首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Prasad  Soumya  Pittet  André  Sukumar  R. 《Ecological Research》2010,25(1):225-231
Tropical forest ruminants disperse several plants; yet, their effectiveness as seed dispersers is not systematically quantified. Information on frequency and extent of frugivory by ruminants is lacking. Techniques such as tree watches or fruit traps adapted from avian frugivore studies are not suitable to study terrestrial frugivores, and conventional camera traps provide little quantitative information. We used a novel time-delay camera-trap technique to assess the effectiveness of ruminants as seed dispersers for Phyllanthus emblica at Mudumalai, southern India. After being triggered by animal movement, cameras were programmed to take pictures every 2 min for the next 6 min, yielding a sequence of four pictures. Actual frugivores were differentiated from mere visitors, who did not consume fruit, by comparing the number of fruit remaining across the time-delay photograph sequence. During a 2-year study using this technique, we found that six terrestrial mammals consumed fallen P. emblica fruit. Additionally, seven mammals and one bird species visited fruiting trees but did not consume fallen fruit. Two ruminants, the Indian chevrotain Moschiola indica and chital Axis axis, were P. emblica’s most frequent frugivores and they accounted for over 95% of fruit removal, while murid rodents accounted for less than 1%. Plants like P. emblica that are dispersed mainly by large mammalian frugivores are likely to have limited ability to migrate across fragmented landscapes in response to rapidly changing climates. We hope that more quantitative information on ruminant frugivory will become available with a wider application of our time-delay camera-trap technique.  相似文献   

2.
Forest destruction and disturbance can have long-term consequences for species diversity and ecosystem processes such as seed dispersal. Understanding these consequences is a crucial component of conserving vulnerable ecosystems. In the heavily fragmented and disturbed Kakamega Forest, western Kenya, we studied seed dispersal of Prunus africana (Rosaceae). In the main forest, five forest fragments, and differently disturbed sites, we quantified the overall frugivore community as an indicator for species diversity. Furthermore, we determined the frugivores on 28 fruiting P. africana trees, estimated seed dispersal, crop size and the general fruit availability of surrounding trees. During the overall frugivore census we recorded 49 frugivorous species; 36 of them were observed visiting P. africana trees and feeding on their fruits. Although overall frugivore species richness was 1.1 times lower in fragments than in main forest sites and 1.02 times higher in highly disturbed than in less disturbed sites, P. africana experienced 1.1 times higher numbers of frugivores in fragments than in main forest sites and 1.5 times higher numbers of frugivores in highly disturbed than in less disturbed sites. Correspondingly, seed dispersal was 1.5 times higher in fragments than in main forest sites and 1.5 times higher in more disturbed than less disturbed sites. Fruit availability of surrounding trees and crop size influenced the number of visitors to some degree. Thus, the number of dispersed seeds seemed to be slightly higher in fragmented and highly disturbed sites. This indicates that loss of single species does not necessarily lead to a decrease of ecosystem services. However, loss of diversity could be a problem in the long term, as a multitude of species might act as buffer against future environmental change.  相似文献   

3.
Forest fragmentation and habitat loss are major disruptors of plant–frugivore interactions, affecting seed dispersal and altering recruitment patterns of the dependent tree species. In a heterogeneous production landscape (primarily tea and coffee plantations) in the southern Western Ghats, India, we examined effects of surrounding forest cover and fruit crop size on frugivory of four rainforest bird-dispersed tree species (N = 131 trees, ≥30 trees per species, observed for 623 hr). Frugivore composition differed among the four tree species with the large-seeded Canarium strictum and Myristica dactyloides being exclusively dependent on large-bodied avian frugivores, whereas medium-seeded Persea macrantha and Heynea trijuga were predominantly visited by small-bodied and large-bodied avian frugivores, respectively. Using the seed-dispersal-effectiveness framework, we identified effective frugivores and examined their responses to forest cover and fruit crop size. Results were idiosyncratic and were governed by plant and frugivore traits. Visitations to medium-seeded Persea had a positive relationship with forest cover but the relationship was negative for the large-seeded Myristica. In addition, two of the three effective frugivores for Persea responded to the interactive effect of forest cover and fruit crop size. Frugivore visitations to Heynea were not related to forest cover or fruit crop, and there were too few visitations to Canarium to discern any trends. These results highlight the context-specific responses of plant–frugivore interactions to forest cover and fruit crop size influenced by plant and frugivore traits.  相似文献   

4.
Fragmentation is a major threat factor for plant–frugivore communities in tropical and subtropical forests. Resulting changes in the distribution of traits within these communities, e.g., a loss in large‐bodied frugivores, may lead to strong changes in plant–frugivore interactions in fragmented forests. Yet, we still lack a thorough understanding of the interplay between forest fragmentation, the trait‐composition of communities and resulting plant–frugivore interactions on a community‐scale. In a fragmented South African landscape comprising different forest categories—i.e., continuous natural forest, forest fragments surrounded by natural grassland, and forest fragments surrounded by sugarcane—we investigated the relationship between communities of fruiting plants and their frugivore visitors in response to forest fragmentation, as well as the interactive effects of forest fragmentation and fruit size of the plants on the number of frugivore visitors and their body size. Neither the fruit size of plant nor the body mass of frugivore communities differed between natural forest sites and forest fragments. Moreover, in‐depth analyses of frugivore assemblages visiting plant species revealed no effect of forest category on the number of frugivore visits or their mean body mass. The number of visits and body mass of frugivores were merely determined by the crop and fruit size of the focal plant species. Overall, our results suggest that frugivory of plant species with differently sized fruits was not reduced in forest fragments. Thus, fragments with high fruit availability may be key elements maintaining the functional connectivity of a heterogeneous forest landscape.  相似文献   

5.
In tropical forest communities, seedling recruitment can be limited by the number of fruit produced by adults. Fruit production tends to be highly unequal among trees of the same species, which may be due to environmental factors. We observed fruit production for ~2,000 trees of 17 species across 3 years in a wet tropical forest in Costa Rica. Fruit production was modeled as a function of tree size, nutrient availability, and neighborhood crowding. Following model selection, tree size and neighborhood crowding predicted both the probability of reproduction and the number of fruit produced. Nutrient availability only predicted only the probability of reproduction. In all species, larger trees were more likely to be reproductive and produce more fruit. In addition, number of fruit was strongly negatively related to presence of larger neighboring trees in 13 species; presence of all neighboring trees had a weak‐to‐moderate negative influence on reproductive status in 16 species. Among various metrics of soil nutrient availability, only sum of base cations was positively associated with reproductive status, and for only four species. Synthesis Overall, these results suggest that direct influences on fruit production tend to be mediated through tree size and crowding from neighboring trees, rather than soil nutrients. However, we found variation in the effects of neighbors and nutrients among species; mechanistic studies of allocation to fruit production are needed to explain these differences.  相似文献   

6.
Fruit pulp is an important source of nutrients for many bird species. Fruit‐eating birds use a variety of strategies to cope with changes in the availability of fruits, exhibiting a remarkable ability to track resources. We assessed the role of nutrient availability in the fruiting environment as a factor driving resource tracking by fruit‐eating birds. Fruit consumption by the four most common frugivorous species in a 6‐ha plot in the Southern Yungas montane forest of Argentina was assessed. We determined the content of selected nutrients (soluble carbohydrates, proteins, phenols, ascorbic acid and essential minerals) in 22 fruiting plant species eaten by birds, and measured fruit–frugivore interactions and the availability of nutrients and dry fruit pulp mass over 2 years. There was strong temporal covariation in the availability of the selected nutrients in fruits across the study period. Similarly, the availability of nutrients in the fruiting environment covaried with pulp mass. Fruit consumption by the four commonest bird species and the abundance of most species were positively associated with nutrient availability and dry pulp mass. Nutrient availability was a good predictor of temporal fruit tracking by three of the four commonest frugivores. Despite large differences in particular nutrient concentrations in fruits, overall nutrient (and pulp) quantity in the fruiting environment played a greater role in fruit tracking than did the nutritional quality of individual fruits. While overall nutrient availability (i.e. across fruit) and total pulp mass were important determinants of fruit tracking, we suggest that plant species‐specific differences in fruit nutrient concentration may be important in short‐term foraging decisions involved in fruit choice and nutritional balance of birds.  相似文献   

7.
Kevin C. Burns  Babs Lake 《Oikos》2009,118(12):1901-1907
The size of fleshy fruits spans several orders of magnitude. However, the evolution of fruit size diversity is poorly understood. Fruit size diversity is hypothesised to result from several potential processes. The frugivore hypothesis postulates that different‐sized animal fruit consumers select for different‐sized fruits. The correlated selection hypothesis postulates that fruit size is allometrically related to other plant traits (e.g. leaf size, plant height); therefore differences in fruit size result from correlated evolution with other plant traits. We tested the frugivore and correlated selection hypotheses as potential explanations for fruit size diversity in two New Zealand study sites. We observed birds foraging for fruits over two fruiting seasons at each site and measured fruit size, leaf size and plant height in a total of 32 plant species. Relationships between average fruit size, leaf size, plant size and the average size of birds consuming each fruit species were then evaluated using phylogenetically independent contrasts. Similar results were obtained in both study sites. Fruit size was correlated with the size of avian fruit consumers, but was unrelated to leaf size or plant height. Therefore, results falsified the correlated selection hypothesis but failed to falsify the frugivore hypothesis. Although results suggest that frugivores may have influenced the evolution of fruit size in New Zealand, further study is needed to generate a mechanistic understanding of how frugivores may have selected for interspecific variation in fruit size.  相似文献   

8.
The ability of ecosystems to maintain their functions after disturbance (ecological resilience) depends on heterogeneity in the functional capabilities among species within assemblages. Functional heterogeneity may affect resilience by determining multiplicity between species in the provision of functions (redundancy) and complementarity between species in their ability to respond to disturbances (response diversity), but also by promoting the maintenance of biological information that enables ecosystems to reorganize themselves (ecological memory). Here, we assess the role of the components of the functional heterogeneity of a plant–frugivore assemblage on the resilience of seed dispersal to habitat loss. For three years, we quantified the distributions of fruits, frugivorous thrushes (Turdus spp.) and dispersed seeds, as well as frugivore diet and movement, along a gradient of forest cover in N Spain. The abundances and the spatial distributions of fruits and birds varied between years. The different thrushes showed similar diets but differed in spatial behavior and response to habitat loss, suggesting the occurrence of both functional redundancy and response diversity. Forest cover and fruit availability affected the spatial distribution of the whole frugivore assemblage. Fruit tracking was stronger in years when fruits were scarcer but more widespread across the whole fragmented landscape, entailing larger proportions of seeds dispersed to areas of low forest cover and open microhabitats. Rather than depending on redundancy and/or response diversity, seed dispersal resilience mostly emerged from the ecological memory conferred by the inter‐annual variability in fruit production and the ability of thrushes to track fruit resources across the fragmented landscape. Ecological memory also derived from the interaction of plants and frugivores as source organisms (trees in undisturbed forest), mobile links (birds able to disperse seeds into the disturbed habitat), and biological legacies (remnant trees and small forest patches offering scattered fruit resources across the landscape).  相似文献   

9.
Geographic variation in the diversity, abundance or composition of plant and frugivore assemblages may have consequences for seed dispersal processes. Such variations may be related to climatic conditions as well as habitat characteristics such as fruit availability and forest complexity. Studying frugivore assemblages and seed dispersal processes along an elevational gradient can help to elucidate the interplay between the extent of dispersal services provided by frugivores and the geographic variability of the food resources. We studied frugivore assemblages on and fruit removal from 28 rowan trees (Sorbus aucuparia) along an elevational gradient in the Bavarian Forest, Germany. Both, the number of frugivore species and the number of frugivore individuals were significantly enhanced by high fruit availability. In both cases we found a slight interaction between elevation and fruit availability indicating a higher attractiveness of fruits for frugivores at lower than at higher elevations. A high number of frugivore individuals in turn significantly increased fruit removal from rowan trees. Here, we found a significant interaction between elevation and the number of frugivore individuals suggesting that the number of frugivores is of major importance for fruit removal particularly at lower elevations. Path analysis corroborated that the number of frugivore individuals indirectly mediated the effect of fruit availability on fruit removal. These findings suggest that fruit removal is rather influenced by changes in habitat characteristics than in climatic conditions across space.  相似文献   

10.
Despite the recognized importance of indirect plant–plant interactions for community structure, we still need to improve our current knowledge on how their outcomes are consistent in space and time, as well as reciprocal between participating species. These caveats are especially relevant in the case of indirect interactions mediated by animals, whose behavior may show high variability. We studied consistency and reciprocity of frugivore‐mediated interactions between fleshy‐fruited trees. For three years we examined the influence of crop size and neighborhood characteristics (con‐ and heterospecific fruit abundance and forest cover) on frugivory rates on Crataegus monogyna and Ilex aquifolium, two coexisting species in the secondary forests of the Cantabrian range that share a guild of frugivorous birds. Crop size and neighborhood characteristics influenced frugivory on C. monogyna and I. aquifolium. Both con‐ and heterospecific fruit abundance affected frugivory, evidencing the occurrence of indirect interactions between trees, although the strength and sign of these effects varied between tree species as well as across years within species. By showing complex temporal patterns in the consistency and reciprocity of indirect interactions, this study emphasizes the need for multispecific, long‐term studies to assess the actual contribution of animal‐mediated plant–plant indirect interactions to community dynamics.  相似文献   

11.
Studies of zoochorous seed dispersal systems often consider crop size, yet seldom consider the kinds and amounts of fruits surrounding parent plants (the fruit neighborhood) when attempting to explain among‐plant variation in fruit removal. We studied avian frugivory at 24 Schefflera morototoni trees from February to May 1998 in central Puerto Rico. The number of fruits removed by avian seed dispersers per visit was similar among focal trees (typically 2–4). In contrast, visitation rate was highly variable (range: 0–71 visits per 4 h). We used multiple regression analyses to evaluate the relative roles of crop size (focal tree ripe fruit abundance) and fruit neighborhood variables (measured within 30 m of focal trees) in affecting visitation to focal trees by avian frugivores. Visitation rate was positively related to crop size (although this variable was only significant in one of four regression models considered) and negatively related to the presence or abundance of conspecific fruits, suggesting that trees competed intraspecifically for dispersers. Relationships between visitation and heterospecific fruits were mixed—some kinds of fruits appeared to enhance visitation to focal trees, while others seemed to reduce visitation. In most regression models, neighborhood variables had larger effects on visitation than focal tree fruit crop size. Our results highlight the important effects of local fruiting environments on the ability of individual plants to attract seed dispersers.  相似文献   

12.
Most tropical trees produce fleshy fruits that attract frugivores that disperse their seeds. Early demography and distribution for these tree species depend on the effects of frugivores and their behavior. Anthropogenic changes that affect frugivore communities could ultimately result in changes in tree distribution and population demography. We studied the frugivore assemblage at 38 fruiting Elmerrillia tsiampaca, a rain forest canopy tree species in Papua New Guinea. Elmerrillia tsiampaca is an important resource for frugivorous birds at our study site because it produces abundant lipid-rich fruits at a time of low fruit availability. We classified avian frugivores into functional disperser groups and quantified visitation rates and behavior at trees during 56 canopy and 35 ground observation periods. We tested predictions derived from other studies of plant–frugivore interactions with this little-studied frugivore assemblage in an undisturbed rain forest. Elmerrillia tsiampaca fruits were consumed by 26 bird species, but most seeds were removed by eight species. The most important visitors (Columbidae, Paradisaeidae and Rhyticeros plicatus) were of a larger size than predicted based on diaspore size. Columbidae efficiently exploited the structurally protected fruit, which was inconsistent with other studies in New Guinea where structurally protected fruits were predominantly consumed by Paradisaeidae. Birds vulnerable to predation foraged for short time periods, consistent with the hypothesis that predator avoidance enhances seed dispersal. We identified seven functional disperser groups, indicating there is little redundancy in disperser groups among the regular and frequent visitors to this tropical rain forest tree species.  相似文献   

13.
Factors influencing the interaction between fruiting trees and their frugivorous seed dispersers in fragmented Afrotropical landscapes are poorly known. With the use of Mantel statistics we analysed assemblages of frugivorous birds on 58 individual trees belonging to 11 species growing in seven Kenyan cloud forest fragments. Overall, frugivores showed little specialization on particular trees. Fruit size explained a substantial amount of the variation in frugivore assemblages among different tree species at the same site. In addition, frugivore assemblages on conspecific trees were significantly more similar when the trees occurred at the same site. This location effect was attributable to the different sites and forest fragments (of different sizes and disturbance levels) varying in the densities and composition of their avian frugivores, vegetation composition and tree fruiting phenologies. It was consolidated further by the low mobility of most of these avian frugivores, particularly their reluctance to cross between forest fragments. Habitat disturbance and fragmentation may therefore have affected fruit selection, with implications for both seed dispersal and regeneration.  相似文献   

14.
Abstract The present study uses differences among frugivore faunas of the southern hemisphere landmasses to test whether frugivore characteristics have influenced the evolution of fruit traits. Strong floristic similarities exist among southern landmasses; for example, 75% of New Zealand vascular plant genera also have species in Australia. However, plants in Australia and South America have evolved in the presence of a range of mammalian frugivores, whereas those in New Zealand, New Caledonia and the Pacific Islands have not. In addition, the avian frugivores in New Zealand and New Caledonia are generally smaller than those of Australia. If frugivore characteristics have influenced the evolution of fruit traits, predictable differences should exist between southern hemisphere fruits, particularly fruit size and shape. Fruit dimensions were measured for 77 New Zealand species and 31 Australian species in trans‐Tasman genera. New Zealand fruits became significantly more ellipsoid in shape with increasing size. This is consistent with frugivore gape size imposing a selective pressure on fruit ingestability. This result is not a product of phylogenetic correlates, as fruit length and width scaled isometrically for Australian species in genera shared with New Zealand. Within‐genus contrasts between New Zealand and Australian species in 20 trans‐Tasman genera showed that New Zealand species have significantly smaller fruits than their Australian counterparts. Within‐genus contrasts between New Zealand and South American species in nine genera gave the same result; New Zealand species had significantly smaller fruits than their South American counterparts. No difference was found in fruit size or shape between New Zealand and New Caledonia congeneric species from 12 genera. These results are consistent with the broad characteristics of the frugivore assemblage influencing the evolution of fruit size and shape in related species. The smaller‐sized New Zealand frugivore assemblage has apparently influenced the evolution of fruit size of colonizing taxa sometimes within a relatively short evolutionary timeframe.  相似文献   

15.
Hampe A 《Oecologia》2008,156(1):137-145
Vertebrate frugivore communities are easily satiated by abundant fruit supplies and, contrary to abiotic dispersal agents, typically disperse only part of the available seed pool. This frugivore satiation is likely to be a widespread phenomenon and should be an influential predictor of plants’ ability to disperse their offspring to suitable establishment sites; yet it has never been systematically quantified. Here I investigate patterns of fruit abundance, frugivore activity and frugivore satiation, and their consequences for seed dispersal in the fleshy-fruited tree Frangula alnus. Based on constant-effort seed trapping conducted over 3 years, I assess densities of total and frugivore-consumed seedfall across two spatial (within/between populations) and two temporal (within/between ripening seasons) scales. Furthermore, I examine relationships between fruit abundance and the amount of seeds that are actually dispersed away from fruiting trees. Frugivore activity tightly matched fruit abundance, although some differences existed between scales. This marked fruit tracking did not prevent a significant frugivore satiation, however, and only 53% of the available fruit crops were actually consumed. The extent of satiation varied most at the within-population level, likely due to the territorial behaviour of important frugivore species. In contrast, levels of satiation remained remarkably invariable through time, suggesting that frugivores behave as opportunists and closely adjust the composition of their diet to the available food supply. Overall, greater fruit abundance resulted in a higher proportion of seeds falling beneath fruiting trees, but it also helped increase the (absolute) number of seeds dispersed. This study shows that frugivore satiation can be an important phenomenon even when frugivores tightly track fruit abundance. Its negative effects on recruitment may be attenuated, however, if greater fruit crops help increase population-wide frugivore activity and the amount of seeds being dispersed to suitable establishment sites.  相似文献   

16.
Tropical forests show periods of scarcity and high fruit production in the same year and/or between years. Palms are an important component of Neotropical rainforests and a significant food resource for several frugivores. Therefore, their role as keystone resource may be exacerbated in highly impoverished areas. In Anchieta Island, São Paulo/Brazil, human settlements have modified and impoverished the forest, mainly through overharvesting and the introduction of exotic plants and several mammal species. We assessed the offer of fruits consumed by vertebrate frugivores at this island, the vegetation of which is belonging to the Brazilian Atlantic rainforest. We compared whether the fruiting patterns and fruit fall differ between palms and trees, and discuss the importance of palms as a food resource for frugivores and the implications for Anchieta Island conservation. Phenological patterns were seasonal for both trees and palms; however, the times of fruiting occurrence differed. Fruit fall biomass was at least twice lower than reported for other Atlantic rain forests and was also different between trees and palms. Palms contributed more than 80% of the overall fruit fall biomass. Palms may constitute an alternative food resource in periods of low fruit availability, although they do not provide resources for the entire assemblage of vertebrate frugivores. Energy-rich fruits, such as those produced by palms, may play an important role in the maintenance of frugivore populations in isolated, disturbed environments with a high density of vertebrate frugivores, low diversity of fruiting species and fruit biomass such as those found on Anchieta Island.  相似文献   

17.
Habitat degradation and fragmentation are expected to reduce seed dispersal rates by reducing fruit availability as well as the movement and abundance of frugivores. These deleterious impacts may also interact with each other at different spatial scales, leading to nonlinear effects of fruit abundance on seed dispersal. In this study we assessed whether the degradation and fragmentation of southern Chilean forests had the potential to restrict seed dispersal the lingue (Persea lingue) tree, a fleshy-fruited tree species. Of five frugivore bird species, the austral thrush (Turdus falcklandii) and the fire-eyed diucon (Xolmis pyrope) were the only legitimate seed dispersers as well as being the most abundant species visiting lingue trees. The results showed little or no direct effect of habitat fragmentation on seed dispersal estimates, possibly because the assemblage of frugivore birds was comprised habitat-generalist species. Instead, the number of fruits removed per focal tree exhibited an enhanced response to crop size, but only in the more connected fragments. In the fruit-richer fragment networks, there was an increased fragment-size effect on the proportion of fruits removed in comparison to fruit-poor networks in which the fragment size effect was spurious. We suggest that such nonlinear effects are widespread in fragmented forest regions, resulting from the link between the spatial scales over which frugivores sample resources and the spatial heterogeneity in fruiting resources caused by habitat fragmentation and degradation.  相似文献   

18.
Dispersal is an important ecological process that affects plant population structure and community composition. Invasive plants with fleshy fruits rapidly form associations with native and invasive dispersers, and may affect existing native plant-disperser associations. We asked whether frugivore visitation rate and fruit removal was associated with plant characteristics in a community of fleshy-fruited plants and whether an invasive plant receives more visitation and greater fruit removal than native plants in a semi-arid habitat of Andhra Pradesh, India. Tree-watches were undertaken at individuals of nine native and one invasive shrub species to assess the identity, number and fruit removal by avian frugivores. Network analyses and generalised linear mixed-effects models were used to understand species and community-level patterns. All plants received most number of visits from abundant, generalist avian frugivores. Number of frugivore visits and time spent by frugivores at individual plants was positively associated with fruit crop size, while fruit removal was positively associated with number of frugivore visits and their mean foraging time at individual plants. The invasive shrub, Lantana camara L. (Lantana), had lower average frugivore visit rate than the community of fleshy-fruited plants and received similar average frugivore visits but greater average per-hour fruit removal than two other concurrently fruiting native species. Based on the results of our study, we infer that there is little evidence of competition between native plants and Lantana for the dispersal services of native frugivores and that more data are required to assess the nature of these interactions over the long term. We speculate that plant associations with generalist frugivores may increase the functional redundancy of this frugivory network, buffering it against loss of participating species.  相似文献   

19.
The Dispersal Syndrome hypothesis remains contentious, stating that apparently nonrandom associations of fruit characteristics result from selection by seed dispersers. We examine a key assumption under this hypothesis, i.e. that fruit traits can be used as reliable signals by frugivores. We first test this assumption by looking at whether fruit colour allows birds and primates to distinguish between fruits commonly dispersed by birds or primates. Second, we test whether the colours of fruits dispersed by primates are more contrasting to primates than the colours of bird‐dispersed fruits, expected if fruit colour is an adaptation to facilitate the detection by seed dispersers. Third, we test whether fruit colour has converged in unrelated plant species dispersed by similar frugivores. We use vision models based on peak sensitivities of birds’ and primates’ cone cells. We base our analyses on the visual systems of two types of birds (violet and ultraviolet based) and three types of primates (trichromatic primates from the Old and the New Worlds, and a dichromatic New World monkey). Using a Discriminant Function Analysis, we find that all frugivore groups can reliably discriminate between bird‐ and primate‐dispersed fruits. Fruit colour can be a reliable signal to different seed dispersers. However, the colours of primate‐dispersed fruits are less contrasting to primates than those of bird‐dispersed fruits. Fruit colour convergence in unrelated plants is independent of phylogeny and can be better explained by disperser type, which supports the hypothesis that frugivores are important in fruit evolution. We discuss adaptive and nonadaptive hypotheses that can potentially explain the pattern we found.  相似文献   

20.
Fruit–frugivore interactions are crucial for the dynamics and regeneration of most forested ecosystems. Still, we lack an understanding of the potential variation in the sign and strength of such interactions in relation to variations in the spatial and temporal ecological context. Here, we evaluated spatial (three sites) and temporal (two fruiting seasons) local variation in the sign (seed predation versus dispersal) and strength (frequency and quantity) of the interactions among six frugivorous mammals and a community of Mediterranean fleshy‐fruited shrubs. We examined mammal faecal samples and quantified frequency of seed occurrence, number of seeds per faecal sample, seed species diversity and quality of seed treatment (i.e. percentage of undamaged seeds). The frequency of seed occurrence and number of seeds per faecal sample strongly varied among dispersers, sites, seasons and fruit species. For instance, fox Vulpes vulpes faeces showed between 6 and 40 times more seeds than wild boar Sus scrofa faeces in seasons or sites in which Rubus and Juniperus seeds were dominant. However, in seasons or sites dominated by Corema seeds, wild boar faeces contained up to seven times more seeds than fox faeces. Mammalian carnivores (fox and badger, Meles meles) treated seeds gently, acting mostly as dispersers, whereas deer (Cervus elaphus and Dama dama) acted mainly as seed predators. Interestingly, rabbit Oryctolagus cuniculus acted as either mostly seed disperser or seed predator depending on the plant species. Our results indicated that the sign of fruit–frugivore interactions depended mainly on the identity of the partners. For a particular fruit–frugivore pair, however, our surrogate of interaction strength largely varied with the spatio‐temporal context (year and habitat), leading to a low specificity across the seed–frugivore network. The high spatio‐temporal variability of seed dispersal (in quantity, quality and seed diversity) by different frugivores would confer resilience against unpredictable environmental conditions, such as those typical of Mediterranean ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号