首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
TRPM蛋白家族是一类表达于多种哺乳动物细胞中广泛存在的离子通道。近年来发现它们在维持某些特定生理功能中起关 键作用且与人类疾病密切相关。研究显示氧化应激可使TRPM离子通道功能异常导致疾病发生、发展。TRPM亚家族的三个成 员,TRPM2,TRPM4 和TRPM7 均受氧化应激的调控,其功能改变、增加或缺失与炎症及免疫系统的激活、神经退行性疾病和神经 系统疾病、心血管疾病、癌症及糖尿病,代谢紊乱和骨疾病等疾病紧密联系。本文就近年来氧化应激调控的TRPM离子通道与人 类疾病的关系做简要综述。此外,文章也将探讨它们作为药物设计靶点和工具的应用前景。  相似文献   

2.
Melastatin-related TRPM ion channels have emerged as novel therapeutic targets due to their potential ability to modulate the function and fate of immune cells during inflammation, innate, and adaptive immunity. Four family members, TRPM1, TRPM2, TRPM4 and TRPM7 have a strong presence in the immune system. TRPM channels regulate ion-homeostasis by sensing cellular redox status and cytoplasmic calcium levels. TRPM2 for example, is highly expressed in phagocytes. This channel is activated by intracellular ADP-ribose upon exposure to oxidative stress and induces cell death. Here we will review the functional links between TRPM-mediated ion conductance, chemotaxis, apoptosis, and innate immunity.  相似文献   

3.
Recent findings implicating TRPM7 and TRPM2 in oxidative stress-induced neuronal death thrust these channels into the spotlight as possible therapeutic targets for neurodegenerative diseases. In this review, we describe how the functional properties of TRPM7 and TRPM2 are interconnected with calcium (Ca(2+)) and magnesium (Mg(2+)) homeostasis, oxidative stress, mitochondrial dysfunction, and immune mechanisms, all principal suspects in neurodegeneration. We focus our discussion on Western Pacific Amyotrophic Lateral Sclerosis (ALS) and Parkinsonism Dementia (PD) because extensive studies conducted over the years strongly suggest that these diseases are ideal candidates for a gene-environment model of etiology. The unique mineral environment identified in connection with Western Pacific ALS and PD, low Mg(2+) and Ca(2+), yet high in transition metals, creates a condition that could affect the proper function of these two channels.  相似文献   

4.
Recent findings implicating TRPM7 and TRPM2 in oxidative stress-induced neuronal death thrust these channels into the spotlight as possible therapeutic targets for neurodegenerative diseases. In this review, we describe how the functional properties of TRPM7 and TRPM2 are interconnected with calcium (Ca2+) and magnesium (Mg2+) homeostasis, oxidative stress, mitochondrial dysfunction, and immune mechanisms, all principal suspects in neurodegeneration. We focus our discussion on Western Pacific Amyotrophic Lateral Sclerosis (ALS) and Parkinsonism Dementia (PD) because extensive studies conducted over the years strongly suggest that these diseases are ideal candidates for a gene-environment model of etiology. The unique mineral environment identified in connection with Western Pacific ALS and PD, low Mg2+ and Ca2+, yet high in transition metals, creates a condition that could affect the proper function of these two channels.  相似文献   

5.
Abstract

Background: Hyperhomocysteinemia (HHcy) is associated with neurodegenerative diseases. Transient receptor potential melastatin (TRPM2) and TRPM7 channels may be activated by oxidative stress. Hydrated C(60) fullerene (C(60)HyFn) have recently gained considerable attention as promising candidates for neurodegenerative states. We aimed to examine the effects on TRPM2 and TRPM7 gene expression of C(60)HyFn due to marked antioxidant activity in HHcy mice. Methods: C57BL/6 J. mice were divided into four groups: (1) Control group, (2) HHcy, (3) HHcy?+?C(60)HyFn-treated group and (4) C(60)HyFn-treated group. TRPM2 and TRPM7 gene expression in brains of mice were detected by real-time PCR, Western blotting and immunohistochemistry. Apoptosis in brain were assessed by TUNEL staining. Results: mRNA expression levels of TRPM2 were significantly increased in HHcy group compared to the control group. C(60)HyFn administration significantly decreased serum levels of homocysteine and TRPM2 mRNA levels in HHcy?+?C(60)HyFn group. Whereas, HHcy-treatment and C(60)HyFn administration did not change the expression of TRPM7. Conclusion: Administration of C(60)HyFn in HHcy mice significantly reduces serum homocysteine level, neuronal apoptosis and expression level of TRPM2 gene. Increased expression level of TRPM2 induced by oxidative stress might be involved in the ethiopathogenesis of HHcy related neurologic diseases.  相似文献   

6.
TRPM family (Transient receptor potential channels, M for melastatin) is a group of intrinsic plasma membrane ion channels which are widely expressed throughout human body. It has been identified as a potent entry point of working desperate diseases out in a new way with newfangled ideas and safer technological means. In our review, we discussed the common and unique properties of TRPM family with the elaborate narrate in their overall structures, different states and the underlying activation mechanism. Thus, this review can help to consummate the limited work of TRPM family and provide novel therapeutic targets of certain diseases.  相似文献   

7.
Calcium (Ca2+) and magnesium (Mg2+) ions have been shown to play an important role in regulating various neuronal functions. In the present review we focus on the emerging role of transient potential melastatin-7 (TRPM7) channel in not only regulating Ca2+ and Mg2+ homeostasis necessary for biological functions, but also how alterations in TRPM7 function/expression could induce neurodegeneration. Although eight TRPM channels have been identified, the channel properties, mode of activation, and physiological responses of various TRPM channels are quite distinct. Among the known 8 TRPM channels only TRPM6 and TRPM7 channels are highly permeable to both Ca2+ and Mg2+; however here we will only focus on TRPM7 as unlike TRPM6, TRPM7 channels are abundantly expressed in neuronal cells. Importantly, the discrepancy in TRPM7 channel function and expression leads to various neuronal diseases such as Alzheimer disease (AD) and Parkinson disease (PD). Further, it is emerging as a key factor in anoxic neuronal death and in other neurodegenerative disorders. Thus, by understanding the precise involvement of the TRPM7 channels in different neurodegenerative diseases and by understanding the factors that regulate TRPM7 channels, we could uncover new strategies in the future that could evolve as new drug therapeutic targets for effective treatment of these neurodegenerative diseases.  相似文献   

8.
Calcium (Ca2+) and magnesium (Mg2+) ions have been shown to play an important role in regulating various neuronal functions. In the present review we focus on the emerging role of transient potential melastatin-7 (TRPM7) channel in not only regulating Ca2+ and Mg2+ homeostasis necessary for biological functions, but also how alterations in TRPM7 function/expression could induce neurodegeneration. Although eight TRPM channels have been identified, the channel properties, mode of activation, and physiological responses of various TRPM channels are quite distinct. Among the known 8 TRPM channels only TRPM6 and TRPM7 channels are highly permeable to both Ca2+ and Mg2+; however here we will only focus on TRPM7 as unlike TRPM6, TRPM7 channels are abundantly expressed in neuronal cells. Importantly, the discrepancy in TRPM7 channel function and expression leads to various neuronal diseases such as Alzheimer disease (AD) and Parkinson disease (PD). Further, it is emerging as a key factor in anoxic neuronal death and in other neurodegenerative disorders. Thus, by understanding the precise involvement of the TRPM7 channels in different neurodegenerative diseases and by understanding the factors that regulate TRPM7 channels, we could uncover new strategies in the future that could evolve as new drug therapeutic targets for effective treatment of these neurodegenerative diseases.  相似文献   

9.
The Role of TRP Channels in Oxidative Stress-induced Cell Death   总被引:9,自引:0,他引:9  
The transient receptor potential (TRP) protein superfamily is a diverse group of voltage-independent calcium-permeable cation channels expressed in mammalian cells. These channels have been divided into six subfamilies, and two of them, TRPC and TRPM, have members that are widely expressed and activated by oxidative stress. TRPC3 and TRPC4 are activated by oxidants, which induce Na+ and Ca2+ entry into cells through mechanisms that are dependent on phospholipase C. TRPM2 is activated by oxidative stress or TNFα, and the mechanism involves production of ADP-ribose, which binds to an ADP-ribose binding cleft in the TRPM2 C-terminus. Treatment of HEK 293T cells expressing TRPM2 with H2O2 resulted in Ca2+ influx and increased susceptibility to cell death, whereas coexpression of the dominant negative isoform TRPM2-S suppressed H2O2-induced Ca2+ influx, the increase in [Ca2+]i, and onset of apoptosis. U937-ecoR monocytic cells expressing increased levels of TRPM2 also exhibited significantly increased [Ca2+]i and increased apoptosis after treatment with H2O2 or TNFα. A dramatic increase in caspase 8, 9, 3, 7, and PARP cleavage was observed in TRPM2-expressing cells, demonstrating a downstream mechanism through which cell death is mediated. Inhibition of endogenous TRPM2 function through three approaches, depletion of TRPM2 by RNA interference, blockade of the increase in [Ca2+]i through TRPM2 by calcium chelation, or expression of the dominant negative splice variant TRPM2-S protected cell viability. H2O2 and amyloid β-peptide also induced cell death in primary cultures of rat striatal cells, which endogenously express TRPM2. TRPM7 is activated by reactive oxygen species/nitrogen species, resulting in cation conductance and anoxic neuronal cell death, which is rescued by suppression of TRPM7 expression. TRPM2 and TRPM7 channels are physiologically important in oxidative stress-induced cell death.  相似文献   

10.
The transient receptor potential (TRP) multigene superfamily encodes integral membrane proteins that function as ion channels. Members of this family are conserved in yeast, invertebrates and vertebrates. The TRP family is subdivided into seven subfamilies: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), TRPA (ankyrin) and TRPN (NOMPC-like); the latter is found only in invertebrates and fish. TRP ion channels are widely expressed in many different tissues and cell types, where they are involved in diverse physiological processes, such as sensation of different stimuli or ion homeostasis. Most TRPs are non-selective cation channels, only few are highly Ca2+ selective, some are even permeable for highly hydrated Mg2+ ions. This channel family shows a variety of gating mechanisms, with modes of activation ranging from ligand binding, voltage and changes in temperature to covalent modifications of nucleophilic residues. Activated TRP channels cause depolarization of the cellular membrane, which in turn activates voltage-dependent ion channels, resulting in a change of intracellular Ca2+ concentration; they serve as gatekeeper for transcellular transport of several cations (such as Ca2+ and Mg2+), and are required for the function of intracellular organelles (such as endosomes and lysosomes). Because of their function as intracellular Ca2+ release channels, they have an important regulatory role in cellular organelles. Mutations in several TRP genes have been implicated in diverse pathological states, including neurodegenerative disorders, skeletal dysplasia, kidney disorders and pain, and ongoing research may help find new therapies for treatments of related diseases.  相似文献   

11.
Transient receptor potential melastatin 7 (TRPM7) channels are divalent cation-selective ion channels that are permeable to Ca(2+) and Mg(2+). TRPM7 is ubiquitously expressed in vertebrate cells and contains both an ion channel and a kinase domain. TRPM7 plays an important role in regulating cellular homeostatic levels of Ca(2+) and Mg(2+) in mammalian cells. Although studies have shown that the kinase domain of TRPM7 is required for channel activation and can phosphorylate other target proteins, a systematic analysis of intact TRPM7 channel phosphorylation sites expressed in mammalian cells is lacking. We applied mass spectrometric proteomic techniques to identify and characterize the key phosphorylation sites in TRPM7 channels. We identified 14 phosphorylation sites in the cytoplasmic domain of TRPM7, eight of which have not been previously reported. The identification of phosphorylation sites using antibody-based immunopurification and mass spectrometry is an effective approach for defining the phosphorylation status of TRPM7 channels. The present results show that TRPM7 channels are phosphorylated at multiple sites, which serves as a mechanism to modulate the dynamic functions of TRPM7 channels in mammalian cells.  相似文献   

12.
瞬时受体电位M8(transient receptor potential melastatin 8, TRPM8)又称冷及薄荷醇感受器,位于细胞膜或细胞器膜上,是瞬时受体电位(transient receptor potential, TRP)通道超家族中的一员。TRPM8通道分布广泛,是一个非选择性阳离子通道,可作为冷热传感器和冷痛传感器进行信号传导,参与众多生物过程的调节,在维持细胞内外稳态、控制离子进出细胞方面具有重要作用。研究发现,蛋白质翻译后修饰(post-translational modification, PTM)通过调控TRPM8通道的功能,进而影响多种疾病的发生和发展。因此,探究TRPM8的翻译后修饰的过程,对深入了解TRPM8的功能及调控机制是十分必要的。目前,已报道的TRPM8翻译后修饰包括磷酸化、泛素化和糖基化等,它们能够调控蛋白质的相互作用和改变TRPM8离子通道的活性,从而调控细胞增殖、迁移和凋亡。值得注意的是,TRPM8的表达与前列腺癌、膀胱癌和乳腺癌等多种癌症密切相关。本文将从TRPM8离子通道的结构出发,系统地阐述TRPM8蛋白翻译后修饰和激动剂、拮抗剂以及一些蛋白质对TRPM8通道活性的调节,同时总结TRPM8在前列腺癌、膀胱癌和乳腺癌中的新进展,为癌症治疗提供新方向和新思路。  相似文献   

13.
Endothelial dysfunction is decisive and leads to the development of several inflammatory diseases. Endotoxemia-derived sepsis syndrome exhibits a broad inflammation-induced endothelial dysfunction. We reported previously that the endotoxin, lipopolysaccharide (LPS), induces the conversion of endothelial cells (ECs) into activated fibroblasts, showing a myofibroblast-like protein expression profile. Enhanced migration is a hallmark of myofibroblast function. However, the mechanism involved in LPS-induced EC migration is no totally understood. Some studies have shown that the transient receptor potential melastatin 7 (TRPM7) ion channel is involved in fibroblast and tumor cell migration through the regulation of calcium influx. Furthermore, LPS modulates TRPM7 expression. However, whether TRPM7 is involved in LPS-induced EC migration remains unknown.Here, we study the participation of LPS as an inducer of EC migration and study the mechanism underlying evaluating the participation of the TRPM7 ion channel.Our results demonstrate that LPS induced EC migration in a dose-dependent manner. Furthermore, this migratory process was mediated by the TLR-4/NF-κB pathway and the generation of ROS through the PKC-activated NAD(P)H oxidase. In addition, LPS increased the intracellular calcium level and the number of focal adhesion kinase (FAK)-positive focal adhesions in EC. Finally, we demonstrate that using TRPM7 blockers or suppressing TRPM7 expression through siRNA successfully inhibits the calcium influx and the LPS-induced EC migration.These results point out TRPM7 as a new target in the drug design for several inflammatory diseases that impair vascular endothelium function.  相似文献   

14.
Transient receptor potential melastatin 7 (TRPM7) channels represent the major magnesium-uptake mechanism in mammalian cells and are key regulators of cell growth and proliferation. They are expressed abundantly in a variety of human carcinoma cells controlling survival, growth, and migration. These characteristics are the basis for recent interest in the channel as a target for cancer therapeutics. We screened a chemical library of marine organism-derived extracts and identified waixenicin A from the soft coral Sarcothelia edmondsoni as a strong inhibitor of overexpressed and native TRPM7. Waixenicin A activity was cytosolic and potentiated by intracellular free magnesium (Mg(2+)) concentration. Mutating a Mg(2+) binding site on the TRPM7 kinase domain reduced the potency of the compound, whereas kinase deletion enhanced its efficacy independent of Mg(2+). Waixenicin A failed to inhibit the closely homologous TRPM6 channel and did not significantly affect TRPM2, TRPM4, and Ca(2+) release-activated Ca(2+) current channels. Therefore, waixenicin A represents the first potent and relatively specific inhibitor of TRPM7 ion channels. Consistent with TRPM7 inhibition, the compound blocked cell proliferation in human Jurkat T-cells and rat basophilic leukemia cells. Based on the ability of the compound to inhibit cell proliferation through Mg(2+)-dependent block of TRPM7, waixenicin A, or structural analogs may have cancer-specific therapeutic potential, particularly because certain cancers accumulate cytosolic Mg(2+).  相似文献   

15.
Exposure to oxidative stress causes health problems, including sensory neuron neuropathy and pain. Rotenone is a toxin used to generate intracellular oxidative stress in neurons. However, the mechanism of toxicity in dorsal root ganglion (DRG) neurons has not been characterized. Melastatin-like transient receptor potential 2 (TRPM2) channel activation and inhibition in response to oxidative stress, ADP-ribose (ADPR), flufenamic acid (FFA) and 2-aminoethoxydiphenyl borate (2-APB) in DRG neurons are also not clear. We tested the effects of FFA and 2-APB on ADPR and rotenone-induced TRPM2 cation channel activation in DRG neurons of rats. DRG neurons were freshly isolated from rats and studied with the conventional whole-cell patch-clamp technique. Rotenone, FFA and 2-APB were extracellularly added through the patch chamber, and ADPR was applied intracellularly through the patch pipette. TRPM2 cation currents were consistently induced by ADPR and rotenone. Current densities of the neurons were higher in the ADPR and rotenone groups than in control. The time courses (gating times) in the neurons were longer in the rotenone than in the ADPR group. ADPR and rotenone-induced TRPM2 currents were totally blocked by 2-APB and partially blocked by FFA. In conclusion, TRPM2 channels were constitutively activated by ADPR and rotenone, and 2-APB and FFA induced an inhibitory effect on TRPM2 cation channel currents in rat DRG neurons. Since oxidative stress is a common feature of neuropathic pain and diseases of sensory neurons, the present findings have broad application to the etiology of neuropathic pain and diseases of DRG neurons.  相似文献   

16.
TRPM2 is a member of the transient receptor potential melastatin-related (TRPM) family of cation channels, which possesses both ion channel and ADP-ribose hydrolase functions. TRPM2 has been shown to gate in response to oxidative and nitrosative stresses, but the mechanism through which TRPM2 gating is induced by these types of stimuli is not clear. Here we show through structure-guided mutagenesis that TRPM2 gating by ADP-ribose and both oxidative and nitrosative stresses requires an intact ADP-ribose binding cleft in the C-terminal nudix domain. We also show that oxidative/nitrosative stress-induced gating can be inhibited by pharmacological reagents predicted to inhibit NAD hydrolysis to ADP-ribose and by suppression of ADP-ribose accumulation by cytosolic or mitochondrial overexpression of an enzyme that specifically hydrolyzes ADP-ribose. Overall, our data are most consistent with a model of oxidative and nitrosative stress-induced TRPM2 activation in which mitochondria are induced to produce free ADP-ribose and release it to the cytosol, where its subsequent accumulation induces TRPM2 gating via interaction within a binding cleft in the C-terminal NUDT9-H domain of TRPM2.  相似文献   

17.
The ability to sense and adapt to a wide variety of environmental changes is crucial for the survival of all cells. Transient receptor potential (TRP) channels play pivotal roles in these sensing and adaptation reactions. In vertebrates, there are about 30 TRP channels; these are divided into six subfamilies by homology of the protein sequences. We have previously revealed that a group of TRP channels senses oxidative stress and induces cellular signaling and gene expression. TRPM2, a member of the TRPM subfamily, is activated by reactive oxygen species (ROS) via second-messenger production. Recently, we demonstrated that Ca2+ influx through TRPM2 activated by ROS induces chemokine production in monocytes, which aggravates inflammatory neutrophil infiltration. Additionally, we also revealed that nitric oxide, chemical compounds containing reactive disulfide, and inflammatory mediators directly activate the TRPC, TRPV, and TRPA subfamilies via oxidative modification of cysteine residues. In this review, we describe how these TRP channels sense oxidative stress and induce adaptation reactions, and we discuss the biological importance of oxidative stress-activated TRP channels.  相似文献   

18.
The TRPM (transient receptor potential melastatin) family belongs to the superfamily of TRP cation channels. The TRPM subfamily is composed of eight members that are involved in diverse biological functions such as temperature sensing, inflammation, insulin secretion, and redox sensing. Since the first cloning of TRPM1 in 1998, tremendous progress has been made uncovering the function, structure, and pharmacology of this family. Complete structures of TRPM2, TRPM4, and TRPM8, as well as a partial structure of TRPM7, have been determined by cryo-EM, providing insights into their channel assembly, ion permeation, gating mechanisms, and structural pharmacology. Here we summarize the current knowledge about channel structure, emphasizing general features and principles of the structure of TRPM channels discovered since 2017. We also discuss some of the key unresolved issues in the field, including the molecular mechanisms underlying voltage and temperature dependence, as well as the functions of the TRPM channels’ C-terminal domains.  相似文献   

19.
Mast cells play a significant role in the pathophysiology of many diverse diseases such as asthma and pulmonary fibrosis. Ca2+ influx is essential for mast cell degranulation and release of proinflammatory mediators, while Mg2+ plays an important role in cellular homeostasis. The channels supporting divalent cation influx in human mast cells have not been identified, but candidate channels include the transient receptor potential melastatin (TRPM) family. In this study, we have investigated TRPM7 expression and function in primary human lung mast cells (HLMCs) and in the human mast cell lines LAD2 and HMC-1, using RT-PCR, patch clamp electrophysiology, and RNA interference. Whole cell voltage-clamp recordings revealed a nonselective cation current that activated spontaneously following loss of intracellular Mg2+. The current had a nonlinear current-voltage relationship with the characteristic steep outward rectification associated with TRPM7 channels. Reducing external divalent concentration from 3 to 0.3 mM dramatically increased the size of the outward current, whereas the current was markedly inhibited by elevated intracellular Mg2+ (6 mM). Ion substitution experiments revealed cation selectivity and Ca2+ permeability. RT-PCR confirmed the presence of mRNA for TRPM7 in HLMC, LAD2, and HMC-1 cells. Adenoviral-mediated knockdown of TRPM7 in HLMC with short hairpin RNA and in HMC-1 with short interfering RNA markedly reduced TRPM7 currents and induced cell death, an effect that was not rescued by raising extracellular Mg2+. In summary, HLMC and human mast cell lines express the nonselective cation channel TRPM7 whose presence is essential for cell survival.  相似文献   

20.
Hematopoietic stem cells (HSCs) are used therapeutically for hematological diseases and may also serve as a source for nonhematopoietic tissue engineering in the future. In other cell types, ion channels have been investigated as potential targets for the regulation of proliferation and differentiation. However, the ion channels of HSCs remain elusive. Here, we functionally characterized the ion channels of CD34+ cells from human peripheral blood. Using fluorescence-activated cell sorting, we confirmed that the CD34+ cells also express CD45 and CD133. In the CD34+/CD45+/CD133high HSCs, RT-PCR of 58 ion channel mRNAs revealed the coexpression of Kv1.3, Kv7.1, Nav1.7, TASK2, TALK2, TWIK2, TRPC4, TRPC6, TRPM2, TRPM7, and TRPV2. Whole-cell patch clamp recordings identified voltage-gated K+ currents (putatively Kv1.3), pH-sensitive TASK2-like back-ground K+ currents, ADP-ribose-activated TRPM2 currents, temperature-sensitive TRPV2-like currents, and diacylglycerol-analogue-activated TRPC6-like currents. Our results lend new insight into the physiological role of ion channels in HSCs, the specific implications of which require further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号