首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of 2-(thienyl-2-yl or -3-yl)-4-furyl-6-aryl pyridine derivatives were designed, synthesized, and evaluated for their topoisomerase I and II inhibition and cytotoxic activity against several human cancer cell lines. Compounds 1019 showed moderate topoisomerase I and II inhibitory activity and 2029 showed significant topoisomerase II inhibitory activity. Structure–activity relationship study revealed that 4-(5-chlorofuran-2-yl)-2-(thiophen-3-yl) moiety has an important role in displaying topoisomerase II inhibition.  相似文献   

2.
AimDesign and synthesis of novel nalidixic acid derivatives of potent anticancer and topoisomerase II inhibitory activities were our major aim.Materials & methodsAll the newly synthesized nalidixic acid derivatives were submitted to the National Cancer Institute (NCI), Bethesda, USA and were accepted for single dose screening. Further investigation via IC50 determination of the most potent compound 6a against K-562 and SR leukemia cell lines. Finally, the topoisomerase II inhibitory activity, the cell cycle analysis and molecular docking of 6a were performed in order to identify the possible mechanism of the anticancer activity.ResultsCompound 6a showed interesting selectivity against leukemia especially K-562 and SR subpanels with IC50 35.29 µM and 13.85 µM respectively. Moreover, compound 6a revealed potent topoisomerase IIα and topoisomerase IIβ inhibitory activity compared with known topoisomerase inhibitors such as doxorubicin and topotecan with IC50 1.30 µM and 0.017 µM respectively. Cell cycle analysis indicated that compound 6a induced cell cycle arrest at G2-M phase leading to inhibition of cell proliferation and apoptosis. Molecular modeling demonstrated that the potent topoisomerase inhibitory activity of 6a was due to the interaction with the topoisomerase II enzyme through coordinate bonding with the magnesium ion Mg2+, hydrogen bonding with Asp 545 and arene cation interaction with His 759.  相似文献   

3.
In an effort to develop potent anti-cancer chemopreventive agents that act on topoisomerase II, a novel series of bisindolylalkanes analogues such as 3,3′-(thiochroman-4,4-diyl)bis(1H-indole) are synthesized. Structures of all compounds are elucidated by 1H NMR, 13C NMR and HRMS. Anti-proliferative activities for all of these compounds are investigated by the method of MTT assay on 7 human cancer lines. Most of them showed antitumor activities in vitro, the half maximal inhibitory concentration (IC50) value is 7.798 μg/mL of 3a against MCF7. Compound 3a showed comparable topoisomerase II inhibitory activity to etoposide (VP-16) at 100 μM concentration. The rest of the compounds also showed varying degree topoisomerase II inhibitory activity.  相似文献   

4.
Isoindolo[2,1-b]isoquinolinones 9ai were designed and synthesized as constrained forms of 3-arylisoquinolines through an intramolecular cyclization reaction. Among the synthesized compounds, 9d exhibited potent topoisomerase 1 inhibitory activity with cytotoxicities against three different tumor cell lines. A Surflex-dock docking study was performed to clarify the topoisomerase 1 inhibitory activity of 9d.  相似文献   

5.
For the development of novel antitumor agents, 2,6-dithienyl-4-furyl pyridine derivatives were prepared and evaluated for their topoisomerase I and II inhibitory activity as well as cytotoxicity against several human cancer cell lines. Among the 21 prepared compounds, compound 24 exhibited strong topoisomerase I inhibitory activity. In addition, a docking study with topoisomerase I and compound 24 was performed.  相似文献   

6.
New series of fused pyrazolopyridines were prepared and assessed for antimicrobial, antiquorum-sensing and antitumor activities. Antimicrobial evaluation toward selected Gram-positive bacteria, Gram-negative bacteria and fungi indicated that 5-phenylpyrazolopyridotriazinone 4a has good and broad-spectrum antimicrobial activity. In addition, 5-(4-chlorophenyl)pyrazolopyridotriazinone 4b and 5-(4-(dimethylamino)phenyl)pyrazolopyridotriazinone 4c exhibited good activity against the selected Gram-positive bacteria and A. fumigatus, whereas 5-amino-4-phenylpyrazolopyridopyrimidine 6a demonstrated good activity against B. cereus and P. aeruginosa. Furthermore, 6-amino-5-imino-4-phenylpyrazolopyridopyrimidine 7a and 6-amino-4-(4-chlorophenyl)-5-iminopyrazolopyridopyrimidine 7b demonstrated promising activity against the tested Gram-negative bacteria and fungi, and moderate activity against Gram-positive bacteria. Antiquorum-sensing screening over C. violaceum illustrated that 4a, 6a and 7a-c have strong activity. In vitro antiproliferative assessment of the new derivatives against HepG2, HCT-116 and MCF-7 cancer cells revealed that 7a is the most active analog against all tested cell lines. Likewise, 3,7-dimethyl-4-phenylpyrazolopyridopyrimidinone 2a and 6-amino-4-(4-chlorophenyl)-5-iminopyrazolopyridopyrimidine 7b manifested strong activity against all examined cell lines. In vivo antitumor testing of 2a, 7a and 7b against EAC cells in mice indicated that 7a has the highest activity. Cytotoxicity toward WI38 and WISH normal cells was also assessed and results assured that all of the investigated analogs have lower cytotoxicity than doxorubicin. DNA-binding affinity and topoisomerase IIβ inhibitory activity were evaluated, and results revealed that 5b, 7a and 7b bind strongly to DNA; in addition, 2a, 4a, 7a and 7b manifested higher topoisomerase IIβ inhibitory activity than that of doxorubicin. Analogs 5b, 7a and 7b were docked into topoisomerase IIβ, and results indicated that 7a and 7b have the highest binding affinity toward topoisomerase IIβ. In silico simulation studies referred that most of the new analogs comply with the optimum needs for good oral absorption. Also, computational carcinogenicity evaluation was predicted.  相似文献   

7.
The analysis of genome sequence indicated that Streptomyces sp. LZ35 has the potential of producing many types of secondary metabolites, including p-terphenyls and geldanamycins. The fermentation of LZ35 in laboratory produces geldanamycins as the major components, which hampers the isolation of minor compounds. To clean the background of geldanamycins, the mutant strain LZ35ΔgdmAI of Streptomyces sp. LZ35 was constructed by disrupting the first PKS module of geldanamycin gene cluster (gdm). From this mutant, five novel p-terphenyls bearing glucuronic acid moiety, namely echosides A–E (15), were isolated with the aid of chromophore-guided fractionation. The structures of 15 were elucidated by the analysis of their HR-ESI-MS and NMR spectroscopic data. DNA relaxation assay indicated that compound 1 had evident inhibitory activity against topoisomerase I. Moreover, the inhibitory activity of compound 3 against topoisomerase IIα is approximately equal to VP16, indicating that p-terphenyl O-β-glucuronides are promising leads for the development of novel inhibitors of topoisomerases.  相似文献   

8.
A novel series of amide derivatives of lomefloxacin were synthesized and evaluated for their topoisomerase I and II inhibitory activity as well as cytotoxicity against a panel of five human cancer cell lines. Of the compounds prepared compounds 9d and 9g exhibited strong inhibition against topoisomerase II at 100 μM. In addition, docking studies were performed to predict the inhibition mode.  相似文献   

9.
As a part of ongoing studies in developing novel anticancer agents, a series of modified 2,4-diaryl-5H-indeno[1,2-b]pyridines were designed, and synthesized by introducing hydroxyl and chlorine moieties. They were evaluated for topoisomerase inhibitory activity and cytotoxicity against HCT15, T47D, and HeLa cancer cell lines. This modification allowed us to demonstrate structure–activity relationship (SAR) study with respect to the non-substituted 2,4-diaryl-5H-indeno[1,2-b]pyridines. Compounds (2, 3, 4, 5, 8, and 9) with meta or para hydroxyl group on 2 or 4-phenyl ring have enhanced topo I and II inhibitory activity and cytotoxicity. However, additional substitution of chlorine group on furyl or thienyl ring (11, 12, 14, 16–18) generally reduced topo I and II inhibitory activity but improved cytotoxicity. The observation of cytotoxic properties and SAR study according to the position of hydroxyl and chlorine group will provide valuable insight for further study of development of novel anticancer agents with related scaffolds.  相似文献   

10.
A series of pyranonaphthoquinone derivatives related to the known topoisomerase II inhibitor eleutherin 1 have been shown to act as specific topoisomerase II catalytic inhibitors, with several analogues displaying greater potency than the natural product itself. Amongst the compounds tested were the natural products ventiloquinone L 4 and thysanone 8 with a diverse range of topoisomerase II inhibition properties being observed. Interestingly, the natural products are generally weaker inhibitors than their synthetic counterparts, emphasising that subtle changes in the basic molecular structure of a natural product led to significant changes in the inhibition profile. It has also been demonstrated for the first time that analogues related to nanaomycin A and cardinalin-type dimeric pyranonaphthoquinones exhibit potent topoisomerase II inhibitory properties. With respect to structural features, it appears that the nature of the substituents at C1 on the pyran ring and oxygenated substituents on the aryl ring are critical for anti-topoII activity.Importantly, the topoisomerase II inhibition strength does not correlate well with the measured cytotoxicity against yeast, indicating that other molecular features in the pyranonaphthoquinone family must be considered for the design and use of this structural class as highly specific topoisomerase II inhibitors.  相似文献   

11.
Semisynthetic reactions were conducted on oleanolic acid, a common plant-derived oleanane-type triterpene. Ten rationally designed derivatives of oleanolic acid were synthesized based on docking studies and tested for their topoisomerase I and IIα inhibitory activity. Semisynthetic reactions targeted C-3, C-12, C-13, and C-17. Nine of the synthesized compounds were identified as new compounds. The structures of these compounds were confirmed by spectroscopic methods (1D, 2D NMR and MS). Five oleanolic acid analogues (S2, S3, S5, S7 and S9) showed higher activity than camptothecin (CPT) in the topoisomerase I DNA relaxation assay. Four oleanolic acid analogues (S2, S3, S5 and S6) showed higher activity than etoposide in a topoisomerase II assay. The results indicated that the C12–C13 double bond of the oleanolic acid skeleton is important for the inhibitory activity against both types of topoisomerases, while insertion of a longer chain at either position 3 or 17 increases the activity against topoisomerases by various degrees. Some of the synthesized compounds act as dual inhibitors for both topoisomerase I and IIα.  相似文献   

12.
A new series of 2-phenol-4-chlorophenyl-6-aryl pyridines were designed, synthesized, and evaluated for topoisomerase (topo) I and II inhibitory activities as well as cytotoxic activity against four different human cancer cell lines such as HCT15, T47D, DU145, and Hela. Most of the tested compounds exhibited stronger topo II inhibitory activity at 100 μM as compared to etoposide. All the compounds, except 39, did not show topo I inhibitory activity. Interestingly, compounds that showed better topo II inhibition than etoposide have ortho- or para-chlorophenyl at 4-position of central pyridine, and none of the compounds possess meta-chlorophenyl. SAR study revealed the importance of ortho- or para-chlorophenyl at 4-position of the central pyridine for selective topo II inhibitory activity. Similarly, all compounds possessing meta- or para-hydroxyphenyl moieties showed moderate to significant cytotoxic effects. Particularly, compounds 27–37, and 39 which showed excellent cytotoxicity (IC50 = 0.68–1.25 μM) against T47D breast cancer cells suggest the importance of meta- or para-hydroxyphenyl moiety at 2-position of the central pyridine for the design of anticancer agents with related scaffolds.  相似文献   

13.
As part of our effort to develop potential topoisomerase IIα (topo IIα) targeting anticancer agents, we systematically designed a new series of hydroxy and chloro-substituted 2,4-diphenyl 5H-chromeno[4,3-b]pyridines. Total eighteen compounds were synthesized and tested for their ability to inhibit the function of topo I and IIα, and proliferation of human breast (T47D), colorectal (HCT15), and cervix (HeLa) cancer cells. Except compound 11, all of the tested compounds displayed selective topo IIα inhibitory activity. Compounds 818, 22, 24, and 25 showed excellent topo IIα inhibitory activity than a positive control, etoposide. Most of the compounds appeared to be superior to reference compounds in their antiproliferative activity. Structure-activity relationship (SAR) study has shown that it is better to place the hydroxyphenyl group at the 4-position of the central pyridine for superior topo IIα inhibition and antiproliferative activity. Similarly, the 3′-, or 4′-hydroxyphenyl substitution at the 2- and 4-positon of pyridine ring is important for better activity than 2′-substitution.  相似文献   

14.
In order to find potential anticancer drug candidate targeting topoisomerases enzyme, we have designed and synthesized oxiranylmethoxy- and thiiranylmethoxy-retrochalcone derivatives and evaluated their pharmacological activity including topoisomerases inhibitory and cytotoxic activity. Of the compounds prepared compound 25 showed comparable or better cytotoxic activity against cancer cell lines tested. Compound 25 inhibited MCF7 (IC50: 0.49 ± 0.21 μM) and HCT15 (IC50: 0.23 ± 0.02 μM) carcinoma cell growth more efficiently than references. In the topoisomerases inhibition test, all the compounds were inactive to topoisomerase I but moderate inhibitors to topoisomerase II enzyme. Especially, compound 25 inhibited topoisomerase II activity with comparable extent to etoposide at 100 μM concentrations. Correlation between cytotoxicity and topoisomerase II inhibitory activity implies that compound 25 can be a possible lead compound for anticancer drug impeding the topoisomerase II function.  相似文献   

15.
Designed and synthesized 60 2-thienyl-4-furyl-6-aryl pyridine derivatives were evaluated for their topoisomerase I and II inhibitory activities at 20 μM and 100 μM and cytotoxicity against several human cancer cell lines. Compounds 8, 9, 1129 showed significant topoisomerase II inhibitory activity and compounds 10 and 11 showed significant topoisomerase I inhibitory activity. Most of the compounds (721) possessing 2-(5-chlorothiophen-2-yl)-4-(furan-3-yl) moiety showed higher or similar cytotoxicity against HCT15 cell line as compared to standards. Most of the selected compounds displayed moderate cytotoxicity against MCF-7, HeLa, DU145, and K562 cell lines. Structure–activity relationship study revealed that 2-(5-chlorothiophen-2-yl)-4-(furan-3-yl) moiety has an important role in displaying biological activities.  相似文献   

16.
Human DNA topoisomerases have become attractive targets for developing more effective anticancer drugs. In this study, a series of new benzofuro[3,2-b]pyridin-7-ols were designed and synthesized for the first time and screened for their topoisomerase I and II inhibitory and antiproliferative activity. Structure-activity relationships revealed the position of ortho- and para-hydroxyl group at 2-phenyl ring, and meta-hydroxyl group at 4-phenyl ring of benzofuro[3,2-b]pyridin-7-ol are important for potent and selective topo II inhibitory activity. Compound 11 showed the most selective and potent topo II inhibition (100% inhibition at 100?µM) and strongest antiproliferative activity (IC50?=?0.86?µM) than all the positive controls in HeLa cell line.  相似文献   

17.
18.
We synthesized 12 benzoxanthone derivatives classified as three different groups based on the tetracyclic ring shapes and evaluated their pharmacological activities to find potential anticancer agents. In the cytotoxicity test, most compounds showed effective cancer cell growth inhibition against the HT29 and DU145 cell lines. Among the compounds tested, compound 19 was the most effective in the cancer cell lines tested. Compound 9 showed dual inhibitory activities against DNA relaxation by topoisomerases I and II. The% inhibition of compound 9 on topoisomerase I was comparable to that of camptothecin. Compound 9 efficiently blocked topoisomerase II function by almost threefold than etoposide at 20 μM. Compound 19 had selective topoisomerase II inhibitory activity at 100 μM. The DNA cross-linking test revealed that only compounds 8 and 19, which possess epoxy groups, cross-linked DNA duplex, while 14 did not. From the combined pharmacological results, we proposed that the target through which compound 19 inhibits cancer cell growth may be the DNA duplex itself and/or DNA–topoisomerase II complex.  相似文献   

19.
Benz[b]oxepines 4ag and 12-oxobenzo[c]phenanthridines 5ad were designed and synthesized as constrained forms of 3-arylisoquinolines through an intramolecular radical cyclization reaction. Radical cyclization of O-vinyl compounds preferentially led to the 7-endo-trig cyclization pathway to the benz[b]oxepines and 12-oxobenzo[c]phenanthridines through 6-exo-trig path as minor products. Among the synthesized compounds, benz[b]oxepine derivative 4e exhibited potent in vitro cytotoxicity against three different tumor cell lines, as well as topoisomerase 1 inhibitory activity. A Surflex–Dock docking study was performed to clarify the topoisomerase 1 activity of 4e.  相似文献   

20.
A series of 4β-[4′-(1-(aryl)ureido)benzamide]podophyllotoxin congeners (11al) were synthesized and evaluated for their cytotoxic activity against six human cancer cell lines. Some of the compounds like 11a, 11h, 11k and 11l showed significant anti-proliferative activity in Colo-205 cells and were superior to etoposide. The flow-cytometric analysis studies indicated that these compounds show strong G1 cell cycle arrest, as well exhibited improved inhibitory activities on DNA topoisomerase I and IIα enzymes. These compounds induce apoptosis by up regulating caspase-3 protein as observed by ELISA and Western blotting analysis. In addition, a brief structure–activity relationship studies within the series along with docking results of representative compounds 11a, 11h, 11k, 11l were presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号