首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In addition to high pulmonary vascular resistance (PVR) and low pulmonary blood flow, the fetal pulmonary circulation is characterized by mechanisms that oppose vasodilation. Past work suggests that high myogenic tone contributes to high PVR and may contribute to autoregulation of blood flow in the fetal lung. Rho-kinase (ROCK) can mediate the myogenic response in the adult systemic circulation, but whether high ROCK activity contributes to the myogenic response and modulates time-dependent vasodilation in the developing lung circulation are unknown. We studied the effects of fasudil, a ROCK inhibitor, on the hemodynamic response during acute compression of the ductus arteriosus (DA) in chronically prepared, late-gestation fetal sheep. Acute DA compression simultaneously induces two opposing responses: 1) blood flow-induced vasodilation through increased shear stress that is mediated by NO release and 2) stretch-induced vasoconstriction (i.e., the myogenic response). The myogenic response was assessed during acute DA compression after treatment with N(omega)-nitro-L-arginine, an inhibitor of nitric oxide synthase, to block flow-induced vasodilation and unmask the myogenic response. Intrapulmonary fasudil infusion (100 microg over 10 min) did not enhance flow-induced vasodilation during brief DA compression but reduced the myogenic response by 90% (P<0.05). During prolonged DA compression, fasudil prevented the time-dependent decline in left pulmonary artery blood flow at 2 h (183+/-29 vs. 110+/-11 ml/min with and without fasudil, respectively; P<0.001). We conclude that high ROCK activity opposes pulmonary vasodilation in utero and that the myogenic response maintains high PVR in the normal fetal lung through ROCK activation.  相似文献   

2.
Endothelin blockade augments pulmonary vasodilation in the ovine fetus   总被引:2,自引:0,他引:2  
Ivy, D. Dunbar, John P. Kinsella, and Steven H. Abman.Endothelin blockade augments pulmonary vasodilation in the ovine fetus. J. Appl. Physiol. 81(6):2481-2487, 1996.The physiological role of endothelin-1 (ET-1) inregulation of vascular tone in the perinatal lung is controversial.Recent studies suggest that ET-1 contributes to high basal pulmonaryvascular resistance in the normal fetus, but its role in the modulationof pulmonary vascular tone remains uncertain. We hypothesized that highET-1 activity opposes the vasodilator response to some physiological stimuli such as increased pressure. To test the hypothesis that ET-1modulates fetal pulmonary vascular responses to acute and prolongedphysiological stimuli, we performed a series of experiments in thelate-gestation ovine fetus. We studied the hemodynamic effects of twoET-1 antagonists, BQ-123 (a selectiveETA-receptor antagonist) andphosphoramidon (a nonselective ET-1-converting enzyme inhibitor) duringmechanical increases in pressure due to partial ductus arteriosuscompression in chronically prepared late-gestation fetal lambs. Incontrol studies, partial ductus arteriosus compression decreased theratio of pulmonary arterial pressure to pulmonary artery flow in theleft lung 34 ± 6% from baseline. Intrapulmonary infusions ofBQ-123 (0.5 µg/min for 10 min; 0.025 µg/min for 2 h) orphosphoramidon (1.0 mg/min for 10 min) augmented the peak vasodilatorresponse during ductus arteriosus compression (52 ± 3 and 49 ± 6% from baseline, respectively, P < 0.05 vs. control). In addition, unlike the transient vasodilator response to ductus arteriosus compression in control studies, ET-1blockade with BQ-123 or phosphoramidon prolonged the increase in flowcaused by ductus arteriosus compression. In summary,ETA-receptor blockade andET-1-converting enzyme inhibition augment and prolong fetal pulmonaryvasodilation during partial compression of the ductus arteriosus. Weconclude that ET-1 activity modulates acute and prolonged responses ofthe fetal pulmonary circulation to changes in vascular pressure. Wespeculate that ET-1 contributes to regulation and maintenance of highpulmonary vascular resistance in the normal ovine fetal lung.

  相似文献   

3.
In eight anaesthesized fetal sheep (gestational age 112-127 days; term 147 days), embolization of the umbilical placental circulation was performed in order to evaluate the response of the umbilical artery pulsatility index to an exclusive increase in umbilical vascular resistance. Measurements were performed using a 20 MHz pulsed Doppler transducer and an electromagnetic flow meter mounted on the common umbilical artery and catheters at the aortic trifurcation and in one of the umbilical veins. Umbilical vascular resistance was calculated according the Poiseuille equation as the ratio of aortic to umbilical venous pressure gradient and umbilical blood flow. Microspheres were administered at 15-min intervals through a catheter in one of the cotyledonary arteries, until fetal heart rate had decreased beneath 100 beats/min or had become arrhythmic. The period of examination per fetus varied between 60 and 120 min, after which cardiac decompensation occurred. During this period, umbilical perfusion pressure increased from 20.3 +/- 4.9 to 28.1 +/- 4.7 mmHg (SD; P less than 0.01), umbilical blood flow (ml/min) decreased from 342 +/- 127 to 115 +/- 99 mmHg (SD; P less than 0.01), umbilical vascular resistance increased from 0.065 +/- 0.022 to 0.342 +/- 0.150 mmHg.min/ml (P less than 0.01) and common umbilical artery pulsatility index increased from 0.97 +/- 0.23 to 4.03 +/- 1.69 (P less than 0.01). Fetal heart rate did not change significantly (168 +/- 33 prior to cardiac decompensation versus 178 +/- 19 beats/min at baseline condition). The linear correlation between common umbilical artery pulsatility index and umbilical vascular resistance varied between 0.83 and 0.99 and the average correlation was 0.93 (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Mechanisms that maintain high pulmonary vascular resistance (PVR) and oppose vasodilation in the fetal lung are poorly understood. In fetal lambs, increased pulmonary artery pressure evokes a potent vasoconstriction, suggesting that a myogenic response contributes to high PVR in the fetus. In adult systemic circulations, the arachidonic acid metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) has been shown to modulate the myogenic response, but its role in the fetal lung is unknown. We hypothesized that acute increases in pulmonary artery pressure release 20-HETE, which causes vasoconstriction, or a myogenic response, in the fetal lung. To address this hypothesis, we studied the hemodynamic effects of N-methylsufonyl-12,12-dibromododec-11-enamide (DDMS), a specific inhibitor of 20-HETE production, on the pulmonary vasoconstriction caused by acute compression of the ductus arteriosus (DA) in chronically prepared fetal sheep. An inflatable vascular occluder around the DA was used to increase pulmonary artery pressure under three study conditions: control, after pretreatment with nitro-L-arginine (L-NA; to inhibit shear-stress vasodilation), and after combined treatment with both L-NA and a specific 20-HETE inhibitor, DDMS. We found that DA compression after L-NA treatment increased PVR by 44 +/- 12%. Although intrapulmonary DDMS infusion did not affect basal PVR, DDMS completely abolished the vasoconstrictor response to DA compression in the presence of L-NA (44 +/- 12% vs. 2 +/- 4% change in PVR, L-NA vs. L-NA + DDMS, P < 0.05). We conclude that 20-HETE mediates the myogenic response in the fetal pulmonary circulation and speculate that pharmacological inhibition of 20-HETE might have a therapeutic role in neonatal conditions characterized by pulmonary hypertension.  相似文献   

5.
As observed with nitric oxide (NO), carbon monoxide (CO) binds and may activate soluble guanylate cyclase and increase cGMP levels in smooth muscle cells in vitro. Because inhaled NO (I(NO)) causes potent and sustained pulmonary vasodilation, we hypothesized that inhaled CO (I(CO)) may have similar effects on the perinatal lung. To determine whether I(CO) can lower pulmonary vascular resistance (PVR) during the perinatal period, we studied the effects of I(CO) on late-gestation fetal lambs. Catheters were placed in the main pulmonary artery, left pulmonary artery (LPA), aorta, and left atrium to measure pressure. An ultrasonic flow transducer was placed on the LPA to measure blood flow to the left lung. After baseline measurements, fetal lambs were mechanically ventilated with a hypoxic gas mixture (inspired O(2) fraction < 0.10) to maintain a constant fetal arterial PO(2). After 60 min (baseline), the lambs were treated with I(CO) [5-2,500 parts/million (ppm)]. Comparisons were made with I(NO) (5 and 20 ppm) and combined I(NO) (5 ppm) and I(CO) (100 and 2,500 ppm). We found that I(CO) did not alter left lung blood flow or PVR at any of the study doses. In contrast, low-dose I(NO) decreased PVR by 47% (P < 0.005). The combination of I(NO) and I(CO) did not enhance the vasodilator response to I(NO). To determine whether endogenous CO contributes to vascular tone in the fetal lung, zinc protoporphyrin IX, an inhibitor of heme oxygenase, was infused into the LPA in three lambs. Zinc protoporphyrin IX had no effect on baseline PVR, aortic pressure, or the pressure gradient across the ductus arteriosus. We conclude that I(CO) does not cause vasodilation in the near-term ovine transitional circulation, and endogenous CO does not contribute significantly to baseline pulmonary vascular tone or ductus arteriosus tone in the late-gestation ovine fetus.  相似文献   

6.
R Green  J Rojas  H Sundell 《Prostaglandins》1979,18(6):927-934
Eighteen prostacyclin injections (19.4 +/- 1.5 micrograms/kg) were performed in five chronically instrumented, intact fetal lambs in order to study the effects on pulmonary blood flow. These resulted in a brief period of bradycardia followed by a more prolonged period of increased pulmonary blood flow. In this latter phase, pulmonary blood flow increased from a baseline value of 49 +/- 4 ml/(kg min) to 122 +/- 10 ml/(kg min). Systolic/diastolic pulmonary arterial pressure simultaneously fell from 73 +/- 2/48 +/- 1 to 68 +/- 2/42 +/- 1 mm Hg. Flow through the ductus arteriosus was unchanged and right ventricular output increased to account for the increased pulmonary blood flow. Thus, prostacyclin causes pulmonary vasodilation in intact fetal lambs and may participate in the control of fetal pulmonary blood flow and the circulatory adjustments to extra-uterine life.  相似文献   

7.
The effect of removing the input from the peripheral arterial chemoreceptors on pulmonary vascular responses to changes in PaO2 was examined in late gestation fetal sheep. Blood flow in the left pulmonary artery and driving pressure across the pulmonary vascular bed were monitored in chronically prepared fetal sheep at 126-129 days gestation. Five fetuses had carotid sinus and vagus nerves sectioned bilaterally and four were left intact. In normoxia (PaO2 ca. 23 mmHg) pulmonary vascular resistance was slightly greater and pulmonary blood flow reduced in the denervated group relative to the intact group but these differences were not significant. When made hypoxic (PaO2 ca. 14 mmHg), pulmonary blood flow fell and pulmonary vascular resistance increased in all fetuses. However, in the intact fetuses these changes were significantly more rapid. In all fetuses the vasoconstriction was prolonged after their return to normoxia. When made hyperoxic (PaO2 ca. 27 mmHg), pulmonary blood flow increased by a similar amount in all fetuses. We conclude that in the term fetus the peripheral chemoreceptors play no appreciable role in the maintenance of the high pulmonary vascular resistance in normoxia, or the fall in resistance produced by a rise in PaO2. The chemoreceptors do however initiate the rapid phase of pulmonary vasoconstriction in hypoxia.  相似文献   

8.
During the latter third of gestation, the number of resistance vessels in the lungs of the fetal sheep increases by 10-fold even after correction for lung growth. We measured pulmonary arterial pressure and blood flow directly and calculated total pulmonary resistance (pressure divided by flow) in intrauterine fetal lambs at 93-95 days and at 136 days of gestation (term is 145-148 days). In addition, we used a hyperbaric chamber to increase oxygen tension in the fetuses and measured the effect on the pulmonary circulation. When corrected for wet weight of the lungs, pulmonary blood flow did not change with advancing gestation (139 +/- 42 to 103 +/- 45 ml.100 g-1.min-1). Pulmonary arterial pressure increased (42 +/- 5 to 49 +/- 3 mmHg); thus total pulmonary resistance increased with advancing gestation from 0.32 +/- 0.12 to 0.55 +/- 0.21 mmHg.100 g.min.ml-1. If the blood flow is corrected for dry weight of the lungs, neither pulmonary blood flow nor total pulmonary resistance changed with advancing gestation. Increasing oxygen tension increased pulmonary blood flow 10-fold in the more mature fetuses but only 0.2-fold in the less mature fetuses. At the normal low oxygen tension of the fetus, pulmonary blood flow does not increase between these two points of gestation in the fetal lamb despite the increase in vessel density in the lungs. However, during elevated oxygen tension, pulmonary blood flow does increase in proportion to the increase in vessel density.  相似文献   

9.
We investigated the pulmonary vascular effects of prophylactic use of sildenafil, a specific phosphodiesterase-5 inhibitor, in late-gestation fetal lambs with chronic pulmonary hypertension. Fetal lambs were operated on at 129 +/- 1 days gestation (term = 147 days). Ductus arteriosus (DA) was compressed for 8 days to cause chronic pulmonary hypertension. Fetuses were treated with sildenafil (24 mg/day) or saline. Pulmonary vascular responses to increase in shear stress and in fetal PaO2 were studied at, respectively, day 4 and 6. Percent wall thickness of small pulmonary arteries (%WT) and the right ventricle-to-left ventricle plus septum ratio (RVH) were measured after completion of the study. In the control group, DA compression increased PA pressure (48 +/- 5 to 72 +/- 8 mmHg, P < 0.01) and pulmonary vascular resistance (PVR) (0.62 +/- 0.08 to 1.15 +/- 0.11 mmHg x ml(-1) x min(-1), P < 0.05). Similar increase in PAP was observed in the sildenafil group, but PVR did not change significantly (0.54 +/- 0.06 to 0.64 +/- 0.09 mmHg x ml(-1) x min(-1)). Acute DA compression, after brief decompression, elevated PVR 25% in controls and decreased PVR 35% in the sildenafil group. Increased fetal PaO2 did not change PVR in controls but decreased PVR 60% in the sildenafil group. %WT and RVH were not different between groups. Prophylactic sildenafil treatment prevents the rise in pulmonary vascular tone and altered vasoreactivity caused by DA compression in fetal lambs. These results support the hypothesis that elevated PDE5 activity is involved in the consequences of chronic pulmonary hypertension in the perinatal lung.  相似文献   

10.
Effects of endogenous angiotensin II on the fetal circulation   总被引:4,自引:0,他引:4  
The role of endogenous angiotensin II in the regulation of the circulation was investigated by infusion of [sar1],[ala8]-angiotensin II, a competitive antagonist of angiotensin II, into fetal sheep with chronically-maintained intravascular catheters. The thesis considered was that angiotensin II may have a greater role in the fetus than in the adult since the autonomic nervous system does not develop fully until late in gestation. Fetal cardiac output and its distribution to various organs and actual blood flows to fetal tissues were determined by the radionuclide-labelled microsphere technique. Intravenous infusion of [sar1], [ala8]-angiotensin II at a rate of 13.95-42.15 microgram/min per kg fetal body weight increased plasma renin activity from a control value of 8.9 +/- 1.6 to 18.9 +/- 3.9 ng/ml per h (SEM). Mean arterial blood pressure fell significantly from a control level of 47 +/- 1.6 to 41 +/- 1.1 mmHg. Blood flow to the unbilical-placental circulation decreased from 239 +/- 27.0 to 198 +/- 20.2 ml/min per kg, but the calculated vascular resistance in the umbilical-placental circulation did not change. Although cardiac output did not change, blood flow to the peripheral circulation, which includes the fetal skin, muscle and and bone and constitutes 75 +/- 0.9% of the total fetal body weight, increased as did flow to the thyroid and adrenal circulations. Endogenous angiotensin II appears to be important in maintaining blood flow to the umbilical-placental circulation by maintaining fetal arterial blood pressure. Angiotensin II exerts this effect by mediating a tonic vasoconstriction primarily in the peripheral circulation.  相似文献   

11.
Prolonged increases in fetal lung expansion stimulate fetal lung growth and development, but the effects on pulmonary hemodynamics are unknown. Our aim was to determine the effect of increased fetal lung expansion, induced by tracheal obstruction (TO), on pulmonary blood flow (PBF) and vascular resistance (PVR). Chronically catheterized fetal sheep (n = 6) underwent TO from 120 to 127 days of gestational age (term approximately 147 days); tracheas were not obstructed in control fetuses (n = 6). PBF, PVR, and changes to the PBF waveform were determined. TO significantly increased lung wet weight compared with control (166.3 +/- 20.2 vs. 102.0 +/- 18.8 g; P < 0.05). Despite the increase in intraluminal pressure caused by TO (5.0 +/- 0.9 vs. 2.4 +/- 1.0 mmHg; P < 0.001), PBF and PVR were similar between groups after 7 days (TO 28.1 +/- 3.2 vs. control 34.1 +/- 10.0 ml.min(-1).100 g lung wt(-1)). However, TO markedly altered pulmonary hemodynamics associated with accentuated fetal breathing movements, causing a reduction rather than an increase in PBF at 7 days of TO. To account for the increase in intraluminal pressure, the pressure was equalized by draining the lungs of liquid on day 7 of TO. Pressure equalization increased PBF from 36.8 +/- 5.2 to 112.4 +/- 22.8 ml/min (P = 0.01) and markedly altered the PBF waveform. These studies provide further evidence to indicate that intraluminal pressure is an important determinant of PBF and PVR in the fetus. We suggest that the increase in PBF associated with pressure equalization following TO reflects an increase in growth of the pulmonary vascular bed, leading to an increase in its cross-sectional area.  相似文献   

12.
The purpose of this study was to determine whether an increase in pulmonary vascular filtration pressure affects net production of liquid within the lumen of the fetal lung. We studied 14 chronically catheterized fetal lambs [130 +/- 3 (SD) days gestation] before, during, and after a 4-h rapid (500 ml/h) intravenous infusion of isotonic saline. In seven fetuses we measured pulmonary arterial and left atrial pressures, lung lymph flow, and protein osmotic pressures in plasma and lymph. In eight lambs with a chronically implanted tracheal loop cannula, we measured the change in luminal lung liquid volume over time by progressive dilution of tracheally instilled 125I-albumin, which stays within the lung lumen. Saline infusion increased pulmonary vascular pressures by 2-3 mmHg and decreased the plasma-lymph difference in protein osmotic pressure by 1 mmHg. Lung lymph flow increased from 1.9 +/- 0.6 to 3.9 +/- 1.2 (SD) ml/h; net production of luminal lung liquid did not change (12 +/- 5 to 12 +/- 6 ml/h). Thus an increase in net fluid filtration pressure in the pulmonary circulation, which was sufficient to double lung lymph flow, had no significant effect on luminal lung liquid secretion in fetal sheep.  相似文献   

13.
We studied the pulmonary vascular response to progressive metabolic acidaemia and to an abrupt increase in oxygen tension during metabolic acidaemia in 8 chronically-prepared fetal sheep. Left pulmonary artery blood flow was measured by electromagnetic flow transducer. Two and a half hour infusion of NH4Cl into the fetal inferior vena cava caused pH to fall to 6.94 +/- 0.01 from 7.37 +/- 0.01 (P less than 0.001). During this period of progressive metabolic acidaemia, left pulmonary artery blood flow increased from a baseline value of 60 +/- 8 to 105 +/- 14 ml.min-1 (P less than 0.002). Pulmonary artery pressure did not change significantly and calculated pulmonary vascular resistance fell indicating fetal pulmonary vasodilation. PO2 rose significantly (19.8 +/- 0.7 to 24.1 +/- 1.8 torr; P less than 0.03) and oxygen saturation fell (54.6 +/- 2.8% to 38.9 +/- 3.5%; P less than 0.001) confirming a rightward shift of the oxyhaemoglobin dissociation curve. During acidaemia, administration of 100% oxygen to the ewe further increased fetal PO2 to 37.9 +/- 2.3 torr within 10 min (P less than 0.001) and this increase in PO2 was accompanied by an increase in left pulmonary artery blood flow (P less than 0.001), a fall in pulmonary artery pressure (P less than 0.03) and a decrease in pulmonary vascular resistance (P less than 0.001) indicating further vasodilation. The response of the fetal pulmonary circulation to a 2-h period of increased oxygen tension was qualitatively similar in acidaemic and non-acidaemic fetuses. We conclude that the progressive metabolic acidaemia imposed by these experimental conditions increases pulmonary blood flow likely through an increase in fetal PO2 and that metabolic acidaemia does not block the normal vasodilatory response to an increase in oxygen tension.  相似文献   

14.
To determine the fetal pulmonary vascular response to platelet-activating factor (PAF), we studied the hemodynamic effects of the infusion of PAF directly into the left pulmonary artery in 21 chronically catheterized fetal lambs. Left pulmonary arterial blood flow (Q) was measured with electromagnetic flow transducers. Ten-minute infusions of low-dose PAF (10-100 ng/min) produced increases in Q from a baseline of 71 +/- 5 to 207 +/- 20 ml/min (P less than 0.001) without changes in pulmonary arterial pressure. Pulmonary vasodilation with PAF was further confirmed through increases in Q with brief (15-s) infusions and increases in the slope of the pressure-flow relationship as assessed by rapid incremental compressions of the ductus arteriosus during PAF infusion. Infusion of Lyso-PAF had no effect on Q or pulmonary arterial pressure. Treatment with CV-3988, a selective PAF receptor antagonist, but not with meclofenamate, atropine, or diphenhydramine and cimetidine blocked the response to PAF infusion and did not affect baseline tone. Systemic infusion of high-dose PAF (300 ng/min) through the fetal inferior vena cava increased pulmonary arterial pressure (46.5 +/- 1.0 to 54.8 +/- 1.9 mmHg, P less than 0.01) and aorta pressure (44.3 +/- 1.0 to 52.7 +/- 2.2 mmHg, P less than 0.01) while also increasing Q. Neither PAF nor CV-3988 changed the gradient between pulmonary arterial and aorta pressures, suggesting that PAF does not affect ductal tone. We conclude that PAF is a potent fetal pulmonary vasodilator and that the effects are not mediated through cyclooxygenase products or by cholinergic or histaminergic effects.  相似文献   

15.
The distribution of prostaglandin E2 and F2 alpha was examined in the peripheral veins and in several positions of the cardiovascular system before and after the blood had passed through the lungs in 37 infants. Prostaglandin E2 varied from 0.25 +/- 0.09 ng/ml to 0.44 +/- 0.09 ng/ml when measured in the pulmonary artery, the ductus arteriosus, the right atrium, the right ventricle, the left atrium, the left ventricle, the inferior vena cava and the descending aorta. Prostaglandin F2 alpha was much higher in these positions of the cardiovascular system. The range was 0.99 +/- 0.36 ng/ml to greater than 2.0 ng/ml. The vascular tissues produced virtually identical high amounts of prostaglandin E2 and F2 alpha, but there were no significant differences in prostaglandin E2 and F2 alpha, concentrations, in venous blood as well as in systemic arterial blood. The results suggest that prostaglandin E2 is not responsible for the persisting patency of the ductus arteriosus in infants. There is no explanation for the increased prostaglandin F2 alpha concentrations in these patients.  相似文献   

16.
Mechanisms that maintain high pulmonary vascular resistance (PVR) in the fetal lung are poorly understood. Activation of the Rho kinase signal transduction pathway, which promotes actin-myosin interaction in vascular smooth muscle cells, is increased in the pulmonary circulation of adult animals with experimental pulmonary hypertension. However, the role of Rho kinase has not been studied in the fetal lung. We hypothesized that activation of Rho kinase contributes to elevated PVR in the fetus. To address this hypothesis, we studied the pulmonary hemodynamic effects of brief (10 min) intrapulmonary infusions of two specific Rho kinase inhibitors, Y-27632 (15-500 microg) and HA-1077 (500 microg), in chronically prepared late-gestation fetal lambs (n = 9). Y-27632 caused potent, dose-dependent pulmonary vasodilation, lowering PVR from 0.67 +/- 0.18 to 0.16 +/- 0.02 mmHg x ml(-1) x min(-1) (P < 0.01) at the highest dose tested without lowering systemic arterial pressure. Despite brief infusions, Y-27632-induced pulmonary vasodilation was sustained for 50 min. HA-1077 caused a similar fall in PVR, from 0.39 +/- 0.03 to 0.19 +/- 0.03 (P < 0.05). To study nitric oxide (NO)-Rho kinase interactions in the fetal lung, we tested the effect of Rho kinase inhibition on pulmonary vasoconstriction caused by inhibition of endogenous NO production with nitro-L-arginine (L-NA; 15-30 mg), a selective NO synthase antagonist. L-NA increased PVR by 127 +/- 73% above baseline under control conditions, but this vasoconstrictor response was completely prevented by treatment with Y-27632 (P < 0.05). We conclude that the Rho kinase signal transduction pathway maintains high PVR in the normal fetal lung and that activation of the Rho kinase pathway mediates pulmonary vasoconstriction after NO synthase inhibition. We speculate that Rho kinase plays an essential role in the normal fetal pulmonary circulation and that Rho kinase inhibitors may provide novel therapy for neonatal pulmonary hypertension.  相似文献   

17.
To determine the temporal response of the fetal pulmonary circulation to pharmacologic vasodilators and to assess vasoreactivity following vasodilation, we infused either acetylcholine, histamine, or bradykinin directly into the left pulmonary artery of 21 chronically prepared fetal sheep. Blood flow (Q) to the left lung was measured by electromagnetic flow transducer. Left pulmonary artery infusion of acetylcholine at 1.5 micrograms.min-1 for 2 hr produced an increase in Q from 59 +/- 8 ml.min-1 to a peak of 113 +/- 10 ml.min-1 at 20 min into the infusion (P less than 0.001). After the peak at 20 min, Q steadily declined toward baseline to 66 +/- 7 ml.min-1 at the end of the 2-hr infusion period (P less than 0.01). Q in the 1/2-hr period following infusion was significantly less than the baseline period (47 +/- 6; P less than 0.04) with no change in pulmonary artery pressure. Similar patterns were seen with 2-hr infusions of histamine (150 ng.min-1) and bradykinin (100 ng.min-1). After a 2-hr infusion of one of the agents, a repeat infusion with that agent or a different one resulted in a diminished response. We conclude that fetal pulmonary vasodilation in response to local infusion of acetylcholine, histamine, or bradykinin is not sustained over a 2-hr period, and that following 2-hr exposure to vasodilators, pulmonary vascular resistance is increased and pulmonary vasoreactivity to pharmacologic vasodilators is decreased.  相似文献   

18.
The mechanism of ventilatory stimulation that accompanies increases in cardiac output is unknown. Previous studies addressing this issue have been inconclusive. However, only steady pulmonary blood flow was used. The effect of flow pulsatility merits consideration, because increasing cardiac output raises not only mean pulmonary arterial pressure but also pulse pressure; mechanoreceptors with an important dynamic component to their responses may cause a response to pulsatile, but not steady, flow. Studies were done on anesthetized cats (n = 4) and dogs (n = 4). The right pulmonary artery was cannulated within the pericardium, and systemic blood was pumped from the left atrium to the right pulmonary artery. The right pulmonary circulation was perfused at different levels of flow, which was either steady or pulsatile. Steady-state flow of up to 150 ml.kg-1.min-1 (270 ml.kg-1.min-1 when corrected for the proportion of lung tissue perfused) did not affect breathing pattern. When high pulmonary flow was made pulsatile (pulse pressure approximately 23 mmHg), breath duration decreased from 3.7 +/- 0.72 to 3.4 +/- 0.81 (SD) s (P less than 0.01), representing a change in frequency of only 9%. There was no change in peak inspiratory activity. It was concluded that pulmonary vascular mechanoreceptors are not likely to contribute significantly to the increase in ventilation in association with increases in cardiac output.  相似文献   

19.
Although adenosine markedly increases fetal pulmonary blood flow, the specific changes in pulmonary trunk (PT), ductus arteriosus (DA), and conduit pulmonary artery (PA) flow interactions that support this increased flow are unknown. To address this issue, seven anesthetized late-gestation fetal sheep were instrumented with PT, DA, and left PA micromanometer catheters and transit-time flow probes. Blood flow profile and wave intensity analyses were performed at baseline and after adenosine infusion to increase PA flow approximately fivefold. With adenosine infusion, DA mean and phasic flows were unchanged, but increases in mean PT (500 ± 256 ml/min, P = 0.002) and the combined left and right PA flow (479 ± 181 ml/min, P < 0.001) were similar (P > 0.7) and related to a larger flow-increasing forward-running compression wave arising from right ventricular (RV) impulsive contraction. Moreover, while the increased PT flow was confined to systole, the rise in PA flow spanned systole (316 ml/min) and diastole (163 ml/min). This elevated PA diastolic flow was accompanied by a 170% greater discharge from a PT and main PA reservoir filled in systole (P < 0.001), but loss of retrograde blood discharge from a conduit PA reservoir that was evident at baseline. These data suggest that 1) an increase in fetal pulmonary blood flow produced by adenosine infusion is primarily supported by a higher PT blood flow (i.e., RV output); 2) about two-thirds of this increased RV output passes into the pulmonary circulation during systole; and 3) the remainder is transiently stored in a central PT and main PA systolic reservoir, from where it discharges into the lungs in diastole.  相似文献   

20.
We examined the respiratory effects of a patent ductus arteriosus in 29 premature lambs (131-135 days gestational age) after infiltrating the ductal wall with formaldehyde solution (Formalin) and placing a snare around the ductus to regulate its patency. The lambs were given sheep surfactant, paralyzed, and mechanically ventilated at birth. We first compared 8 lambs with open ductus and 13 lambs with closed ductus during the 12 h after birth. Although lambs with open ductus had greater pulmonary blood flow (301 +/- 36 vs. 188 +/- 11 ml.min-1.kg-1, mean +/- SE, at 12 h of age) and mean pulmonary arterial (44 +/- 3 vs. 33 +/- 2 mmHg) and left ventricular end-diastolic (6 +/- 0.6 vs 4 +/- 0.7 mmHg) pressures, we found no differences in dynamic respiratory compliance (Cdyn = 0.55 +/- 0.07 vs. 0.55 +/- 0.03 ml.cmH2O-1.kg-1), midtidal volume resistance (62 +/- 5 X 10(-3) vs. 62 +/- 7 X 10(-3) cmH2O.ml-1.s), or functional residual capacity (FRC = 27 +/- 3 vs. 26 +/- 2 ml.kg-1). Alveolar-arterial PO2 difference was lower in the lambs with open ductus (238 +/- 65 vs. 362 +/- 37 Torr). Next, we challenged eight lambs with two separate saline infusions (50 ml.kg-1 over 3 min), each given with the ductus alternately closed or open. When the ductus was closed, FRC was unchanged, but Cdyn increased by 18% immediately after the infusion. When the ductus was open, FRC decreased by 16% and Cdyn decreased by 12%. We conclude that the premature lamb is surprisingly resistant to changes in respiratory function from ductal patency during the immediate neonatal period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号