首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
A series of novel 4(1H)-quinolone derivatives was synthesized and evaluated for antiproliferative activity in vitro. The results showed that these compounds exhibited more potent antiproliferative effect against a panel of human tumor cell lines than the lead compound 7-chloro-4(1H)-quinolone 1. Compound 7e was found to be the most potent antiproliferative agent and to exhibit selective cytotoxic activity against HepG2 cell lines with IC50 value lower than 1.0 μM. Annexin V/FITC-PI assay showed that compound 7e induced apoptosis in HepG2 cells with a dose-dependent manner. Western blotting analysis indicated that compound 7e induced cell cycle arrest in G2/M phase by p53-depedent pathway.  相似文献   

2.
Two series of xanthotoxin-triazole derivatives were designed, synthesized, and studied for their antiproliferative properties. The in vitro cytotoxicity of the compounds in the AGS cancer cell line and the L02 normal cell line was evaluated via MTT assay. Among the synthesized compounds, 9-((1-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-4-yl)methoxy)-7H-furo[3,2-g]chromen-7-one (6p) was found to have the greatest antiproliferative activity against AGS cells (IC50 = 7.5 μM) and showed better activity than the lead compound (xanthotoxin, IC50 > 100 μM) and the reference drug (5-fluorouracil, IC50 = 29.6 μM) did. The IC50 value of 6p in L02 cells was 13.3 times higher than that in the AGS cells. Therefore, the compound exhibited better therapeutic activity and specificity compared with the positive control 5-fluorouracil. Cell cycle analysis revealed that compound 6p inhibited cell growth via the induction of S/G2 phase arrest in AGS cells. Compound 6p was identified as a promising lead compound for the further development and identification of 1,2,3-triazole-based anticancer agents.  相似文献   

3.
The isolation and modification of natural products is always a very important resources to anti-tumor drugs. Therefore, a novel series of tetrandrine and fangchinoline derivatives were designed and synthesized, and their antiproliferative activities against HepG2, MCF-7 cells were evaluated and described. From the activity result obtained, high to very high activity in vitro has been found, one of the tested compounds (compound 5d) exhibited the most significant cytotoxic effects. Compound 5d increased 29.2, 7.37 times anti-proliferative activity for HepG2 cells and MCF-7 cells compared to sunitinib (IC50 = 16.06 μM and 25.41 μM). Finally flow cytometry determined that compound 5d could indeed inhibit the proliferation of HepG2 cells via inducing apoptosis.  相似文献   

4.
As an important member of anti-apoptotic Bcl-2 protein, myeloid cell leukemia sequence 1 (Mcl-1) protein is an attractive target for cancer therapy. In this study, a new series of pyrrolidine derivatives as Mcl-1 inhibitors were developed by mainly modifying the amino acid side chain of compound 1. Among them, compound 18 (Ki = 0.077 μM) exhibited better potent inhibitory activities towards Mcl-1 protein compared to positive control Gossypol (Ki = 0.18 μM). In addition, compound 40 possessed good antiproliferative activities against PC-3 cells (Ki = 8.45 μM), which was the same as positive control Gossypol (Ki = 7.54 μM).  相似文献   

5.
A series of new nopinone-based thiosemicarbazone derivatives were designed and synthesized as potent anticancer agents. All these compounds were identified by 1H NMR, 13C NMR, HR-MS spectra analyses. In the in vitro anticancer activity, most derivatives showed considerable cytotoxic activity against three human cancer cell lines (MDA-MB-231, SMMC-7721 and Hela). Among them, compound 4i exhibited most potent antitumor activity against three cancer cell lines with the IC50 values of 2.79 ± 0.38, 2.64 ± 0.17 and 3.64 ± 0.13 μM, respectively. Furthermore, the cell cycle analysis indicated that compound 4i caused cell cycle arrest of MDA-MB-231 cells at G2/M phase. The Annexin V-FITC/7-AAD dual staining assay also revealed that compound 4i induced the early apoptosis of MDA-MB-231 cells.  相似文献   

6.
A series of new 1H-benzo[d]imidazole derivatives of dehydroabietic acid were designed and synthesized as potent antitumor agents. Structures of the target molecules were characterized using MS, IR, 1H NMR, 13C NMR and elemental analyses. In the in vitro cytotoxic assay, most compounds showed significant cytotoxic activities against two hepatocarcinoma cells (SMMC-7721 and HepG2) and reduced cytotoxicity against noncancerous human hepatocyte (LO2). Among them, compound 7b exhibited the best cytotoxicity against SMMC-7721 cells (IC50: 0.36 ± 0.13 μM), while 7e was most potent to HepG2 cells (IC50: 0.12 ± 0.03 μM). The cell cycle analysis indicated that compound 7b caused cell cycle arrest of SMMC-7721 cells at G2/M phase. Further, compound 7b also induced the apoptosis of SMMC-7721 cells in Annexin V-APC/7-AAD binding assay.  相似文献   

7.
In our previous study, we designed a series of pyrazole derivatives as novel COX-2 inhibitors. In order to obtain novel dual inhibitors of COX-2 and 5-LOX, herein we designed and synthesized 20 compounds by hybridizing pyrazole with substituted coumarin who was reported to exhibit 5-LOX inhibition to select potent compounds using adequate biological trials sequentially including selective inhibition of COX-2 and 5-LOX, anti-proliferation in vitro, cells apoptosis and cell cycle. Among them, the most potent compound 11g (IC50 = 0.23 ± 0.16 μM for COX-2, IC50 = 0.87 ± 0.07 μM for 5-LOX, IC50 = 4.48 ± 0.57 μM against A549) showed preliminary superiority compared with the positive controls Celecoxib (IC50 = 0.41 ± 0.28 μM for COX-2, IC50 = 7.68 ± 0.55 μM against A549) and Zileuton (IC50 = 1.35 ± 0.24 μM for 5-LOX). Further investigation confirmed that 11g could induce human non-small cell lung cancer A549 cells apoptosis and arrest the cell cycle at G2 phase in a dose-dependent manner. Our study might contribute to COX-2, 5-LOX dual inhibitors thus exploit promising novel cancer prevention agents.  相似文献   

8.
As our continuing research, a series of 2-aryl-8-OR-3,4-dihydroisoquinolin-2-ium bromides were evaluated for cytotoxic activity on cancer cells and apoptosis induction in the present study. SAR was derived also. Among them, 23 compounds showed the higher cytotoxicity on MKN-45 cells with IC50 values of 1.99–11.3 μM than a standard anticancer drug cis-platinum (IC50 = 11.4 μM) or their natural model compound chelerythrine (IC50 = 12.7 μM); 16 compounds possessed the medium to high activity on NB4 cells with IC50 values of 1.67–4.62 μM. SAR analysis showed that both substitution patterns of the N-aromatic ring and the type of 8-OR significantly impact the activity. AO/EB staining and flow cytometry analysis with Annexin V/PI double staining showed that the compounds were able to induce apoptosis in a concentration-dependent manner. The results above suggested that the title compounds are a class of promising compounds for the development of new anti-cancer drugs.  相似文献   

9.
A series of new quinoline derivatives of ursolic acid were designed and synthesized in an attempt to develop potential anticancer agents. The structures of these compounds were identified by 1H NMR, 13C NMR, IR and ESI-MS spectra analysis. The target compounds were evaluated for their in vitro cytotoxicity against three human cancer cell lines (MDA-MB-231, Hela and SMMC-7721). From the results, compounds 3ad displayed significant antitumor activity against three cancer cell lines. Especially, compound 3b was found to be the most potent derivative with IC50 values of 0.61 ± 0.07, 0.36 ± 0.05, 12.49 ± 0.08 μM against MDA-MB-231, HeLa and SMMC-7721 cells, respectively, stronger than positive control etoposide. Furthermore, the Annexin V-FITC/PI dual staining assay revealed that compound 3b could significantly induce the apoptosis of MDA-MB-231 cells in a dose-dependent manner. The cell cycle analysis also indicated that compound 3b could cause cell cycle arrest of MDA-MB-231 cells at G0/G1 phase.  相似文献   

10.
11.
In this paper, a series of podophyllotoxin piperazine acetate ester derivatives were synthesized and investigated due to their antiproliferation activity on different human cancer cell lines. Among the congeners, C5 manifested prominent cytotoxicity towards the cancer cells, without causing damage on the non-cancer cells through inhibiting tubulin assembly and having high selectively causing damage on the human breast (MCF-7) cell line (IC50 = 2.78 ± 0.15 μM). Treatments of MCF-7 cells with C5 resulted in cell cycle arrest in G2/M phase and microtubule network disruption. Moreover, regarding the expression of cell cycle relative proteins CDK1, a protein required for mitotic initiation was up-regulated. Besides, Cyclin A, Cyclin B1 and Cyclin D1 proteins were down-regulated. Meanwhile, it seems that the effect of C5 on MCF-7 cells apoptosis inducing was observed to be not obvious enough. In addition, docking analysis demonstrated that the congeners occupy the colchicine binding pocket of tubulin.  相似文献   

12.
A series of novel methyl 4-(4-amidoaryl)-3-methoxythiophene-2-carboxylate derivatives were designed against the active site of protein tyrosine phosphatise 1B (PTP1B) enzyme using MOE.2008.10. These molecules are also subjected for in silico toxicity prediction studies and considering their corresponding drug scores, it implied that, the molecules are promising as anticancer agents. The designed compounds were synthesized by using suitable methods and characterized. They were subjected to inhibitory activity against PTP1B and in vitro anticancer activity by MTT assay. Most of the tested compounds showed potent inhibitory activity against PTP1B, among the compounds tested, compound 5b exhibited the highest activity (IC50 = 5.25 µM) and remarkable cytotoxic activity at 0.09 µM of IC50 against the MCF-7 cell line. In addition to this, compound 5c also showed potential anticancer activity at 2.22 µM of IC50 against MCF-7 and 0.72 µM against HepG2 cell lines as well as PTP1B inhibitory activity at IC50 of 6.37 µM.  相似文献   

13.
Two series of novel kojic acid analogues (4aj) and (5ad) were designed and synthesized, and their mushroom tyrosinase inhibitory activities was evaluated. The result indicated that all the synthesized derivatives exhibited excellent tyrosinase inhibitory properties having IC50 values in the range of 1.35 ± 2.15–17.50 ± 2.75 μM, whereas standard inhibitor kojic acid have IC50 values 20.00 ± 1.08 μM. Specifically, 5-phenyl-3-[5-hydroxy-4-pyrone-2-yl-methylmercap-to]-4-(2,4-dihydroxyl-benzylamino)-1,2,4-triazole (4f) exhibited the most potent tyrosinase inhibitory activity with IC50 value of 1.35 ± 2.15 μM. The kinetic studies of the compound (4f) demonstrated that the inhibitory effects of the compound on the tyrosinase were belonging to competitive inhibitors. Meanwhile, the structure-activity relationship was discussed.  相似文献   

14.
A series of 6,7-disubstituted-4-phenoxyquinoline derivatives bearing 4-oxo-3,4-dihydrophthalazine-1-carboxamide moieties were designed, synthesized and evaluated for their c-Met kinase inhibition and cytotoxicity against H460, MKN-45, HT-29 and MDA-MB-231 cancer cell lines in vitro. Most compounds displayed good to excellent potency against four tested cancer cell lines as compared with foretinib. The SAR analyses indicated that compounds with halogen groups, especially fluoro groups at 4-position on the phenyl ring (moiety B) were more effective than those with nitro groups or methoxy groups. In this study, a promising compound 33 (c-Met IC50 = 1.63 nM) was identified, which showed the most potent antitumor activities with IC50 values of 0.055 μM, 0.071 μM, 0.13 μM, and 0.43 μM against H460, MKN-45, HT-29 and MDA-MB-231 cell lines, respectively.  相似文献   

15.
A series of thirty-seven 1,3,5-triazine analogues have been synthesized, characterized and evaluated for their antiproliferative activity against a panel of four different human cancer cell lines such as HeLa, HepG2, A549 and MCF-7. Most of the 1,3,5-triazine analogues exhibited promising antiproliferative activity against tested cancer cell lines. Among all the synthesized compounds, 8j showed potent activity against the cancer cell lines such as HeLa, HepG2, A549 and MCF-7 with IC50 12.3 ± 0.8, 9.6 ± 0.4, 10.5 ± 1.0 and 11.7 ± 0.5 μM respectively. 8j was taken up for elaborate biological studies and the cells in the cell cycle were arrested in G2/M phase. In addition, 8j was examined for its effect on the microtubule system with a tubulin polymerization assay, immunofluorescence. 8j showed remarkable inhibition of tubulin polymerization. Molecular docking studies were also carried out to understand the binding pattern. The studies suggested that 8j has a good binding affinity of ?7.949 towards nocodazole binding site of tubulin while nocodazole has ?7.462.  相似文献   

16.
Fibroblast growth factor receptor (FGFR) is a potential target for cancer therapy because of its critical role in promoting cancer formation and progression. In a continuing effort to improve the cellular activity of hit compound 7r bearing an indazole scaffold, which was previously discovered by our group, several compounds harnessing fluorine substituents were designed, synthesized and biological evaluated. Besides, the region extended out to the ATP binding pocket toward solvent was also explored. Among them, compound 2a containing 2,6-difluoro-3-methoxyphenyl residue exhibited the most potent activities (FGFR1: less than 4.1 nM, FGFR2: 2.0 ± 0.8 nM). More importantly, compound 2a showed an improved antiproliferative effect against KG1 cell lines and SNU16 cell lines with IC50 values of 25.3 ± 4.6 nM and 77.4 ± 6.2 nM respectively.  相似文献   

17.
A new library of deoxycholic acid derivatives bearing nitrogen-containing moieties at the C-3 position was synthesised from epoxy derivative 1 via an epoxide ring-opening reaction promoted by aliphatic or cyclic diamines and fully characterised by NMR and mass-spectroscopy. The synthesised compounds were screened for cytotoxicity against four human tumour cell lines. The results showed that some of the novel diamine-bearing derivatives displayed improved anti-proliferative activities over the parent compound DCA. Among them, a 1-methylpiperazine containing compound (6) showed promising activity and the highest selectivity against tumour cells of enterohepatic origin (HepG2: IC50 = 3.6 µM, SI = 9.0; HuTu-80: IC50 = 4.6 µM, SI = 6.9) and was identified as a lead molecule.  相似文献   

18.
In an aim at developing new antiproliferative agents, new series of benzothiazole/benzoxazole and/or benzimidazole substituted pyrazole derivatives 11a-c, 12a-c and 13a-c were prepared and evaluated for their antiproliferative activity against breast carcinoma (MCF-7) and non-small cell lung cancer (A549) cell lines. The target compound, 2-acetyl-4-[(3-(1H-benzimidazol-2-yl)-phenyl]-hydrazono-5-methyl-2,4-dihydropyrazol-3-one (12a) was the most active compound against both MCF-7 and A549 cell lines with half maximal inhibitory concentrations (IC50) = 6.42 and 8.46 μM, respectively. Furthermore, the inhibitory activity of the all the target compounds against COX enzymes was recorded as a proposed mechanism for their antiproliferative activity. The obtained results revealed that the benzothiazolopyrazolone derivative 13c was the most potent COX-2 inhibitor (IC50 = 0.10 μM), while the 5-acetylbenzimidazolylpyrazolone derivative 12a was the most COX-2 selective (S.I. = 104.67) in comparison with celecoxib (COX-2 IC50 = 1.11 μM, S.I. = 13.33). Docking simulation on the most active compounds 12a and 13c had been performed to investigate the binding interaction of these active compounds within the binding site of COX-2 enzyme. Collectively, this work demonstrated the promising activity of the newly designed compounds as leads for further development into antiproliferative agents.  相似文献   

19.
A series of chromone hydrazone derivatives 4a4p have been synthesized, characterized by 1H NMR and 13C NMR and evaluated for their in vitro α-glucosidase inhibitory activity. Out of these tested compounds, six (4a, 4b, 4d, 4j, 4o and 4p) displayed potent α-glucosidase inhibitory activity with IC50 values in the range of 20.1 ± 0.19 μM to 45.7 ± 0.23 μM, as compared to the standard drug acarbose (IC50 = 817.38 ± 6.27 μM). Among this series, compound 4d (IC50 = 20.1 ± 0.19 μM) with 4-sulfonamide substitution at phenyl part of hydrazide was found to be the most active compound. Lineweaver-Burk plot analysis indicated that compound 4d is a non-competitive inhibitor of α-glucosidase. The binding interactions of the most active analogs were confirmed through molecular docking studies. Docking studies showed 4d are interacting with the residues Glu-276, Asp-214, Asp-349 and Arg-439 through hydrogen bonds, arene-anion and arene-cation interactions. In summary, our studies shown that these chromone hydrazone derivatives are a new class of α-glucosidase inhibitors.  相似文献   

20.
With the aim to overcome the drug resistance induced by the EGFR T790M mutation (EGFRT790M), herein, a family of diphenylpyrimidine derivatives (Sty-DPPYs) bearing a C-2 (E)-4-(styryl)aniline functionality were designed and synthesized as potential EGFRT790M inhibitors. Among them, the compound 10e displayed strong potency against the EGFRT790M enzyme, with the IC50 of 11.0 nM. Compound 10e also showed a higher SI value (SI = 49.0) than rociletinib (SI = 21.4), indicating its less side effect. In addition, compound 10e could effectively inhibit the proliferation of H1975 cells harboring the EGFRT790M mutation, within the concentration of 2.91 μM. Significantly, compound 10e has low toxicity against the normal HBE cell (IC50 = 22.48 μM). This work provided new insights into the discovery of potent and selective inhibitor against EGFRT790M over wild-type (EGFRWT).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号