal genes, but contrary to expectation, it is also higher for male‐biased than female‐biased genes. Additionally, we find no significant increase in the rate of adaptive evolution or purifying selection on genes expressed in ovary tissue, a heterogametic‐specific tissue. Our results contribute to a growing body of literature from other ZW systems that also provide mixed evidence for a fast‐Z effect where hemizygosity influences the rate of adaptive substitutions.  相似文献   

11.
12.
The two “rules of speciation”—the Large X‐effect and Haldane's rule—hold throughout the animal kingdom, but the underlying genetic mechanisms that cause them are still unclear. Two predominant explanations—the “dominance theory” and faster male evolution—both have some empirical support, suggesting that the genetic basis of these rules is likely multifarious. We revisit one historical explanation for these rules, based on dysfunctional genetic interactions involving genes recently moved between chromosomes. We suggest that gene movement specifically off or onto the X chromosome is another mechanism that could contribute to the two rules, especially as X chromosome movements can be subject to unique sex‐specific and sex chromosome specific consequences in hybrids. Our hypothesis is supported by patterns emerging from comparative genomic data, including a strong bias in interchromosomal gene movements involving the X and an overrepresentation of male reproductive functions among chromosomally relocated genes. In addition, our model indicates that the contribution of gene movement to the two rules in any specific group will depend upon key developmental and reproductive parameters that are taxon specific. We provide several testable predictions that can be used to assess the importance of gene movement as a contributor to these rules in the future.  相似文献   

13.
There are many theoretical and empirical studies explaining variation in offspring sex ratio but relatively few that explain variation in adult sex ratio. Adult sex ratios are important because biased sex ratios can be a driver of sexual selection and will reduce effective population size, affecting population persistence and shapes how populations respond to natural selection. Previous work on guppies (Poecilia reticulata) gives mixed results, usually showing a female‐biased adult sex ratio. However, a detailed analysis showed that this bias varied dramatically throughout a year and with no consistent sex bias. We used a mark‐recapture approach to examine the origin and consistency of female‐biased sex ratio in four replicated introductions. We show that female‐biased sex ratio arises predictably and is a consequence of higher male mortality and longer female life spans with little effect of offspring sex ratio. Inconsistencies with previous studies are likely due to sampling methods and sampling design, which should be less of an issue with mark‐recapture techniques. Together with other long‐term mark‐recapture studies, our study suggests that bias in offspring sex ratio rarely contributes to adult sex ratio in vertebrates. Rather, sex differences in adult survival rates and longevity determine vertebrate adult sex ratio.  相似文献   

14.
Connallon T  Clark AG 《Genetics》2011,187(3):919-937
Disruptive selection between males and females can generate sexual antagonism, where alleles improving fitness in one sex reduce fitness in the other. This type of genetic conflict arises because males and females carry nearly identical sets of genes: opposing selection, followed by genetic mixing during reproduction, generates a population genetic "tug-of-war" that constrains adaptation in either sex. Recent verbal models suggest that gene duplication and sex-specific cooption of paralogs might resolve sexual antagonism and facilitate evolutionary divergence between the sexes. However, this intuitive proximal solution for sexual dimorphism potentially belies a complex interaction between mutation, genetic drift, and positive selection during duplicate fixation and sex-specific paralog differentiation. The interaction of these processes--within the explicit context of duplication and sexual antagonism--has yet to be formally described by population genetics theory. Here, we develop and analyze models of gene duplication and sex-specific differentiation between paralogs. We show that sexual antagonism can favor the fixation and maintenance of gene duplicates, eventually leading to the evolution of sexually dimorphic genetic architectures for male and female traits. The timescale for these evolutionary transitions is sensitive to a suite of genetic and demographic variables, including allelic dominance, recombination, sex linkage, and population size. Interestingly, we find that female-beneficial duplicates preferentially accumulate on the X chromosome, whereas male-beneficial duplicates are biased toward autosomes, independent of the dominance parameters of sexually antagonistic alleles. Although this result differs from previous models of sexual antagonism, it is consistent with several findings from the empirical genomics literature.  相似文献   

15.
Sex determination is often seen as a dichotomous process: individual sex is assumed to be determined either by genetic (genotypic sex determination, GSD) or by environmental factors (environmental sex determination, ESD), most often temperature (temperature sex determination, TSD). We endorse an alternative view, which sees GSD and TSD as the ends of a continuum. Both effects interact a priori, because temperature can affect gene expression at any step along the sex‐determination cascade. We propose to define sex‐determination systems at the population‐ (rather than individual) level, via the proportion of variance in phenotypic sex stemming from genetic versus environmental factors, and we formalize this concept in a quantitative‐genetics framework. Sex is seen as a threshold trait underlain by a liability factor, and reaction norms allow modeling interactions between genotypic and temperature effects (seen as the necessary consequences of thermodynamic constraints on the underlying physiological processes). As this formalization shows, temperature changes (due to e.g., climatic changes or range expansions) are expected to provoke turnovers in sex‐ determination mechanisms, by inducing large‐scale sex reversal and thereby sex‐ratio selection for alternative sex‐determining genes. The frequency of turnovers and prevalence of homomorphic sex chromosomes in cold‐blooded vertebrates might thus directly relate to the temperature dependence in sex‐determination mechanisms.  相似文献   

16.
17.
When speciation events occur in rapid succession, incomplete lineage sorting (ILS) can cause disagreement among individual gene trees. The probability that ILS affects a given locus is directly related to its effective population size (Ne), which in turn is proportional to the recombination rate if there is strong selection across the genome. Based on these expectations, we hypothesized that low‐recombination regions of the genome, as well as sex chromosomes and nonrecombining chromosomes, should exhibit lower levels of ILS. We tested this hypothesis in phylogenomic datasets from primates, the Drosophila melanogaster clade, and the Drosophila simulans clade. In all three cases, regions of the genome with low or no recombination showed significantly stronger support for the putative species tree, although results from the X chromosome differed among clades. Our results suggest that recurrent selection is acting in these low‐recombination regions, such that current levels of diversity also reflect past decreases in the effective population size at these same loci. The results also demonstrate how considering the genomic context of a gene tree can assist in more accurate determination of the true species phylogeny, especially in cases where a whole‐genome phylogeny appears to be an unresolvable polytomy.  相似文献   

18.
19.
Recombination rate is heterogeneous across the genome of various species and so are genetic diversity and differentiation as a consequence of linked selection. However, we still lack a clear picture of the underlying mechanisms for regulating recombination. Here we estimated fine‐scale population recombination rate based on the patterns of linkage disequilibrium across the genomes of multiple populations of two closely related flycatcher species (Ficedula albicollis and F. hypoleuca). This revealed an overall conservation of the recombination landscape between these species at the scale of 200 kb, but we also identified differences in the local rate of recombination despite their recent divergence (<1 million years). Genetic diversity and differentiation were associated with recombination rate in a lineage‐specific manner, indicating differences in the extent of linked selection between species. We detected 400–3,085 recombination hotspots per population. Location of hotspots was conserved between species, but the intensity of hotspot activity varied between species. Recombination hotspots were primarily associated with CpG islands (CGIs), regardless of whether CGIs were at promoter regions or away from genes. Recombination hotspots were also associated with specific transposable elements (TEs), but this association appears indirect due to shared preferences of the transposition machinery and the recombination machinery for accessible open chromatin regions. Our results suggest that CGIs are a major determinant of the localization of recombination hotspots, and we propose that both the distribution of TEs and fine‐scale variation in recombination rate may be associated with the evolution of the epigenetic landscape.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号